Abstract

A silicon electro-optic modulator based on coupled microring resonators is proposed. The dual-ring modulator has wide optical bandwidth, high extinction ratio and low insertion loss. A simple integrated circuit connecting the two rings allows for fast modulation speed of >40 Gbit/s. This device has both improved optical and electrical performance over a single-ring modulator. The dual-ring modulator can provide a feedback signal for active control of the modulation wavelength.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 ( 2009).
    [CrossRef]
  2. L. Zhou, S. Djordjevic, R. Proietti, D. Ding, S. Yoo, R. Amirtharajah, V. Akella, “Design and evaluation of an arbitration-free passive optical crossbar for on-chip interconnection networks,” Appl. Phys., A Mater. Sci. Process. 95(4), 1111–1118 ( 2009).
    [CrossRef]
  3. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 ( 2005).
    [CrossRef] [PubMed]
  4. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 ( 2007).
    [CrossRef] [PubMed]
  5. Q. Xu, B. Schmidt, J. Shakya, M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 ( 2006).
    [CrossRef] [PubMed]
  6. W. M. J. Green, M. J. Rooks, L. Sekaric, Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 ( 2007).
    [CrossRef] [PubMed]
  7. R. A. Soref, B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 ( 1987).
    [CrossRef]
  8. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Physical Review Letters 96, - (2006).
  9. Q. Xu, P. Dong, M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 ( 2007).
    [CrossRef]
  10. C. Sai Tak, B. E. Little, P. Wugen, T. Kaneko, Y. Kokubun, “Second-order filter response from parallel coupled glass microring resonators,” IEEE Photon. Technol. Lett. 11(11), 1426–1428 ( 1999).
    [CrossRef]
  11. Q. Xu, J. Shakya, M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14(14), 6463–6468 ( 2006).
    [CrossRef] [PubMed]
  12. R. F. Pierret, Semiconductor device fundamentals (Addison-Wesley, Reading, Mass., 1996).
  13. L. Chen, K. Preston, S. Manipatruni, M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express 17(17), 15248–15256 ( 2009).
    [CrossRef] [PubMed]
  14. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 ( 2008).
    [CrossRef] [PubMed]
  15. H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, K. Pathak, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601–044608 ( 2008).
    [CrossRef]
  16. L. Chen, N. Sherwood-Droz, M. Lipson, “Compact bandwidth-tunable microring resonators,” Opt. Lett. 32(22), 3361–3363 ( 2007).
    [CrossRef] [PubMed]
  17. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 ( 2005).
    [CrossRef] [PubMed]
  18. L. Chen, P. Dong, M. Lipson, “High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding,” Opt. Express 16(15), 11513–11518 ( 2008).
    [CrossRef] [PubMed]
  19. V. R. Almeida, M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 ( 2004).
    [CrossRef] [PubMed]
  20. J. Sun, C. W. Holzwarth, M. Dahlem, J. T. Hastings, H. I. Smith, “Accurate frequency alignment in fabrication of high-order microring-resonator filters,” Opt. Express 16(20), 15958–15963 ( 2008).
    [CrossRef] [PubMed]

2009 (3)

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 ( 2009).
[CrossRef]

L. Zhou, S. Djordjevic, R. Proietti, D. Ding, S. Yoo, R. Amirtharajah, V. Akella, “Design and evaluation of an arbitration-free passive optical crossbar for on-chip interconnection networks,” Appl. Phys., A Mater. Sci. Process. 95(4), 1111–1118 ( 2009).
[CrossRef]

L. Chen, K. Preston, S. Manipatruni, M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express 17(17), 15248–15256 ( 2009).
[CrossRef] [PubMed]

2008 (4)

2007 (4)

2006 (2)

2005 (2)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 ( 2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 ( 2005).
[CrossRef] [PubMed]

2004 (1)

1999 (1)

C. Sai Tak, B. E. Little, P. Wugen, T. Kaneko, Y. Kokubun, “Second-order filter response from parallel coupled glass microring resonators,” IEEE Photon. Technol. Lett. 11(11), 1426–1428 ( 1999).
[CrossRef]

1987 (1)

R. A. Soref, B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 ( 1987).
[CrossRef]

Ahn, J.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 ( 2009).
[CrossRef]

Akella, V.

L. Zhou, S. Djordjevic, R. Proietti, D. Ding, S. Yoo, R. Amirtharajah, V. Akella, “Design and evaluation of an arbitration-free passive optical crossbar for on-chip interconnection networks,” Appl. Phys., A Mater. Sci. Process. 95(4), 1111–1118 ( 2009).
[CrossRef]

Almeida, V. R.

