Abstract

We have used a low repetition rate (1 kHz), femtosecond laser amplifier in combination with a spatial light modulator (SLM) to write optical waveguides with controllable cross-section inside a phosphate glass sample. The SLM is used to induce a controllable amount of astigmatism in the beam wavefront while the beam ellipticity is controlled through the propagation distance from the SLM to the focusing optics of the writing set-up. The beam astigmatism leads to the formation of two separate disk-shaped foci lying in orthogonal planes. Additionally, the ellipticity has the effect of enabling control over the relative peak irradiances of the two foci, making it possible to bring the peak irradiance of one of them below the material transformation threshold. This allows producing a single waveguide with controllable cross-section. Numerical simulations of the irradiance distribution at the focal region under different beam shaping conditions are compared to in situ obtained experimental plasma emission images and structures produced inside the glass, leading to a very satisfactory agreement. Finally, guiding structures with controllable cross-section are successfully produced in the phosphate glass using this approach.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Osellame, V. Maselli, R. M. Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90(23), 231118 (2007).
    [CrossRef]
  2. G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
    [CrossRef]
  3. D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13(16), 5939–5946 (2005).
    [CrossRef] [PubMed]
  4. C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials us- ing a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76, 351–354 (2003).
    [CrossRef]
  5. V. Diez-Blanco, J. Siegel, A. Ferrer, A. R. D. L. Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91(5), 051104 (2007).
    [CrossRef]
  6. A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys. 93(7), 3724–3728 (2003).
    [CrossRef]
  7. G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5 μm by astigmatic beam focusing,” Opt. Lett. 27(21), 1938–1940 (2002).
    [CrossRef] [PubMed]
  8. M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13(15), 5676–5681 (2005).
    [CrossRef] [PubMed]
  9. J. Siegel, J. M. Fernández-Navarro, A. García-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86(12), 121109 (2005).
    [CrossRef]
  10. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36(7), 1517–1520 (1997).
    [CrossRef] [PubMed]
  11. R. R. Thomson, A. S. Bockelt, E. Ramsay, S. Beecher, A. H. Greenaway, A. K. Kar, and D. T. Reid, “Shaping ultrafast laser inscribed optical waveguides using a deformable mirror,” Opt. Express 16(17), 12786–12793 (2008).
    [PubMed]
  12. M. Pospiech, M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, and U. Morgner, “Double waveguide couplers produced by simultaneous femtosecond writing,” Opt. Express 17(5), 3555–3563 (2009).
    [CrossRef] [PubMed]
  13. C. Mauclair, G. Cheng, N. Huot, E. Audouard, A. Rosenfeld, I. V. Hertel, and R. Stoian, “Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials,” Opt. Express 17(5), 3531–3542 (2009).
    [CrossRef] [PubMed]
  14. Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High Efficiency Electrically-Addressable Phase-Only Spatial Light Modulator,” Opt. Rev. 6(4), 339–344 (1999).
    [CrossRef]
  15. M. Born, and E. Wolf, Principles of Optics (Cambridge University Press, 1997).
  16. G. Zhao, X. Ji, and B. Lu, “Approximate analytical propagation equations of Gaussian beams through hard-aperture optics,” Optik (Stuttg.) 114(6), 241–245 (2003).
    [CrossRef]
  17. W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93(12), 121109 (2008).
    [CrossRef]

2009

2008

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93(12), 121109 (2008).
[CrossRef]

R. R. Thomson, A. S. Bockelt, E. Ramsay, S. Beecher, A. H. Greenaway, A. K. Kar, and D. T. Reid, “Shaping ultrafast laser inscribed optical waveguides using a deformable mirror,” Opt. Express 16(17), 12786–12793 (2008).
[PubMed]

2007

R. Osellame, V. Maselli, R. M. Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90(23), 231118 (2007).
[CrossRef]

V. Diez-Blanco, J. Siegel, A. Ferrer, A. R. D. L. Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91(5), 051104 (2007).
[CrossRef]

2005

D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13(16), 5939–5946 (2005).
[CrossRef] [PubMed]

