Abstract

We generate mode-locked picosecond pulses near 1110 nm by spectrally slicing and reamplifying an octave-spanning supercontinuum source pumped at 1550 nm. The 1110 nm pulses are near transform-limited, with 1.7 ps duration over their 1.2 nm bandwidth, and exhibit high interpulse coherence. Both the supercontinuum source and the pulse synthesis system are implemented completely in fiber. The versatile source construction suggests that pulse synthesis from sliced supercontinuum may be a useful technique across the 1000–2000 nm wavelength range.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hall, "Optical Frequency Measurement: 40 Years of Technology Revolutions," IEEE J. Sel. Top. Quantum Electron. 6, 1136 (2000).
    [CrossRef]
  2. T. Udem, R. Holzwarth, and T. W. Hänsch, "Optical Frequency Metrology," Nature 416, 233 (2002).
    [CrossRef] [PubMed]
  3. L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, "Optical Frequency Synthesis and Comparison with Uncertainty at the 10 -19 Level," Science 303, 1843 (2004).
    [CrossRef] [PubMed]
  4. D. J. Jones, S. A. Diddams, M. S. Taubman, S. T. Cundiff, L.-S. Ma, and J. L. Hall, "Frequency comb generation using femtosecond pulses and cross-phase modulation in optical fiber at arbitrary center frequencies," Opt. Lett. 25, 308 (2000).
    [CrossRef]
  5. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, Y. Bitou, A. Onae, and H. Matsumoto, "Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb," Opt. Lett. 30, 2323 (2005).
    [CrossRef] [PubMed]
  6. M. Vainio, M. Merimaa, and K. Nyholm, "Optical amplifier for femtosecond frequency comb measurements near 633 nm," Appl. Phys. B 81, 1053 (2005).
    [CrossRef]
  7. F. C. Cruz, M. C. Stowe, and J. Ye, "Tapered semiconductor amplifiers for optical frequency combs in the near infrared," Opt. Lett. 31, 1337 (2006).
    [CrossRef] [PubMed]
  8. H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110 (2006).
    [CrossRef]
  9. T. Morioka, K. Mori, and M. Saruwatari, "More Than 100-Wavelength-Channel Picosecond Optical Pulse Generation from single laser source using supercontinuum in Optical Fibres," Electron. Lett. 29, 862 (1993).
    [CrossRef]
  10. S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarina, and S. K. Turitsyn, "Optical spectral broadening and supercontinuum generation in telecom applications," Opt. Fiber Technol. 12, 122 (2006).
    [CrossRef]
  11. Ö Boyraz, J. Kim, M. N. Islam, and B. Jalali, "10 Gb/s MultipleWavelength, Coherent Short pulse source based on spectral carving of supercontinuum generated in fibers," J. Lightwave Technol. 18, 2167 (2000).
    [CrossRef]
  12. J. H. V. Price, K. Furusawa, T. M. Monro, L. Lefort, and D. J. Richardson, "Tunable, femtosecond pulse source operating in the range 1.06 - 1.33 mm based on an Yb3+-doped holey fiber amplifier," J. Opt. Soc. Am. B 19, 1286 (2002).
    [CrossRef]
  13. J. Porta, A. B. Grudinin, Z. J. Chen, J. D. Minelly, and N. J. Traynor, "Environmentally stable picosecond ytterbium fiber laser with a broad tuning range," Opt. Lett. 23, 615 (1998).
    [CrossRef]
  14. L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM-based Ytterbium mode-locked fiber lasers," IEEE J. Sel. Top. Quantum Electron. 10, 129 (2004).
    [CrossRef]
  15. P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, "Supercontinuum generation in a fiber grating," Appl. Phys. Lett. 85, 4600 (2004).
    [CrossRef]
  16. J. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  17. CorningSMF 28e optical fiber product information, available at http://www.corning.com
  18. M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, "Fibre Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509 (2003).
    [CrossRef]

2006

F. C. Cruz, M. C. Stowe, and J. Ye, "Tapered semiconductor amplifiers for optical frequency combs in the near infrared," Opt. Lett. 31, 1337 (2006).
[CrossRef] [PubMed]

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110 (2006).
[CrossRef]

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarina, and S. K. Turitsyn, "Optical spectral broadening and supercontinuum generation in telecom applications," Opt. Fiber Technol. 12, 122 (2006).
[CrossRef]

J. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

2005

2004

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, "Optical Frequency Synthesis and Comparison with Uncertainty at the 10 -19 Level," Science 303, 1843 (2004).
[CrossRef] [PubMed]

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM-based Ytterbium mode-locked fiber lasers," IEEE J. Sel. Top. Quantum Electron. 10, 129 (2004).
[CrossRef]

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, "Supercontinuum generation in a fiber grating," Appl. Phys. Lett. 85, 4600 (2004).
[CrossRef]

2003

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, "Fibre Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509 (2003).
[CrossRef]

2002

2000

1998

1993

T. Morioka, K. Mori, and M. Saruwatari, "More Than 100-Wavelength-Channel Picosecond Optical Pulse Generation from single laser source using supercontinuum in Optical Fibres," Electron. Lett. 29, 862 (1993).
[CrossRef]

Ania-Castanon, J. D.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarina, and S. K. Turitsyn, "Optical spectral broadening and supercontinuum generation in telecom applications," Opt. Fiber Technol. 12, 122 (2006).
[CrossRef]

Bartels, A.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, "Optical Frequency Synthesis and Comparison with Uncertainty at the 10 -19 Level," Science 303, 1843 (2004).
[CrossRef] [PubMed]

Bi, Z.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, "Optical Frequency Synthesis and Comparison with Uncertainty at the 10 -19 Level," Science 303, 1843 (2004).
[CrossRef] [PubMed]

Bitou, Y.

Boyraz, Ö

Brown, T.

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, "Supercontinuum generation in a fiber grating," Appl. Phys. Lett. 85, 4600 (2004).
[CrossRef]

Butler, S. A.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, "Fibre Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509 (2003).
[CrossRef]

Chen, Z. J.

Coen, S.

J. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Cruz, F. C.

Cundiff, S. T.

Diddams, S. A.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, "Optical Frequency Synthesis and Comparison with Uncertainty at the 10 -19 Level," Science 303, 1843 (2004).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, M. S. Taubman, S. T. Cundiff, L.-S. Ma, and J. L. Hall, "Frequency comb generation using femtosecond pulses and cross-phase modulation in optical fiber at arbitrary center frequencies," Opt. Lett. 25, 308 (2000).
[CrossRef]

Dudley, J.

J. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Ellingham, T. J.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarina, and S. K. Turitsyn, "Optical spectral broadening and supercontinuum generation in telecom applications," Opt. Fiber Technol. 12, 122 (2006).
[CrossRef]

Feder, K. S.

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, "Supercontinuum generation in a fiber grating," Appl. Phys. Lett. 85, 4600 (2004).
[CrossRef]

Furusawa, K.

Genty, G.

J. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Goh, C. S.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, "Fibre Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509 (2003).
[CrossRef]

Gomes, L. A.

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM-based Ytterbium mode-locked fiber lasers," IEEE J. Sel. Top. Quantum Electron. 10, 129 (2004).
[CrossRef]

Grudinin, A. B.

Hall, J.

J. Hall, "Optical Frequency Measurement: 40 Years of Technology Revolutions," IEEE J. Sel. Top. Quantum Electron. 6, 1136 (2000).
[CrossRef]

Hall, J. L.

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, "Optical Frequency Metrology," Nature 416, 233 (2002).
[CrossRef] [PubMed]

Hollberg, L.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, "Optical Frequency Synthesis and Comparison with Uncertainty at the 10 -19 Level," Science 303, 1843 (2004).
[CrossRef] [PubMed]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, "Optical Frequency Metrology," Nature 416, 233 (2002).
[CrossRef] [PubMed]

Hong, F.-L.

Ibsen, M.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, "Fibre Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509 (2003).
[CrossRef]

Inaba, H.

Islam, M. N.

Jalali, B.

Jones, D. J.

Jouhti, T.

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM-based Ytterbium mode-locked fiber lasers," IEEE J. Sel. Top. Quantum Electron. 10, 129 (2004).
[CrossRef]

Kikuchi, K.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, "Fibre Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509 (2003).
[CrossRef]

Kim, E. B.

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110 (2006).
[CrossRef]

Kim, J.

