Abstract

An iterative phase retrieval method for a lensless color holographic display using a single light modulator is experimentally validated. The technique involves iterative calculation of a three-plane synthetic hologram which is displayed on a SLM simultaneously lit with three laser beams providing an RGB illumination. Static and animated two-dimensional flicker-free full color images are reconstructed at a fixed position and captured using a high resolution CMOS sensor. The image finesse, color fidelity, contrast ratio and influence of speckles are evaluated and compared with other techniques of holographic color image encoding. The results indicate the technique superior in a case of full-color real-life pictures which are correctly displayed by this ultra-compact and simple projection setup.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. W. Lohmann, “Scaling laws for lens systems,” Appl. Opt. 28(23), 4996–4998 (1989).
    [CrossRef] [PubMed]
  2. K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and its application to scale invariant processing,” Opt. Rev. 3(4), 264–268 (1996).
    [CrossRef]
  3. J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, A. Tünnermann, R. Völkel, M. Eisner, and T. Scharf, “Microoptical telescope compound eye,” Opt. Express 13(3), 889–903 (2005).
    [CrossRef] [PubMed]
  4. R. Shogenji, Y. Kitamura, K. Yamada, S. Miyatake, and J. Tanida, “Multispectral imaging using compact compound optics,” Opt. Express 12(8), 1643–1655 (2004).
    [CrossRef] [PubMed]
  5. M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorful reconstructions from a thin multi-plane phase hologram,” Opt. Express 16(15), 11618–11623 (2008).
    [PubMed]
  6. M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikula, and J. Suszek, “Iterative design of multi-plane holograms: experiments and applications,” Opt. Eng. 46(4), 045802 (2007).
    [CrossRef]
  7. M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikuła, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44(12), 125805 (2005).
    [CrossRef]
  8. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).
  9. R. Dorsch, A. Lohmann, and S. Sinzinger, “Fresnel ping-pong algorithm for two-plane computer-generated hologram display,” Appl. Opt. 33(5), 869–875 (1994).
    [CrossRef] [PubMed]
  10. T. Haist, M. Schonleber, and H. J. Tiziani, “Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays,” Opt. Commun. 140(4-6), 299–308 (1997).
    [CrossRef]
  11. G. Sinclair, J. Leach, P. Jordan, G. Gibson, E. Yao, Z. J. Laczik, M. J. Padgett, and J. Courtial, “Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping,” Opt. Express 12(8), 1665–1670 (2004).
    [CrossRef] [PubMed]
  12. M. Sypek, “Light propagation in the Fresnel region: new numerical approach,” Opt. Commun. 116(1-3), 43–48 (1995).
    [CrossRef]
  13. K. M. Johnson, M. Armstrong, L. Hesselink, and J. W. Goodman, “Multiple multiple-exposure hologram,” Appl. Opt. 24(24), 4467–4472 (1985).
    [CrossRef] [PubMed]
  14. J. Suszek, M. Makowski, M. Sypek, A. Siemion, and A. Kolodziejczyk, “Angle-dependent encoding of multiple asymmetric symbols in a binary phase hologram with a spatial segmentation,” Appl. Opt. 48(2), 270–275 (2009).
    [CrossRef] [PubMed]
  15. J. Xia and H. Yin, “Three-dimensional light modulation using phase-only spatial light modulator,” Opt. Eng. 48(2), 020502 (2009).
    [CrossRef]

2009 (2)

2008 (1)

2007 (1)

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikula, and J. Suszek, “Iterative design of multi-plane holograms: experiments and applications,” Opt. Eng. 46(4), 045802 (2007).
[CrossRef]

2005 (2)

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikuła, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44(12), 125805 (2005).
[CrossRef]

J. Duparré, P. Schreiber, A. Matthes, E. Pshenay-Severin, A. Bräuer, A. Tünnermann, R. Völkel, M. Eisner, and T. Scharf, “Microoptical telescope compound eye,” Opt. Express 13(3), 889–903 (2005).
[CrossRef] [PubMed]

2004 (2)

1997 (1)

T. Haist, M. Schonleber, and H. J. Tiziani, “Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays,” Opt. Commun. 140(4-6), 299–308 (1997).
[CrossRef]

1996 (1)

K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and its application to scale invariant processing,” Opt. Rev. 3(4), 264–268 (1996).
[CrossRef]

1995 (1)

M. Sypek, “Light propagation in the Fresnel region: new numerical approach,” Opt. Commun. 116(1-3), 43–48 (1995).
[CrossRef]

1994 (1)

1989 (1)

1985 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Armstrong, M.