M. Ams, G. D. Marshall, D. J. Spence, and M. J. Withford, “Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses,” Opt. Express 13(15), 5676–5681 (2005).
[CrossRef] [PubMed]

J. Siegel, J. M. Fernández-Navarro, A. García-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86(12), 121109 (2005).
[CrossRef]

2003

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials us- ing a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76, 351–354 (2003).
[CrossRef]

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys. 93(7), 3724–3728 (2003).
[CrossRef]

G. Zhao, X. Ji, and B. Lu, “Approximate analytical propagation equations of Gaussian beams through hard-aperture optics,” Optik (Stuttg.) 114(6), 241–245 (2003).
[CrossRef]

2002

1999

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High Efficiency Electrically-Addressable Phase-Only Spatial Light Modulator,” Opt. Rev. 6(4), 339–344 (1999).
[CrossRef]

1997

Ams, M.

Armengol, J.

J. Siegel, J. M. Fernández-Navarro, A. García-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86(12), 121109 (2005).
[CrossRef]

Audouard, E.

Beecher, S.

Bellini, N.

Bockelt, A. S.

Cerullo, G.

Cheng, G.

Chin, S. L.

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys. 93(7), 3724–3728 (2003).
[CrossRef]

Cruz, A. R. D. L.

V. Diez-Blanco, J. Siegel, A. Ferrer, A. R. D. L. Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91(5), 051104 (2007).
[CrossRef]

Day, D.

De Silvestri, S.

Diez-Blanco, V.

V. Diez-Blanco, J. Siegel, A. Ferrer, A. R. D. L. Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91(5), 051104 (2007).
[CrossRef]

J. Siegel, J. M. Fernández-Navarro, A. García-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86(12), 121109 (2005).
[CrossRef]

Emons, M.

Fernández, H.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93(12), 121109 (2008).
[CrossRef]

Fernández-Navarro, J. M.

J. Siegel, J. M. Fernández-Navarro, A. García-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86(12), 121109 (2005).
[CrossRef]

Ferrer, A.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93(12), 121109 (2008).
[CrossRef]

V. Diez-Blanco, J. Siegel, A. Ferrer, A. R. D. L. Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91(5), 051104 (2007).
[CrossRef]

García, J. F.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials us- ing a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76, 351–354 (2003).
[CrossRef]

García-Navarro, A.

J. Siegel, J. M. Fernández-Navarro, A. García-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86(12), 121109 (2005).
[CrossRef]

Gawelda, W.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93(12), 121109 (2008).
[CrossRef]

Greenaway, A. H.

Gu, M.

Hara, T.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High Efficiency Electrically-Addressable Phase-Only Spatial Light Modulator,” Opt. Rev. 6(4), 339–344 (1999).
[CrossRef]

Hertel, I. V.

Huot, N.

Igasaki, Y.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High Efficiency Electrically-Addressable Phase-Only Spatial Light Modulator,” Opt. Rev. 6(4), 339–344 (1999).
[CrossRef]

Inoue, T.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High Efficiency Electrically-Addressable Phase-Only Spatial Light Modulator,” Opt. Rev. 6(4), 339–344 (1999).
[CrossRef]

Ji, X.

G. Zhao, X. Ji, and B. Lu, “Approximate analytical propagation equations of Gaussian beams through hard-aperture optics,” Optik (Stuttg.) 114(6), 241–245 (2003).
[CrossRef]

Kar, A. K.

Kobayashi, Y.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High Efficiency Electrically-Addressable Phase-Only Spatial Light Modulator,” Opt. Rev. 6(4), 339–344 (1999).
[CrossRef]

Laporta, P.

Li, F.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High Efficiency Electrically-Addressable Phase-Only Spatial Light Modulator,” Opt. Rev. 6(4), 339–344 (1999).
[CrossRef]

Love, G. D.

Lu, B.

G. Zhao, X. Ji, and B. Lu, “Approximate analytical propagation equations of Gaussian beams through hard-aperture optics,” Optik (Stuttg.) 114(6), 241–245 (2003).
[CrossRef]

Marangoni, M.

Marshall, G. D.

Maselli, V.

R. Osellame, V. Maselli, R. M. Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90(23), 231118 (2007).
[CrossRef]

Mauclair, C.