Kobtsev, S. M.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarina, and S. K. Turitsyn, "Optical spectral broadening and supercontinuum generation in telecom applications," Opt. Fiber Technol. 12, 122 (2006).
[CrossRef]

Kukarina, S.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarina, and S. K. Turitsyn, "Optical spectral broadening and supercontinuum generation in telecom applications," Opt. Fiber Technol. 12, 122 (2006).
[CrossRef]

Lefort, L.

Li, Y.

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, "Supercontinuum generation in a fiber grating," Appl. Phys. Lett. 85, 4600 (2004).
[CrossRef]

Ma, L.-S.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, "Optical Frequency Synthesis and Comparison with Uncertainty at the 10 -19 Level," Science 303, 1843 (2004).
[CrossRef] [PubMed]

D. J. Jones, S. A. Diddams, M. S. Taubman, S. T. Cundiff, L.-S. Ma, and J. L. Hall, "Frequency comb generation using femtosecond pulses and cross-phase modulation in optical fiber at arbitrary center frequencies," Opt. Lett. 25, 308 (2000).
[CrossRef]

Matsumoto, H.

Merimaa, M.

M. Vainio, M. Merimaa, and K. Nyholm, "Optical amplifier for femtosecond frequency comb measurements near 633 nm," Appl. Phys. B 81, 1053 (2005).
[CrossRef]

Minelly, J. D.

Minoshima, K.

Mokhtar, M. R.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, "Fibre Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509 (2003).
[CrossRef]

Monro, T. M.

Moon, H. S.

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110 (2006).
[CrossRef]

Mori, K.

T. Morioka, K. Mori, and M. Saruwatari, "More Than 100-Wavelength-Channel Picosecond Optical Pulse Generation from single laser source using supercontinuum in Optical Fibres," Electron. Lett. 29, 862 (1993).
[CrossRef]

Morioka, T.

T. Morioka, K. Mori, and M. Saruwatari, "More Than 100-Wavelength-Channel Picosecond Optical Pulse Generation from single laser source using supercontinuum in Optical Fibres," Electron. Lett. 29, 862 (1993).
[CrossRef]

Nicholson, J. W.

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, "Supercontinuum generation in a fiber grating," Appl. Phys. Lett. 85, 4600 (2004).
[CrossRef]

Nyholm, K.

M. Vainio, M. Merimaa, and K. Nyholm, "Optical amplifier for femtosecond frequency comb measurements near 633 nm," Appl. Phys. B 81, 1053 (2005).
[CrossRef]

Oates, C.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, "Optical Frequency Synthesis and Comparison with Uncertainty at the 10 -19 Level," Science 303, 1843 (2004).
[CrossRef] [PubMed]

Okhotnikov, O. G.

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM-based Ytterbium mode-locked fiber lasers," IEEE J. Sel. Top. Quantum Electron. 10, 129 (2004).
[CrossRef]

Onae, A.

Orsila, L.

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM-based Ytterbium mode-locked fiber lasers," IEEE J. Sel. Top. Quantum Electron. 10, 129 (2004).
[CrossRef]

Park, C. Y.

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110 (2006).
[CrossRef]

Park, S. E.

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110 (2006).
[CrossRef]

Porta, J.

Price, J. H. V.

Richardson, D. J.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, "Fibre Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509 (2003).
[CrossRef]

J. H. V. Price, K. Furusawa, T. M. Monro, L. Lefort, and D. J. Richardson, "Tunable, femtosecond pulse source operating in the range 1.06 - 1.33 mm based on an Yb3+-doped holey fiber amplifier," J. Opt. Soc. Am. B 19, 1286 (2002).
[CrossRef]

Robertsson, L.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, "Optical Frequency Synthesis and Comparison with Uncertainty at the 10 -19 Level," Science 303, 1843 (2004).
[CrossRef] [PubMed]

Saruwatari, M.

T. Morioka, K. Mori, and M. Saruwatari, "More Than 100-Wavelength-Channel Picosecond Optical Pulse Generation from single laser source using supercontinuum in Optical Fibres," Electron. Lett. 29, 862 (1993).
[CrossRef]

Schibli, T. R.

Set, S. Y.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, "Fibre Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509 (2003).
[CrossRef]

Smirnov, S. V.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarina, and S. K. Turitsyn, "Optical spectral broadening and supercontinuum generation in telecom applications," Opt. Fiber Technol. 12, 122 (2006).
[CrossRef]

Stowe, M. C.

Taubman, M. S.

Traynor, N. J.