Amirtharajah, R.

L. Zhou, S. Djordjevic, R. Proietti, D. Ding, S. Yoo, R. Amirtharajah, V. Akella, “Design and evaluation of an arbitration-free passive optical crossbar for on-chip interconnection networks,” Appl. Phys., A Mater. Sci. Process. 95(4), 1111–1118 ( 2009).
[CrossRef]

Beausoleil, R.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 ( 2009).
[CrossRef]

Bennett, B. R.

R. A. Soref, B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 ( 1987).
[CrossRef]

Bergman, K.

Biberman, A.

Binkert, N.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 ( 2009).
[CrossRef]

Chen, L.

Dahlem, M.

Davis, A.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 ( 2009).
[CrossRef]

Ding, D.

L. Zhou, S. Djordjevic, R. Proietti, D. Ding, S. Yoo, R. Amirtharajah, V. Akella, “Design and evaluation of an arbitration-free passive optical crossbar for on-chip interconnection networks,” Appl. Phys., A Mater. Sci. Process. 95(4), 1111–1118 ( 2009).
[CrossRef]

Djordjevic, S.

L. Zhou, S. Djordjevic, R. Proietti, D. Ding, S. Yoo, R. Amirtharajah, V. Akella, “Design and evaluation of an arbitration-free passive optical crossbar for on-chip interconnection networks,” Appl. Phys., A Mater. Sci. Process. 95(4), 1111–1118 ( 2009).
[CrossRef]

Dong, P.

Fattal, D.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 ( 2009).
[CrossRef]

Fiorentino, M.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 ( 2009).
[CrossRef]

Green, W. M. J.

Hamann, H. F.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 ( 2005).
[CrossRef] [PubMed]

Hastings, J. T.

Holzwarth, C. W.

Jouppi, N.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 ( 2009).
[CrossRef]

Kaneko, T.

C. Sai Tak, B. E. Little, P. Wugen, T. Kaneko, Y. Kokubun, “Second-order filter response from parallel coupled glass microring resonators,” IEEE Photon. Technol. Lett. 11(11), 1426–1428 ( 1999).
[CrossRef]

Kokubun, Y.

C. Sai Tak, B. E. Little, P. Wugen, T. Kaneko, Y. Kokubun, “Second-order filter response from parallel coupled glass microring resonators,” IEEE Photon. Technol. Lett. 11(11), 1426–1428 ( 1999).
[CrossRef]

Lee, B. G.

Li, D.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, K. Pathak, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601–044608 ( 2008).
[CrossRef]

Lipson, M.

L. Chen, K. Preston, S. Manipatruni, M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express 17(17), 15248–15256 ( 2009).
[CrossRef] [PubMed]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 ( 2008).
[CrossRef] [PubMed]

L. Chen, P. Dong, M. Lipson, “High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding,” Opt. Express 16(15), 11513–11518 ( 2008).
[CrossRef] [PubMed]

L. Chen, N. Sherwood-Droz, M. Lipson, “Compact bandwidth-tunable microring resonators,” Opt. Lett. 32(22), 3361–3363 ( 2007).
[CrossRef] [PubMed]

Q. Xu, P. Dong, M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 ( 2007).
[CrossRef]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 ( 2007).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, J. Shakya, M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 ( 2006).
[CrossRef] [PubMed]

Q. Xu, J. Shakya, M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14(14), 6463–6468 ( 2006).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 ( 2005).
[CrossRef] [PubMed]

V. R. Almeida, M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 ( 2004).
[CrossRef] [PubMed]

Little, B. E.

C. Sai Tak, B. E. Little, P. Wugen, T. Kaneko, Y. Kokubun, “Second-order filter response from parallel coupled glass microring resonators,” IEEE Photon. Technol. Lett. 11(11), 1426–1428 ( 1999).
[CrossRef]

Manipatruni, S.

Martinez, J.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, K. Pathak, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601–044608 ( 2008).
[CrossRef]

McLaren, M.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 ( 2009).
[CrossRef]

McNab, S. J.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 ( 2005).
[CrossRef] [PubMed]

Ng, H.-Y.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, K. Pathak, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601–044608 ( 2008).
[CrossRef]

O’Boyle, M.

