Abstract

An explicit formula for metal wire plasmon of terahertz wave is analytically derived. The derivation is based on the huge relative permittivities of nonmagnetic metals in the spectral region of terahertz wave, some important properties of modified Bessel functions, and a suitable Taylor expansion. The obtained formula is further checked by many numerical tests. We find that, for all 11 tested nonmagnetic metals, for the whole spectral region of terahertz wave, and for the wide radius range from 10 μm to infinity, the relative deviation for the effective index is always smaller than 5%. This good agreement clearly shows that the derived expression can be conveniently used for the analysis and design of metal wire plasmon of terahertz wave.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
    [CrossRef] [PubMed]
  2. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321 (1996).
    [CrossRef]
  3. M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).
  4. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
    [CrossRef] [PubMed]
  5. Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons as effective terahertz waveguides,” Opt. Express 13(2), 511–518 (2005).
    [CrossRef] [PubMed]
  6. M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87(26), 261107 (2005).
    [CrossRef]
  7. T.-I. Jeon, J.-Q. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
    [CrossRef]
  8. H. Cao and A. Nahata, “Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves,” Opt. Express 13(18), 7028–7034 (2005).
    [CrossRef] [PubMed]
  9. M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13(26), 10815–10822 (2005).
    [CrossRef] [PubMed]
  10. K. Wang and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B 22(9), 2001–2008 (2005).
    [CrossRef]
  11. K. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96(15), 157401 (2006).
    [CrossRef] [PubMed]
  12. J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14(1), 279–290 (2006).
    [CrossRef] [PubMed]
  13. J. A. Deibel, N. Berndsen, K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Frequency-dependent radiation patterns emitted by THz plasmons on finite length cylindrical metal wires,” Opt. Express 14(19), 8772–8778 (2006).
    [CrossRef] [PubMed]
  14. Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Y. Wang, “Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves,” Opt. Express 14(26), 13021–13029 (2006).
    [CrossRef] [PubMed]
  15. C. Themistos, B. M. Azizur Rahman, M. Rajarajan, V. Rakocevic, and K. T. V. Grattan, “Finite Element Solutions of Surface-Plasmon Modes in Metal-Clad Dielectric Waveguides at THz Frequency,” J. Lightwave Technol. 24(12), 5111–5118 (2006).
    [CrossRef]
  16. X. He, J. Cao, and S. Feng, “Simulation of the Propagation Property of Metal Wires Terahertz Waveguides,” Chin. Phys. Lett. 23(8), 2066–2069 (2006).
    [CrossRef]
  17. J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-Element Method Simulations of Guided Wave Phenomena at Terahertz Frequencies,” Proc. IEEE 95(8), 1624–1640 (2007).
    [CrossRef]
  18. H. Liang, S. Ruan, and M. Zhang, “Terahertz surface wave propagation and focusing on conical metal wires,” Opt. Express 16(22), 18241–18248 (2008).
    [CrossRef] [PubMed]
  19. Y. B. Ji, E. S. Lee, J. S. Jang, and T.-I. Jeon, “Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide,” Opt. Express 16(1), 271–278 (2008).
    [CrossRef] [PubMed]
  20. P. W. Smorenburg, W. P. E. M. Op ‘t Root, and O. J Luiten, “Direct generation of terahertz surface plasmon polaritons on a wire using electron bunches’,” Phys. Rev. B 78(11), 115415 (2008).
    [CrossRef]
  21. J. A. Deibel, K. Wang, M. Escarra, N. Berndsen, and D. M. Mittleman, “The excitation and emission of terahertz surface plasmon polaritons on metal wire waveguides,” C. R. Phys. 9(2), 215–231 (2008).
    [CrossRef]
  22. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987 (2000).
    [CrossRef]
  23. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002).
    [CrossRef]
  24. J. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
    [CrossRef] [PubMed]
  25. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
    [CrossRef] [PubMed]
  26. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
    [CrossRef] [PubMed]
  27. G. Ren, Y. Gong, P. Shum, X. Yu, J. Hu, G. Wang, M. Ong Ling Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16(18), 13593–13598 (2008).
    [CrossRef] [PubMed]
  28. S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008).
    [CrossRef] [PubMed]
  29. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24(20), 1431–1433 (1999).
    [CrossRef] [PubMed]
  30. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449 (2000).
    [CrossRef]
  31. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
    [CrossRef]
  32. W. Shi and Y. J. Ding, “Designs of terahertz waveguides for efficient parametric terahertz generation,” Appl. Phys. Lett. 82(25), 4435 (2003).
    [CrossRef]
  33. M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14(21), 9944–9954 (2006).
    [CrossRef] [PubMed]
  34. M. Wächter, M. Nagel, H. Kurz, M. L. Nagel, and H Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
    [CrossRef]
  35. A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
    [CrossRef] [PubMed]
  36. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, Berlin, 1988).
  37. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
    [CrossRef] [PubMed]
  38. U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64(12), 125420 (2001).
    [CrossRef]
  39. M. Born, and E. Wolf, Principles of Optics, 5th ed. (Pergamon Press, Oxford, 1975).
  40. M. A. Ordal, R. J. Bell, R. W. Alexander Jr, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24(24), 4493–4499 (1985).
    [CrossRef] [PubMed]