Turitsyn, S. K.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarina, and S. K. Turitsyn, "Optical spectral broadening and supercontinuum generation in telecom applications," Opt. Fiber Technol. 12, 122 (2006).
[CrossRef]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, "Optical Frequency Metrology," Nature 416, 233 (2002).
[CrossRef] [PubMed]

Vainio, M.

M. Vainio, M. Merimaa, and K. Nyholm, "Optical amplifier for femtosecond frequency comb measurements near 633 nm," Appl. Phys. B 81, 1053 (2005).
[CrossRef]

Westbrook, P. S.

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, "Supercontinuum generation in a fiber grating," Appl. Phys. Lett. 85, 4600 (2004).
[CrossRef]

Wilpers, G.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, "Optical Frequency Synthesis and Comparison with Uncertainty at the 10 -19 Level," Science 303, 1843 (2004).
[CrossRef] [PubMed]

Windeler, R. S.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, "Optical Frequency Synthesis and Comparison with Uncertainty at the 10 -19 Level," Science 303, 1843 (2004).
[CrossRef] [PubMed]

Ye, J.

Zucco, M.

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, "Optical Frequency Synthesis and Comparison with Uncertainty at the 10 -19 Level," Science 303, 1843 (2004).
[CrossRef] [PubMed]

Appl. Phys. B

M. Vainio, M. Merimaa, and K. Nyholm, "Optical amplifier for femtosecond frequency comb measurements near 633 nm," Appl. Phys. B 81, 1053 (2005).
[CrossRef]

Appl. Phys. Lett.

H. S. Moon, E. B. Kim, S. E. Park, and C. Y. Park, "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique," Appl. Phys. Lett. 89, 181110 (2006).
[CrossRef]

P. S. Westbrook, J. W. Nicholson, K. S. Feder, Y. Li, and T. Brown, "Supercontinuum generation in a fiber grating," Appl. Phys. Lett. 85, 4600 (2004).
[CrossRef]

Electron. Lett.

M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, and M. Ibsen, "Fibre Bragg grating compression-tuned over 110 nm," Electron. Lett. 39, 509 (2003).
[CrossRef]

T. Morioka, K. Mori, and M. Saruwatari, "More Than 100-Wavelength-Channel Picosecond Optical Pulse Generation from single laser source using supercontinuum in Optical Fibres," Electron. Lett. 29, 862 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. Hall, "Optical Frequency Measurement: 40 Years of Technology Revolutions," IEEE J. Sel. Top. Quantum Electron. 6, 1136 (2000).
[CrossRef]

L. A. Gomes, L. Orsila, T. Jouhti, and O. G. Okhotnikov, "Picosecond SESAM-based Ytterbium mode-locked fiber lasers," IEEE J. Sel. Top. Quantum Electron. 10, 129 (2004).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nature

T. Udem, R. Holzwarth, and T. W. Hänsch, "Optical Frequency Metrology," Nature 416, 233 (2002).
[CrossRef] [PubMed]

Opt. Fiber Technol.

S. V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarina, and S. K. Turitsyn, "Optical spectral broadening and supercontinuum generation in telecom applications," Opt. Fiber Technol. 12, 122 (2006).
[CrossRef]

Opt. Lett.

Rev. Mod. Phys.

J. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Science

L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, "Optical Frequency Synthesis and Comparison with Uncertainty at the 10 -19 Level," Science 303, 1843 (2004).
[CrossRef] [PubMed]

Other

CorningSMF 28e optical fiber product information, available at http://www.corning.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the mode-locked 1110 nm source. Supercontinuum generation (a) provides a spectrally sliced for reamplification (b).

Fig. 2.
Fig. 2.

Spectrum of supercontinuum generated by the 1550 nm pump showing coverage of the 1000–1700 nm wavelength range.

Fig. 3.
Fig. 3.

SC input (dotted line) and YDFA output (solid line) power spectral density near 1110 nm. The input spectrum is multiplied by a factor of approximately 30 for ease of comparison.

Fig. 4.
Fig. 4.

Autocorrelation trace of the compressed 1110 nm pulses. Points: data; line: sech2 fit. The autocorrelation signal is offset from zero for ease of viewing.

Fig. 5.
Fig. 5.

RF spectrum of the 1110 nm source. Resolution bandwidth: 1 kHz.

Metrics