Bräuer, A.

Courtial, J.

Dorsch, R.

Duparré, J.

Eisner, M.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Gibson, G.

Goodman, J. W.

Haist, T.

T. Haist, M. Schonleber, and H. J. Tiziani, “Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays,” Opt. Commun. 140(4-6), 299–308 (1997).
[CrossRef]

Hamanaka, K.

K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and its application to scale invariant processing,” Opt. Rev. 3(4), 264–268 (1996).
[CrossRef]

Hesselink, L.

Johnson, K. M.

Jordan, P.

Kitamura, Y.

Kolodziejczyk, A.

J. Suszek, M. Makowski, M. Sypek, A. Siemion, and A. Kolodziejczyk, “Angle-dependent encoding of multiple asymmetric symbols in a binary phase hologram with a spatial segmentation,” Appl. Opt. 48(2), 270–275 (2009).
[CrossRef] [PubMed]

M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorful reconstructions from a thin multi-plane phase hologram,” Opt. Express 16(15), 11618–11623 (2008).
[PubMed]

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikula, and J. Suszek, “Iterative design of multi-plane holograms: experiments and applications,” Opt. Eng. 46(4), 045802 (2007).
[CrossRef]

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikuła, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44(12), 125805 (2005).
[CrossRef]

Koshi, H.

K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and its application to scale invariant processing,” Opt. Rev. 3(4), 264–268 (1996).
[CrossRef]

Laczik, Z. J.

Leach, J.

Lohmann, A.

Lohmann, A. W.

Makowski, M.

J. Suszek, M. Makowski, M. Sypek, A. Siemion, and A. Kolodziejczyk, “Angle-dependent encoding of multiple asymmetric symbols in a binary phase hologram with a spatial segmentation,” Appl. Opt. 48(2), 270–275 (2009).
[CrossRef] [PubMed]

M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorful reconstructions from a thin multi-plane phase hologram,” Opt. Express 16(15), 11618–11623 (2008).
[PubMed]

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikula, and J. Suszek, “Iterative design of multi-plane holograms: experiments and applications,” Opt. Eng. 46(4), 045802 (2007).
[CrossRef]

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikuła, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44(12), 125805 (2005).
[CrossRef]

Matthes, A.

Mikula, G.

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikula, and J. Suszek, “Iterative design of multi-plane holograms: experiments and applications,” Opt. Eng. 46(4), 045802 (2007).
[CrossRef]

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikuła, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44(12), 125805 (2005).
[CrossRef]

Miyatake, S.

Padgett, M. J.

Pshenay-Severin, E.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Scharf, T.

Schonleber, M.

T. Haist, M. Schonleber, and H. J. Tiziani, “Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays,” Opt. Commun. 140(4-6), 299–308 (1997).
[CrossRef]

Schreiber, P.

Shogenji, R.

Siemion, A.

Sinclair, G.

Sinzinger, S.

Suszek, J.

J. Suszek, M. Makowski, M. Sypek, A. Siemion, and A. Kolodziejczyk, “Angle-dependent encoding of multiple asymmetric symbols in a binary phase hologram with a spatial segmentation,” Appl. Opt. 48(2), 270–275 (2009).
[CrossRef] [PubMed]

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikula, and J. Suszek, “Iterative design of multi-plane holograms: experiments and applications,” Opt. Eng. 46(4), 045802 (2007).
[CrossRef]

Sypek, M.

