Abstract

Si-based horizontal slot waveguides coupled to ring resonators have been fabricated and characterised. The central layer of the slot has been filled by Silicon nanocrystals (Si-nc) obtained by deposition of silicon rich silicon oxide and then thermal annealing. A comparison of various deposition and annealing parameters to form the Si-nc is performed. Propagation losses as low as 3 dB/cm and ring resonator quality factor of 30,000 have been achieved at 1550 nm.

© 2009 OSA

Full Article  |  PDF Article

Corrections

Romain Guider, Nicola Daldosso, Alessandro Pitanti, Emmanuel Jordana, Jean-Marc Fedeli, and Lorenzo Pavesi, "NanoSi low loss horizontal slot waveguides coupled to high Q ring resonators: Erratum," Opt. Express 17, 23556-23556 (2009)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-17-26-23556

References

  • View by:
  • |
  • |
  • |

  1. Proceeding of the IEEE special issue “Silicon Photonics,” Vol. 97, No. 7 (July 2009).
  2. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
    [CrossRef] [PubMed]
  3. K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, ““Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron,” E 87–C, 351–357 (2004).
  4. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003).
    [CrossRef] [PubMed]
  5. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
    [CrossRef] [PubMed]
  6. C. A. Barrios, “High performance all-optical silicon microswitch,” Electron. Lett. 40(14), 862–863 (2004).
    [CrossRef]
  7. C. A. Barrios, B. Sánchez, K. B. Gylfason, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform,” Opt. Express 15(11), 6846–6856 (2007).
    [CrossRef] [PubMed]
  8. M. Lohmeyer, “Guided waves in rectangular integrated magneto-optic devices” (PhD thesis, 1999). www.home.math.utwente.nl/~hammer/Papers/phdth.pdf
  9. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972–2974 (2006).
    [CrossRef] [PubMed]
  10. P. Sanchis, J. Blasco, A. Martinez, and J. Martì, “Design of silicon-based slot waveguide configurations for optimum nonlinear performance,” J. Lightwave Technol. 25(5), 1298–1305 (2007).
    [CrossRef]
  11. Y. Lebour, R. Guider, E. Jordana, J.-M. Fedeli, P. Pellegrino, S. Hernandez, B. Garrido, N. Daldosso, and L. Pavesi, “High quality coupled ring resonators based on silicon clusters slot waveguide,” Proc. of 5th IEEE Int. Conf. on Group IV Photonics, 215–217 (2008).
  12. N. Daldosso and L. Pavesi, “NanoSilicon for Photonics,” Laser Photonics Rev. 3, 508–534 (2009).
    [CrossRef]
  13. L. Pavesi, “Silicon-Based Light Sources for Silicon Integrated Circuits,” Adv. Opt. Technol. 2008, 416926 (2008).
  14. R. Spano, N. Daldosso, M. Cazzanelli, L. Ferraioli, L. Tartara, J. Yu, V. Degiorgio, E. Giordana, J. M. Fedeli, and L. Pavesi, “Bound electronic and free carrier nonlinearities in Silicon nanocrystals at 1550nm,” Opt. Express 17(5), 3941–3950 (2009).
    [CrossRef] [PubMed]
  15. D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gorbilleau, R. Rizk, G. Pucker, and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm,” Appl. Phys. Lett. 92(5), 051101 (2008).
    [CrossRef]
  16. E. Jordana, J.-M. Fedeli, P. Lyan, J. P. Colonna, P. Gautier, N. Daldosso, L. Pavesi, Y. Lebour, P. Pellegrino, B. Garrido, J. Blasco, F. Cuesta-Soto, and P. Sanchis, “Deep-UV Lithography Fabrication of Slot Waveguides and Sandwiched Waveguides for Nonlinear Applications,” Proc. of 4th IEEE Int. Conf. on Group IV Photonics, 217–219 (2007).
  17. S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jourdana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si-nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
    [CrossRef]
  18. R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm,” Opt. Express 15(26), 17967–17972 (2007).
    [CrossRef] [PubMed]
  19. K. Preston and M. Lipson, “Slot waveguides with polycrystalline silicon for electrical injection,” Opt. Express 17(3), 1527–1534 (2009).
    [CrossRef] [PubMed]
  20. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
    [CrossRef] [PubMed]
  21. D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
    [CrossRef]

2009 (3)

2008 (3)

L. Pavesi, “Silicon-Based Light Sources for Silicon Integrated Circuits,” Adv. Opt. Technol. 2008, 416926 (2008).

D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gorbilleau, R. Rizk, G. Pucker, and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm,” Appl. Phys. Lett. 92(5), 051101 (2008).
[CrossRef]

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jourdana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si-nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

2007 (3)

2006 (1)

2005 (1)

2004 (5)

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, ““Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron,” E 87–C, 351–357 (2004).