2009

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[CrossRef] [PubMed]

2008

2007

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-Element Method Simulations of Guided Wave Phenomena at Terahertz Frequencies,” Proc. IEEE 95(8), 1624–1640 (2007).
[CrossRef]

M. Wächter, M. Nagel, H. Kurz, M. L. Nagel, and H Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[CrossRef]

2006

L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
[CrossRef] [PubMed]

M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14(21), 9944–9954 (2006).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96(15), 157401 (2006).
[CrossRef] [PubMed]

J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14(1), 279–290 (2006).
[CrossRef] [PubMed]

J. A. Deibel, N. Berndsen, K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Frequency-dependent radiation patterns emitted by THz plasmons on finite length cylindrical metal wires,” Opt. Express 14(19), 8772–8778 (2006).
[CrossRef] [PubMed]

Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Y. Wang, “Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves,” Opt. Express 14(26), 13021–13029 (2006).
[CrossRef] [PubMed]

C. Themistos, B. M. Azizur Rahman, M. Rajarajan, V. Rakocevic, and K. T. V. Grattan, “Finite Element Solutions of Surface-Plasmon Modes in Metal-Clad Dielectric Waveguides at THz Frequency,” J. Lightwave Technol. 24(12), 5111–5118 (2006).
[CrossRef]

X. He, J. Cao, and S. Feng, “Simulation of the Propagation Property of Metal Wires Terahertz Waveguides,” Chin. Phys. Lett. 23(8), 2066–2069 (2006).
[CrossRef]

2005

2004

M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[CrossRef] [PubMed]

J. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
[CrossRef] [PubMed]

2003

W. Shi and Y. J. Ding, “Designs of terahertz waveguides for efficient parametric terahertz generation,” Appl. Phys. Lett. 82(25), 4435 (2003).
[CrossRef]

2002

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002).
[CrossRef]

2001

U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64(12), 125420 (2001).
[CrossRef]

2000

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449 (2000).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987 (2000).
[CrossRef]

1999

1996

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321 (1996).
[CrossRef]

1995

1985

Abbott, D.

Afshar V, S.

Alexander Jr, R. W.

Atakaramians, S.

Azizur Rahman, B. M.

Bartal, G.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[CrossRef] [PubMed]

Bell, R. J.

Berndsen, N.

J. A. Deibel, K. Wang, M. Escarra, N. Berndsen, and D. M. Mittleman, “The excitation and emission of terahertz surface plasmon polaritons on metal wire waveguides,” C. R. Phys. 9(2), 215–231 (2008).
[CrossRef]

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-Element Method Simulations of Guided Wave Phenomena at Terahertz Frequencies,” Proc. IEEE 95(8), 1624–1640 (2007).
[CrossRef]

J. A. Deibel, N. Berndsen, K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Frequency-dependent radiation patterns emitted by THz plasmons on finite length cylindrical metal wires,” Opt. Express 14(19), 8772–8778 (2006).
[CrossRef] [PubMed]

Cao, H.

Cao, J.

X. He, J. Cao, and S. Feng, “Simulation of the Propagation Property of Metal Wires Terahertz Waveguides,” Chin. Phys. Lett. 23(8), 2066–2069 (2006).
[CrossRef]

Cao, Q.

Chai, L.

Chen, H. W.

Chen, L. J.

Chen, Y.

Cho, M.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002).
[CrossRef]

Deibel, J. A.