Mazur, E.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials us- ing a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76, 351–354 (2003).
[CrossRef]

Morgner, U.

Mukohzaka, N.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High Efficiency Electrically-Addressable Phase-Only Spatial Light Modulator,” Opt. Rev. 6(4), 339–344 (1999).
[CrossRef]

Nadeau, M. C.

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys. 93(7), 3724–3728 (2003).
[CrossRef]

Nguyen, N. T.

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys. 93(7), 3724–3728 (2003).
[CrossRef]

Osellame, R.

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[CrossRef]

M. Pospiech, M. Emons, A. Steinmann, G. Palmer, R. Osellame, N. Bellini, G. Cerullo, and U. Morgner, “Double waveguide couplers produced by simultaneous femtosecond writing,” Opt. Express 17(5), 3555–3563 (2009).
[CrossRef] [PubMed]

R. Osellame, V. Maselli, R. M. Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90(23), 231118 (2007).
[CrossRef]

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5 μm by astigmatic beam focusing,” Opt. Lett. 27(21), 1938–1940 (2002).
[CrossRef] [PubMed]

Palmer, G.

Petit, S.

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys. 93(7), 3724–3728 (2003).
[CrossRef]

Polli, D.

Pospiech, M.

Puerto, D.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93(12), 121109 (2008).
[CrossRef]

Ramponi, R.

R. Osellame, V. Maselli, R. M. Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90(23), 231118 (2007).
[CrossRef]

G. Cerullo, R. Osellame, S. Taccheo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Femtosecond micromachining of symmetric waveguides at 1.5 μm by astigmatic beam focusing,” Opt. Lett. 27(21), 1938–1940 (2002).
[CrossRef] [PubMed]

Ramsay, E.

Reid, D. T.

Rosenfeld, A.

Ruiz De La Cruz, A.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93(12), 121109 (2008).
[CrossRef]

Saliminia, A.

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys. 93(7), 3724–3728 (2003).
[CrossRef]

Sanz, O.

J. Siegel, J. M. Fernández-Navarro, A. García-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86(12), 121109 (2005).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials us- ing a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76, 351–354 (2003).
[CrossRef]

Siegel, J.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93(12), 121109 (2008).
[CrossRef]

V. Diez-Blanco, J. Siegel, A. Ferrer, A. R. D. L. Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91(5), 051104 (2007).
[CrossRef]

J. Siegel, J. M. Fernández-Navarro, A. García-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86(12), 121109 (2005).
[CrossRef]

Solis, J.

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93(12), 121109 (2008).
[CrossRef]

V. Diez-Blanco, J. Siegel, A. Ferrer, A. R. D. L. Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91(5), 051104 (2007).
[CrossRef]

J. Siegel, J. M. Fernández-Navarro, A. García-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86(12), 121109 (2005).
[CrossRef]

Spence, D. J.

Steinmann, A.

Stoian, R.

Taccheo, S.

Thomson, R. R.

Toyoda, H.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High Efficiency Electrically-Addressable Phase-Only Spatial Light Modulator,” Opt. Rev. 6(4), 339–344 (1999).
[CrossRef]

Valle, G. D.

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[CrossRef]

Vallée, R.

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys. 93(7), 3724–3728 (2003).
[CrossRef]

Vazquez, R. M.

R. Osellame, V. Maselli, R. M. Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90(23), 231118 (2007).
[CrossRef]

Vega, F.

J. Siegel, J. M. Fernández-Navarro, A. García-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86(12), 121109 (2005).
[CrossRef]

Withford, M. J.

Yoshida, N.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High Efficiency Electrically-Addressable Phase-Only Spatial Light Modulator,” Opt. Rev. 6(4), 339–344 (1999).
[CrossRef]

Zhao, G.