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 ( 2005).
[CrossRef] [PubMed]

Panepucci, R. R.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, K. Pathak, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601–044608 ( 2008).
[CrossRef]

Pathak, K.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, K. Pathak, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601–044608 ( 2008).
[CrossRef]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 ( 2005).
[CrossRef] [PubMed]

Preston, K.

Proietti, R.

L. Zhou, S. Djordjevic, R. Proietti, D. Ding, S. Yoo, R. Amirtharajah, V. Akella, “Design and evaluation of an arbitration-free passive optical crossbar for on-chip interconnection networks,” Appl. Phys., A Mater. Sci. Process. 95(4), 1111–1118 ( 2009).
[CrossRef]

Rooks, M. J.

Sai Tak, C.

C. Sai Tak, B. E. Little, P. Wugen, T. Kaneko, Y. Kokubun, “Second-order filter response from parallel coupled glass microring resonators,” IEEE Photon. Technol. Lett. 11(11), 1426–1428 ( 1999).
[CrossRef]

Santori, C.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 ( 2009).
[CrossRef]

Schmidt, B.

Schreiber, R.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 ( 2009).
[CrossRef]

Sekaric, L.

Shakya, J.

Sherwood-Droz, N.

Smith, H. I.

Soref, R. A.

R. A. Soref, B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 ( 1987).
[CrossRef]

Spillane, S.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 ( 2009).
[CrossRef]

Sun, J.

Vantrease, D.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 ( 2009).
[CrossRef]

Vlasov, Y. A.

W. M. J. Green, M. J. Rooks, L. Sekaric, Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 ( 2007).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 ( 2005).
[CrossRef] [PubMed]

Wang, H.

Wang, M. R.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, K. Pathak, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601–044608 ( 2008).
[CrossRef]

Wang, X.

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, K. Pathak, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601–044608 ( 2008).
[CrossRef]

Wugen, P.

C. Sai Tak, B. E. Little, P. Wugen, T. Kaneko, Y. Kokubun, “Second-order filter response from parallel coupled glass microring resonators,” IEEE Photon. Technol. Lett. 11(11), 1426–1428 ( 1999).
[CrossRef]

Xu, Q.

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 ( 2009).
[CrossRef]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 ( 2007).
[CrossRef] [PubMed]

Q. Xu, P. Dong, M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 ( 2007).
[CrossRef]

Q. Xu, J. Shakya, M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14(14), 6463–6468 ( 2006).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, J. Shakya, M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 ( 2006).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 ( 2005).
[CrossRef] [PubMed]

Yoo, S.

L. Zhou, S. Djordjevic, R. Proietti, D. Ding, S. Yoo, R. Amirtharajah, V. Akella, “Design and evaluation of an arbitration-free passive optical crossbar for on-chip interconnection networks,” Appl. Phys., A Mater. Sci. Process. 95(4), 1111–1118 ( 2009).
[CrossRef]

Zhou, L.

L. Zhou, S. Djordjevic, R. Proietti, D. Ding, S. Yoo, R. Amirtharajah, V. Akella, “Design and evaluation of an arbitration-free passive optical crossbar for on-chip interconnection networks,” Appl. Phys., A Mater. Sci. Process. 95(4), 1111–1118 ( 2009).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

J. Ahn, M. Fiorentino, R. Beausoleil, N. Binkert, A. Davis, D. Fattal, N. Jouppi, M. McLaren, C. Santori, R. Schreiber, S. Spillane, D. Vantrease, Q. Xu, “Devices and architectures for photonic chip-scale integration,” Appl. Phys., A Mater. Sci. Process. 95(4), 989–997 ( 2009).
[CrossRef]

L. Zhou, S. Djordjevic, R. Proietti, D. Ding, S. Yoo, R. Amirtharajah, V. Akella, “Design and evaluation of an arbitration-free passive optical crossbar for on-chip interconnection networks,” Appl. Phys., A Mater. Sci. Process. 95(4), 1111–1118 ( 2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. A. Soref, B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 ( 1987).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Sai Tak, B. E. Little, P. Wugen, T. Kaneko, Y. Kokubun, “Second-order filter response from parallel coupled glass microring resonators,” IEEE Photon. Technol. Lett. 11(11), 1426–1428 ( 1999).
[CrossRef]

Nat. Phys. (1)

Q. Xu, P. Dong, M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 ( 2007).
[CrossRef]

Nature (2)

Y. A. Vlasov, M. O’Boyle, H. F. Hamann, S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 ( 2005).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 ( 2005).
[CrossRef] [PubMed]