J. A. Deibel, K. Wang, M. Escarra, N. Berndsen, and D. M. Mittleman, “The excitation and emission of terahertz surface plasmon polaritons on metal wire waveguides,” C. R. Phys. 9(2), 215–231 (2008).
[CrossRef]

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-Element Method Simulations of Guided Wave Phenomena at Terahertz Frequencies,” Proc. IEEE 95(8), 1624–1640 (2007).
[CrossRef]

J. A. Deibel, N. Berndsen, K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Frequency-dependent radiation patterns emitted by THz plasmons on finite length cylindrical metal wires,” Opt. Express 14(19), 8772–8778 (2006).
[CrossRef] [PubMed]

J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14(1), 279–290 (2006).
[CrossRef] [PubMed]

Dereux, A.

U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64(12), 125420 (2001).
[CrossRef]

Ding, Y. J.

W. Shi and Y. J. Ding, “Designs of terahertz waveguides for efficient parametric terahertz generation,” Appl. Phys. Lett. 82(25), 4435 (2003).
[CrossRef]

Dupuis, A.

Escarra, M.

J. A. Deibel, K. Wang, M. Escarra, N. Berndsen, and D. M. Mittleman, “The excitation and emission of terahertz surface plasmon polaritons on metal wire waveguides,” C. R. Phys. 9(2), 215–231 (2008).
[CrossRef]

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-Element Method Simulations of Guided Wave Phenomena at Terahertz Frequencies,” Proc. IEEE 95(8), 1624–1640 (2007).
[CrossRef]

Escarra, M. D.

Feng, S.

X. He, J. Cao, and S. Feng, “Simulation of the Propagation Property of Metal Wires Terahertz Waveguides,” Chin. Phys. Lett. 23(8), 2066–2069 (2006).
[CrossRef]

Fischer, B. M.

Fitch, M. J.

M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).

Freeman, M. R.

M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87(26), 261107 (2005).
[CrossRef]

Gallot, G.

Genov, D. A.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[CrossRef] [PubMed]

George, R.

Gong, Y.

Grattan, K. T. V.

Grischkowsky, D.

T.-I. Jeon, J.-Q. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987 (2000).
[CrossRef]

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
[CrossRef]

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449 (2000).
[CrossRef]

R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24(20), 1431–1433 (1999).
[CrossRef] [PubMed]

Han, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002).
[CrossRef]

Harrington, J.

Hassani, A.

He, X.

X. He, J. Cao, and S. Feng, “Simulation of the Propagation Property of Metal Wires Terahertz Waveguides,” Chin. Phys. Lett. 23(8), 2066–2069 (2006).
[CrossRef]

Hegmann, F. A.

M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87(26), 261107 (2005).
[CrossRef]

Heinz, T. F.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321 (1996).
[CrossRef]

Hu, B. B.

Hu, J.

Hu, M.

Ishikawa, A.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[CrossRef] [PubMed]

Jahns, J.

Jamison, S. P.

G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987 (2000).
[CrossRef]

Jang, J. S.

Jeon, T.-I.

Y. B. Ji, E. S. Lee, J. S. Jang, and T.-I. Jeon, “Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide,” Opt. Express 16(1), 271–278 (2008).
[CrossRef] [PubMed]

T.-I. Jeon, J.-Q. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[CrossRef]

Ji, Y. B.

Kao, T. F.

Kim, J.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002).
[CrossRef]

Kurz, H

M. Wächter, M. Nagel, H. Kurz, M. L. Nagel, and H Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[CrossRef]

Kurz, H.

Lee, E. S.

Li, Y.

Liang, H.

Long, L. L.

Lu, J. Y.

Luiten, O. J

P. W. Smorenburg, W. P. E. M. Op ‘t Root, and O. J Luiten, “Direct generation of terahertz surface plasmon polaritons on a wire using electron bunches’,” Phys. Rev. B 78(11), 115415 (2008).
[CrossRef]

Marchewka, A.

McGowan, R. W.

Mendis, R.

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449 (2000).
[CrossRef]

Mittleman, D. M.