C. A. Barrios, “High performance all-optical silicon microswitch,” Electron. Lett. 40(14), 862–863 (2004).
[CrossRef]

Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
[CrossRef] [PubMed]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29(11), 1209–1211 (2004).
[CrossRef] [PubMed]

2003 (1)

Almeida, V. R.

Barrios, C. A.

Bermel, P.

Blasco, J.

Borselli, M.

Boyd, R. W.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

Burr, G.

Casquel, R.

Cazzanelli, M.

R. Spano, N. Daldosso, M. Cazzanelli, L. Ferraioli, L. Tartara, J. Yu, V. Degiorgio, E. Giordana, J. M. Fedeli, and L. Pavesi, “Bound electronic and free carrier nonlinearities in Silicon nanocrystals at 1550nm,” Opt. Express 17(5), 3941–3950 (2009).
[CrossRef] [PubMed]

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jourdana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si-nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

Chang, H.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

Daldosso, N.

R. Spano, N. Daldosso, M. Cazzanelli, L. Ferraioli, L. Tartara, J. Yu, V. Degiorgio, E. Giordana, J. M. Fedeli, and L. Pavesi, “Bound electronic and free carrier nonlinearities in Silicon nanocrystals at 1550nm,” Opt. Express 17(5), 3941–3950 (2009).
[CrossRef] [PubMed]

N. Daldosso and L. Pavesi, “NanoSilicon for Photonics,” Laser Photonics Rev. 3, 508–534 (2009).
[CrossRef]

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jourdana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si-nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gorbilleau, R. Rizk, G. Pucker, and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm,” Appl. Phys. Lett. 92(5), 051101 (2008).
[CrossRef]

Degiorgio, V.

Dong, P.

Farjadpour, A.

Fedeli, J. M.

R. Spano, N. Daldosso, M. Cazzanelli, L. Ferraioli, L. Tartara, J. Yu, V. Degiorgio, E. Giordana, J. M. Fedeli, and L. Pavesi, “Bound electronic and free carrier nonlinearities in Silicon nanocrystals at 1550nm,” Opt. Express 17(5), 3941–3950 (2009).
[CrossRef] [PubMed]

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jourdana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si-nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

Feng, N. N.

Ferraioli, L.

Fukuda, H.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, ““Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron,” E 87–C, 351–357 (2004).

Fuller, K. A.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

Garrido, B.

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jourdana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si-nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

Giordana, E.

Gorbilleau, F.

D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gorbilleau, R. Rizk, G. Pucker, and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm,” Appl. Phys. Lett. 92(5), 051101 (2008).
[CrossRef]

Griol, A.

Gylfason, K. B.

Hernandez, S.

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jourdana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si-nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

Holgado, M.

Hong, C. Y.

Ibanescu, M.

Itabashi, S.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, ““Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron,” E 87–C, 351–357 (2004).

Joannopoulos, J. D.

Johnson, S. G.

Johnson, T. J.

Jourdana, E.

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jourdana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si-nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

Kimerling, L.

Lebour, Y.

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jourdana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si-nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

Lipson, M.

Martì, J.

Martinez, A.

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jourdana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si-nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

P. Sanchis, J. Blasco, A. Martinez, and J. Martì, “Design of silicon-based slot waveguide configurations for optimum nonlinear performance,” J. Lightwave Technol. 25(5), 1298–1305 (2007).
[CrossRef]

McNab, S.

Michel, J.

Moll, N.

Morita, H.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, ““Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron,” E 87–C, 351–357 (2004).

Navarro-Urrios, D.

D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gorbilleau, R. Rizk, G. Pucker, and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm,” Appl. Phys. Lett. 92(5), 051101 (2008).
[CrossRef]

Painter, O.

Pavesi, L.

R. Spano, N. Daldosso, M. Cazzanelli, L. Ferraioli, L. Tartara, J. Yu, V. Degiorgio, E. Giordana, J. M. Fedeli, and L. Pavesi, “Bound electronic and free carrier nonlinearities in Silicon nanocrystals at 1550nm,” Opt. Express 17(5), 3941–3950 (2009).
[CrossRef] [PubMed]

N. Daldosso and L. Pavesi, “NanoSilicon for Photonics,” Laser Photonics Rev. 3, 508–534 (2009).
[CrossRef]

D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gorbilleau, R. Rizk, G. Pucker, and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm,” Appl. Phys. Lett. 92(5), 051101 (2008).
[CrossRef]

L. Pavesi, “Silicon-Based Light Sources for Silicon Integrated Circuits,” Adv. Opt. Technol. 2008, 416926 (2008).

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jourdana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si-nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

Pellegrino, P.

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jourdana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si-nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

Pitanti, A.