J. Suszek, M. Makowski, M. Sypek, A. Siemion, and A. Kolodziejczyk, “Angle-dependent encoding of multiple asymmetric symbols in a binary phase hologram with a spatial segmentation,” Appl. Opt. 48(2), 270–275 (2009).
[CrossRef] [PubMed]

M. Makowski, M. Sypek, and A. Kolodziejczyk, “Colorful reconstructions from a thin multi-plane phase hologram,” Opt. Express 16(15), 11618–11623 (2008).
[PubMed]

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikula, and J. Suszek, “Iterative design of multi-plane holograms: experiments and applications,” Opt. Eng. 46(4), 045802 (2007).
[CrossRef]

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikuła, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44(12), 125805 (2005).
[CrossRef]

M. Sypek, “Light propagation in the Fresnel region: new numerical approach,” Opt. Commun. 116(1-3), 43–48 (1995).
[CrossRef]

Tanida, J.

Tiziani, H. J.

T. Haist, M. Schonleber, and H. J. Tiziani, “Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays,” Opt. Commun. 140(4-6), 299–308 (1997).
[CrossRef]

Tünnermann, A.

Völkel, R.

Xia, J.

J. Xia and H. Yin, “Three-dimensional light modulation using phase-only spatial light modulator,” Opt. Eng. 48(2), 020502 (2009).
[CrossRef]

Yamada, K.

Yao, E.

Yin, H.

J. Xia and H. Yin, “Three-dimensional light modulation using phase-only spatial light modulator,” Opt. Eng. 48(2), 020502 (2009).
[CrossRef]

Appl. Opt. (4)

Opt. Commun. (2)

M. Sypek, “Light propagation in the Fresnel region: new numerical approach,” Opt. Commun. 116(1-3), 43–48 (1995).
[CrossRef]

T. Haist, M. Schonleber, and H. J. Tiziani, “Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays,” Opt. Commun. 140(4-6), 299–308 (1997).
[CrossRef]

Opt. Eng. (3)

M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikula, and J. Suszek, “Iterative design of multi-plane holograms: experiments and applications,” Opt. Eng. 46(4), 045802 (2007).
[CrossRef]

M. Makowski, M. Sypek, A. Kolodziejczyk, and G. Mikuła, “Three-plane phase-only computer hologram generated with iterative Fresnel algorithm,” Opt. Eng. 44(12), 125805 (2005).
[CrossRef]

J. Xia and H. Yin, “Three-dimensional light modulation using phase-only spatial light modulator,” Opt. Eng. 48(2), 020502 (2009).
[CrossRef]

Opt. Express (4)

Opt. Rev. (1)

K. Hamanaka and H. Koshi, “An artificial compound eye using a microlens array and its application to scale invariant processing,” Opt. Rev. 3(4), 264–268 (1996).
[CrossRef]

Optik (Stuttg.) (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35, 237–246 (1972).

Supplementary Material (2)

» Media 1: MOV (3433 KB)     
» Media 2: MOV (913 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a) An ideal scheme of the experimental setup; b) magnification of the marked area showing the locations of all reconstructed object planes with illumination from three beams.

Fig. 2
Fig. 2

Amplitude masks used in surface segmentation experiment for: a) red; b) green; c) blue component.

Fig. 4
Fig. 4

The results of numerical and experimental reconstructions of color images for projection distance of 200 mm.

Fig. 5
Fig. 5

Magnification of reconstructed images: a) 3 SLMs; b) proposed method; c) multi-exposure; d) surface segmentation. The “bright” test region is marked in black, the “dark” test region is marked in white.

Fig. 6
Fig. 6

Reconstruction of holograms designed on an array of: a) 1024 by 1024 (Media 1 showing animations); b) 2048 by 1024; c) 2048 by 2048 (Media 2 showing the diffractive field along the optical axis while approaching the SLM); d) 4096 by 4096 points. The non-diffracted field is visible and the presence of higher diffraction orders are marked in (d).

Fig. 7
Fig. 7

Reconstruction quality for base projection distances: 500 mm; 700 mm and 1000 mm.

Tables (1)

Tables Icon

Table 1 Numerical comparison of the image quality using the mentioned four methods.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f G : f R = λ B : λ G , f B : f R = λ B : λ R , f B : f G = λ G : λ R

Metrics