Opt. Eng. (1)

H.-Y. Ng, M. R. Wang, D. Li, X. Wang, J. Martinez, R. R. Panepucci, K. Pathak, “4 x 4 wavelength-reconfigurable photonic switch based on thermally tuned silicon microring resonators,” Opt. Eng. 47(4), 044601–044608 ( 2008).
[CrossRef]

Opt. Express (8)

L. Chen, K. Preston, S. Manipatruni, M. Lipson, “Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express 17(17), 15248–15256 ( 2009).
[CrossRef] [PubMed]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, M. Lipson, “Optical 4x4 hitless slicon router for optical networks-on-chip (NoC),” Opt. Express 16(20), 15915–15922 ( 2008).
[CrossRef] [PubMed]

L. Chen, P. Dong, M. Lipson, “High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding,” Opt. Express 16(15), 11513–11518 ( 2008).
[CrossRef] [PubMed]

J. Sun, C. W. Holzwarth, M. Dahlem, J. T. Hastings, H. I. Smith, “Accurate frequency alignment in fabrication of high-order microring-resonator filters,” Opt. Express 16(20), 15958–15963 ( 2008).
[CrossRef] [PubMed]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 ( 2007).
[CrossRef] [PubMed]

Q. Xu, B. Schmidt, J. Shakya, M. Lipson, “Cascaded silicon micro-ring modulators for WDM optical interconnection,” Opt. Express 14(20), 9431–9435 ( 2006).
[CrossRef] [PubMed]

W. M. J. Green, M. J. Rooks, L. Sekaric, Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 ( 2007).
[CrossRef] [PubMed]

Q. Xu, J. Shakya, M. Lipson, “Direct measurement of tunable optical delays on chip analogue to electromagnetically induced transparency,” Opt. Express 14(14), 6463–6468 ( 2006).
[CrossRef] [PubMed]

Opt. Lett. (2)

Other (2)

R. F. Pierret, Semiconductor device fundamentals (Addison-Wesley, Reading, Mass., 1996).

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Physical Review Letters 96, - (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Diagram of the dual-ring silicon modulator. (a) Top-view of the modulator structure with an overlay of electrical connections. The inset shows the cross-section of the rings. (b) Circuit model of the device.

Fig. 2
Fig. 2

(a) Transmission spectra of the dual-ring modulator when the carriers are in ring D 1 (red dashed line) and ring D 2 (blue solid line) respectively. (b) Transmission spectra of a single-ring modulator with (red dashed line) and without (blue solid line) carriers in the ring.

Fig. 3
Fig. 3

(a) Waveform of the applied voltage VA , which swings between ±3 V at 40 Gbit/s. (b) Waveform of the number of electron-holes pairs in the two rings N 1 (blue solid line) and N 2 (green dashed line). (c) Waveform of the voltage v 1 (blue solid line) and v 2 (green dashed line). (d) Waveform of the current i 1 (blue solid line) and i 2 (green dashed line).

Fig. 4
Fig. 4

(a) Waveform of the modulated optical output at λ = 1550 nm under the 40-Gbit/s driving signal shown in Fig. 3(a). (b) Eye-diagram of the modulated optical output at λ = 1550 nm. (c) Eye-diagram of the modulated optical output at λ = 1549.96 nm. (d) Eye-diagram of the modulated optical output at λ = 1550.08 nm.

Fig. 5
Fig. 5

Difference in the time-averaged scattered optical power (scattered optical power from ring D 1 minus that from ring D 2) versus the wavelength of input light when the dual-ring modulator is modulated by the 40-Gbit/s signal shown in Fig. 3(a). Solid line: D 1 and D 2 have the same scattering efficiency. Dot line: D 1 has 50% higher scattering efficiency than D 2. Dash-dot line: D 2 has 50% higher scattering efficiency than D 1.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

N 1 = i 1 · τ / q
i 1 ( V A V t h ) / ( R S + R C ) ( V A V t h ) / R S
d N 1 / d t = i 1 / q N 1 / τ
d N 2 / d t = i 2 / q N 2 / τ
v j 1 = v 0 · log [ N 1 · q / ( I 0 · τ ) 1 ]
v j 2 = v 0 · log [ N 2 · q / ( I 0 · τ ) 1 ]
i 1 = ( v 1 v j 1 ) / R C
i 2 = ( v 2 v j 2 ) / R C
v 1 v 2 = V A
i 1 + i 2 + v 1 / R S + v 2 / R S = 0

Metrics