J. A. Deibel, K. Wang, M. Escarra, N. Berndsen, and D. M. Mittleman, “The excitation and emission of terahertz surface plasmon polaritons on metal wire waveguides,” C. R. Phys. 9(2), 215–231 (2008).
[CrossRef]

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-Element Method Simulations of Guided Wave Phenomena at Terahertz Frequencies,” Proc. IEEE 95(8), 1624–1640 (2007).
[CrossRef]

J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14(1), 279–290 (2006).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96(15), 157401 (2006).
[CrossRef] [PubMed]

J. A. Deibel, N. Berndsen, K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Frequency-dependent radiation patterns emitted by THz plasmons on finite length cylindrical metal wires,” Opt. Express 14(19), 8772–8778 (2006).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B 22(9), 2001–2008 (2005).
[CrossRef]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Monro, T. M.

Mueller, E.

Nagel, M.

Nagel, M. L.

M. Wächter, M. Nagel, H. Kurz, M. L. Nagel, and H Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[CrossRef]

Nahata, A.

H. Cao and A. Nahata, “Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves,” Opt. Express 13(18), 7028–7034 (2005).
[CrossRef] [PubMed]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321 (1996).
[CrossRef]

Nuss, M. C.

Ong Ling Chuen, M.

Op ‘t Root, W. P. E. M.

P. W. Smorenburg, W. P. E. M. Op ‘t Root, and O. J Luiten, “Direct generation of terahertz surface plasmon polaritons on a wire using electron bunches’,” Phys. Rev. B 78(11), 115415 (2008).
[CrossRef]

Ordal, M. A.

Osiander, R.

M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).

Park, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002).
[CrossRef]

Paulose, V.

Pedersen, P.

Planken, P. C. M.

Querry, M. R.

Rajarajan, M.

Rakocevic, V.

Ren, G.

Ruan, S.

Schröter, U.

U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64(12), 125420 (2001).
[CrossRef]

Shi, W.

W. Shi and Y. J. Ding, “Designs of terahertz waveguides for efficient parametric terahertz generation,” Appl. Phys. Lett. 82(25), 4435 (2003).
[CrossRef]

Shum, P.

Skorobogatiy, M.

Smorenburg, P. W.

P. W. Smorenburg, W. P. E. M. Op ‘t Root, and O. J Luiten, “Direct generation of terahertz surface plasmon polaritons on a wire using electron bunches’,” Phys. Rev. B 78(11), 115415 (2008).
[CrossRef]

Song, Z.

Stockman, M. I.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[CrossRef] [PubMed]

Sun, C. K.

Themistos, C.

van der Valk, N. C. J.

Wächter, M.

M. Wächter, M. Nagel, H. Kurz, M. L. Nagel, and H Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[CrossRef]

M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13(26), 10815–10822 (2005).
[CrossRef] [PubMed]

Walther, M.

M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87(26), 261107 (2005).
[CrossRef]

Wang, C. Y.

Wang, G.

Wang, K.

J. A. Deibel, K. Wang, M. Escarra, N. Berndsen, and D. M. Mittleman, “The excitation and emission of terahertz surface plasmon polaritons on metal wire waveguides,” C. R. Phys. 9(2), 215–231 (2008).
[CrossRef]

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-Element Method Simulations of Guided Wave Phenomena at Terahertz Frequencies,” Proc. IEEE 95(8), 1624–1640 (2007).
[CrossRef]

J. A. Deibel, N. Berndsen, K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Frequency-dependent radiation patterns emitted by THz plasmons on finite length cylindrical metal wires,” Opt. Express 14(19), 8772–8778 (2006).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96(15), 157401 (2006).
[CrossRef] [PubMed]

J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14(1), 279–290 (2006).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B 22(9), 2001–2008 (2005).
[CrossRef]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321 (1996).
[CrossRef]

Xing, Q.

Yu, X.

Zhang, J.-Q.

T.-I. Jeon, J.-Q. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[CrossRef]

Zhang, M.

Zhang, S.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[CrossRef] [PubMed]

Zhang, X.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[CrossRef] [PubMed]

Zhang, Z.

Appl. Opt.