G. Zhao, X. Ji, and B. Lu, “Approximate analytical propagation equations of Gaussian beams through hard-aperture optics,” Optik (Stuttg.) 114(6), 241–245 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

R. Osellame, V. Maselli, R. M. Vazquez, R. Ramponi, and G. Cerullo, “Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation,” Appl. Phys. Lett. 90(23), 231118 (2007).
[CrossRef]

V. Diez-Blanco, J. Siegel, A. Ferrer, A. R. D. L. Cruz, and J. Solis, “Deep subsurface waveguides with circular cross section produced by femtosecond laser writing,” Appl. Phys. Lett. 91(5), 051104 (2007).
[CrossRef]

J. Siegel, J. M. Fernández-Navarro, A. García-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86(12), 121109 (2005).
[CrossRef]

W. Gawelda, D. Puerto, J. Siegel, A. Ferrer, A. Ruiz De La Cruz, H. Fernández, and J. Solis, “Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics,” Appl. Phys. Lett. 93(12), 121109 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

C. B. Schaffer, J. F. García, and E. Mazur, “Bulk heating of transparent materials us- ing a high-repetition-rate femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 76, 351–354 (2003).
[CrossRef]

J. Appl. Phys.

A. Saliminia, N. T. Nguyen, M. C. Nadeau, S. Petit, S. L. Chin, and R. Vallée, “Writing optical waveguides in fused silica using 1 kHz femtosecond infrared pulses,” J. Appl. Phys. 93(7), 3724–3728 (2003).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

G. D. Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A, Pure Appl. Opt. 11(1), 013001 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Rev.

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, “High Efficiency Electrically-Addressable Phase-Only Spatial Light Modulator,” Opt. Rev. 6(4), 339–344 (1999).
[CrossRef]

Optik (Stuttg.)

G. Zhao, X. Ji, and B. Lu, “Approximate analytical propagation equations of Gaussian beams through hard-aperture optics,” Optik (Stuttg.) 114(6), 241–245 (2003).
[CrossRef]

Other

M. Born, and E. Wolf, Principles of Optics (Cambridge University Press, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental set-up used for optical waveguide writing controlling the astigmatism and ellipticity of the irradiation beam with a SLM. It shows an image of the wavefront before the SLM and the phase-maps used to correct the initial aberrations and induce a given amount of astigmatism to the beam. The ellipticity of the beam is controlled by the propagation distance using the trombone arrangement.

Fig. 3
Fig. 3

Numerically calculated cross-sections of the irradiance distribution (y-z plane) after propagating and focusing a beam inside a glass sample for various astigmatism values (Z 4). The parameters used are: objective NA = 0.4, propagation distance d = 80 cm, focal length f = 10 mm and depth z = 300 µm (a)-(c). Images of plasma emission generated by focusing an astigmatic beam in a phosphate glass sample with the same parameters as the numerical calculations, for pulses with energy E = 300 nJ (d)-(f).

Fig. 2
Fig. 2

Schematic drawing of the astigmatism and beam propagation effects on the beam profile at the entrance pupil of the focusing objective (a) and on the irradiance distribution in the focal region, showing two foci lying in orthogonal planes (b).

Fig. 4
Fig. 4

Plots representing the separation between foci (a) and aspect ratio (∆z/∆y) of the cross-section for the second focus (b) as a function of astigmatism in the irradiation beam wavefront. The fixed parameters used are: d = 80 cm, z = 300 μm and f = 10 mm.

Fig. 5
Fig. 5

Numerical calculations of the irradiance distribution for an astigmatic beam in the focal region (f = 10 mm, z = 300 μm and pupil diameter of focusing optics ϕ = 8 mm) for propagation distances d = 0.1 m (a)-(b) and d = 1.73 m (c)-(d); irradiance profiles along the z-axis for both propagation distances (e).

Fig. 6
Fig. 6

Optical microscopy cross-section images of structures written with the following parameters: f = 10 mm, ϕ = 8 mm, Z 4 = 1.2 μm, d = 1.73 m, z = 300 μm and v = 100 μm/s, for two different irradiation energies E = 3.0 μJ (a) and E = 1.2 μJ (b).

Fig. 7
Fig. 7

Transillumination microscope image of a waveguide fabricated with an astigmatic beam (Z 4 = 1.4 μm, E = 1.0 μJ, d = 1.73 m, z = 300 μm and v = 100 μm/s) and five writing scans (a). Near-field guided-mode image of the same waveguide for λ = 633 nm (b).

Metrics