Appl. Phys. Lett.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69(16), 2321 (1996).
[CrossRef]

M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87(26), 261107 (2005).
[CrossRef]

T.-I. Jeon, J.-Q. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86(16), 161904 (2005).
[CrossRef]

S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76(15), 1987 (2000).
[CrossRef]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634 (2002).
[CrossRef]

W. Shi and Y. J. Ding, “Designs of terahertz waveguides for efficient parametric terahertz generation,” Appl. Phys. Lett. 82(25), 4435 (2003).
[CrossRef]

M. Wächter, M. Nagel, H. Kurz, M. L. Nagel, and H Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90(6), 061111 (2007).
[CrossRef]

C. R. Phys.

J. A. Deibel, K. Wang, M. Escarra, N. Berndsen, and D. M. Mittleman, “The excitation and emission of terahertz surface plasmon polaritons on metal wire waveguides,” C. R. Phys. 9(2), 215–231 (2008).
[CrossRef]

Chin. Phys. Lett.

X. He, J. Cao, and S. Feng, “Simulation of the Propagation Property of Metal Wires Terahertz Waveguides,” Chin. Phys. Lett. 23(8), 2066–2069 (2006).
[CrossRef]

J. Appl. Phys.

R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88(7), 4449 (2000).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Johns Hopkins APL Tech. Dig.

M. J. Fitch and R. Osiander, “Terahertz waves for communications and sensing,” Johns Hopkins APL Tech. Dig. 25, 348–355 (2004).

Nature

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004).
[CrossRef] [PubMed]

Opt. Express

Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons as effective terahertz waveguides,” Opt. Express 13(2), 511–518 (2005).
[CrossRef] [PubMed]

H. Cao and A. Nahata, “Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves,” Opt. Express 13(18), 7028–7034 (2005).
[CrossRef] [PubMed]

M. Wächter, M. Nagel, and H. Kurz, “Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires,” Opt. Express 13(26), 10815–10822 (2005).
[CrossRef] [PubMed]

J. A. Deibel, K. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14(1), 279–290 (2006).
[CrossRef] [PubMed]

J. A. Deibel, N. Berndsen, K. Wang, D. M. Mittleman, N. C. J. van der Valk, and P. C. M. Planken, “Frequency-dependent radiation patterns emitted by THz plasmons on finite length cylindrical metal wires,” Opt. Express 14(19), 8772–8778 (2006).
[CrossRef] [PubMed]

Y. Chen, Z. Song, Y. Li, M. Hu, Q. Xing, Z. Zhang, L. Chai, and C. Y. Wang, “Effective surface plasmon polaritons on the metal wire with arrays of subwavelength grooves,” Opt. Express 14(26), 13021–13029 (2006).
[CrossRef] [PubMed]

H. Liang, S. Ruan, and M. Zhang, “Terahertz surface wave propagation and focusing on conical metal wires,” Opt. Express 16(22), 18241–18248 (2008).
[CrossRef] [PubMed]

Y. B. Ji, E. S. Lee, J. S. Jang, and T.-I. Jeon, “Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide,” Opt. Express 16(1), 271–278 (2008).
[CrossRef] [PubMed]

M. Nagel, A. Marchewka, and H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14(21), 9944–9954 (2006).
[CrossRef] [PubMed]

J. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12(21), 5263–5268 (2004).
[CrossRef] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008).
[CrossRef] [PubMed]

G. Ren, Y. Gong, P. Shum, X. Yu, J. Hu, G. Wang, M. Ong Ling Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16(18), 13593–13598 (2008).
[CrossRef] [PubMed]

S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. B

P. W. Smorenburg, W. P. E. M. Op ‘t Root, and O. J Luiten, “Direct generation of terahertz surface plasmon polaritons on a wire using electron bunches’,” Phys. Rev. B 78(11), 115415 (2008).
[CrossRef]

U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B 64(12), 125420 (2001).
[CrossRef]

Phys. Rev. Lett.

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004).
[CrossRef] [PubMed]

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102(4), 043904 (2009).
[CrossRef] [PubMed]

K. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96(15), 157401 (2006).
[CrossRef] [PubMed]

Proc. IEEE

J. A. Deibel, M. Escarra, N. Berndsen, K. Wang, and D. M. Mittleman, “Finite-Element Method Simulations of Guided Wave Phenomena at Terahertz Frequencies,” Proc. IEEE 95(8), 1624–1640 (2007).
[CrossRef]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, Berlin, 1988).

M. Born, and E. Wolf, Principles of Optics, 5th ed. (Pergamon Press, Oxford, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The comparison between f (u) and fr (u) in the range of u from 0.001 to 10. The red curve is f(u), and the black curve is fr(u). (b) The relative deviation between f (u) and fr (u) in the range of u from 0.001 to 10.

Fig. 2
Fig. 2

(a) The comparison between the rough values κar and the exact values κa, for metal copper and 0.5 THz. The red curves are the exact values, and the black curves are the rough solutions. The dashed curves are Im(κa) and Im(κar), and the solid curves are Re(κa) and Re(κar). (b) The relative deviation of κar. The solid curve represents the relative deviation of Re(κar), and the dashed curve is the relative deviation of Im(κar).

Fig. 3
Fig. 3

(a) The comparison between the rough values neffr and the exact values neff, for metal copper and 0.5 THz. The red curves are the exact values neff, and the black curves are the rough solutions neffr. The dashed curves are Im(neffr) and Im(neff), and the solid curves are Re(neffr)-1 and Re(neff)-1. (b) The relative deviation of neffr. The solid curve represents the relative deviation of Re(neffr)-1, and the dashed curve is the relative deviation of Im(neffr).

Fig. 4
Fig. 4

(a) The comparison between the accurate values κaa and the exact values κa, for metal copper and 0.5 THz. The dashed curve is Im(κa) and the signs “+” show Im(κaa). The solid curve is Re(κa) and the signs “o” show Re(κaa). (b) The relative deviation of κaa. The solid curve represents the relative deviation of Re(κaa), and the dashed curve is the relative deviation of Im(κaa).

Fig. 5
Fig. 5

(a) The comparison between the approximate values neffa and the exact values neff, for metal copper and 0.5 THz. The dashed curve is Im(neff) and the signs “+” show Im(neffa). The solid curve is Re (neff)-1 and the signs “o” show Re(neffa)-1. (b) The relative deviation of neffa. The solid curve represents the relative deviation of Re(neffa)-1, and the dashed curve is the relative deviation of Im(neffa).

Fig. 6
Fig. 6

The comparison between the approximate values neffa and the exact values neff, for metal copper and 0.1 THz. The dashed curve is Im(neff) and the signs “+” show Im(neffa). The solid curve is Re(neff)-1 and the signs “o” show Re(neffa)-1. (b) The relative deviation of neffa. The solid curve represents the relative deviation of Re(neffa)-1, and the dashed curve is the relative deviation of Im(neffa).

Fig. 7
Fig. 7

The comparison between the approximate values neffa and the exact values neff, for metal copper and 10 THz. The dashed curve is Im(neff) and the signs “+” show Im(neffa), and the solid curve is Re(neffa)-1 and the signs “o” show Re(neff)-1. (b) The relative deviation of neffa. The solid curve represents the relative deviation of Re(neffa)-1, and the dashed curve is the relative deviation of Im(neffa).

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

ε m κ m I 1 ( k 0 κ m R ) I 0 ( k 0 κ m R ) + 1 κ a K 1 ( k 0 κ a R ) K 0 ( k 0 κ a R ) = 0
κ m 1 ε m .
ε m κ m I 1 ( k 0 κ m R ) I 0 ( k 0 κ m R ) ε m 1 ε m I 1 ( k 0 R 1 ε m ) I 0 ( k 0 R 1 ε m ) .
a = ε m 1 ε m I 1 ( k 0 R 1 ε m ) I 0 ( k 0 R 1 ε m ) .
f ( u ) = K 1 ( u ) K 0 ( u ) ,
u = k 0 κ a R .
a + f ( u ) κ a = 0.
f r ( u ) = 1 + α u ,
α = 0.2018.
a + f r ( u r ) κ a r = 0 ,
u r = k 0 κ a r R .
a κ a r 2 + κ a r + c = 0 ,
c = 0.2018 k 0 R .
κ a r = 1 1 4 a c 2 a ,
n e f f r = κ a r 2 + 1 .
u a = k 0 κ a a R .
f a ( u a ) = f ( u r ) + f ' ( u r ) ( u a u r ) ,
f ' ( u ) r = K 1 2 ( u r ) K 0 2 ( u r ) K 1 ( u r ) K 0 ( u r ) u r 1.
a + f a ( u a ) κ a a = 0.
1 κ a a f a ( u a ) = 1 κ a r f r ( u r ) .
κ a a = κ a r f ( u r ) f ' ( u r ) u r f r ( u r ) f ' ( u r ) u r ,
n e f f a = κ a a 2 + 1 .

Metrics