D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gorbilleau, R. Rizk, G. Pucker, and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm,” Appl. Phys. Lett. 92(5), 051101 (2008).
[CrossRef]

Preston, K.

Pucker, G.

D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gorbilleau, R. Rizk, G. Pucker, and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm,” Appl. Phys. Lett. 92(5), 051101 (2008).
[CrossRef]

Rizk, R.

D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gorbilleau, R. Rizk, G. Pucker, and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm,” Appl. Phys. Lett. 92(5), 051101 (2008).
[CrossRef]

Rodriguez, A.

Rosenberger, A. T.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

Roundy, D.

Sánchez, B.

Sanchis, P.

Shoji, T.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, ““Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron,” E 87–C, 351–357 (2004).

Smith, D. D.

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

Sohlström, H.

Spano, R.

R. Spano, N. Daldosso, M. Cazzanelli, L. Ferraioli, L. Tartara, J. Yu, V. Degiorgio, E. Giordana, J. M. Fedeli, and L. Pavesi, “Bound electronic and free carrier nonlinearities in Silicon nanocrystals at 1550nm,” Opt. Express 17(5), 3941–3950 (2009).
[CrossRef] [PubMed]

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jourdana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si-nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

Sun, R.

Takahashi, J.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, ““Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron,” E 87–C, 351–357 (2004).

Takahashi, M.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, ““Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron,” E 87–C, 351–357 (2004).

Tamechika, E.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, ““Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron,” E 87–C, 351–357 (2004).

Tartara, L.

Tsuchizawa, T.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, ““Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron,” E 87–C, 351–357 (2004).

Uchiyama, S.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, ““Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron,” E 87–C, 351–357 (2004).

Vlasov, Y.

Watanabe, T.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, ““Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron,” E 87–C, 351–357 (2004).

Xu, Q.

Yamada, K.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, ““Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron,” E 87–C, 351–357 (2004).

Yu, J.

Adv. Opt. Technol. (1)

L. Pavesi, “Silicon-Based Light Sources for Silicon Integrated Circuits,” Adv. Opt. Technol. 2008, 416926 (2008).

Appl. Phys. Lett. (1)

D. Navarro-Urrios, A. Pitanti, N. Daldosso, F. Gorbilleau, R. Rizk, G. Pucker, and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm,” Appl. Phys. Lett. 92(5), 051101 (2008).
[CrossRef]

E (1)

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, E. Tamechika, M. Takahashi, S. Uchiyama, H. Fukuda, T. Shoji, S. Itabashi, and H. Morita, ““Microphotonics devices based on silicon wire waveguiding system,” IEICE Trans. Electron,” E 87–C, 351–357 (2004).

Electron. Lett. (1)

C. A. Barrios, “High performance all-optical silicon microswitch,” Electron. Lett. 40(14), 862–863 (2004).
[CrossRef]

J. Appl. Phys. (1)

S. Hernandez, P. Pellegrino, A. Martinez, Y. Lebour, B. Garrido, R. Spano, M. Cazzanelli, N. Daldosso, L. Pavesi, E. Jourdana, and J. M. Fedeli, “Linear and nonlinear optical properties of Si-nanocrystals in SiO2 deposited by plasma-enhanced chemical-vapor deposition,” J. Appl. Phys. 103(6), 064309 (2008).
[CrossRef]

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

N. Daldosso and L. Pavesi, “NanoSilicon for Photonics,” Laser Photonics Rev. 3, 508–534 (2009).
[CrossRef]

Opt. Express (7)

Opt. Lett. (2)

Phys. Rev. A (1)

D. D. Smith, H. Chang, K. A. Fuller, A. T. Rosenberger, and R. W. Boyd, “Coupled-resonator-induced transparency,” Phys. Rev. A 69(6), 063804 (2004).
[CrossRef]

Other (4)

Proceeding of the IEEE special issue “Silicon Photonics,” Vol. 97, No. 7 (July 2009).

E. Jordana, J.-M. Fedeli, P. Lyan, J. P. Colonna, P. Gautier, N. Daldosso, L. Pavesi, Y. Lebour, P. Pellegrino, B. Garrido, J. Blasco, F. Cuesta-Soto, and P. Sanchis, “Deep-UV Lithography Fabrication of Slot Waveguides and Sandwiched Waveguides for Nonlinear Applications,” Proc. of 4th IEEE Int. Conf. on Group IV Photonics, 217–219 (2007).

M. Lohmeyer, “Guided waves in rectangular integrated magneto-optic devices” (PhD thesis, 1999). www.home.math.utwente.nl/~hammer/Papers/phdth.pdf

Y. Lebour, R. Guider, E. Jordana, J.-M. Fedeli, P. Pellegrino, S. Hernandez, B. Garrido, N. Daldosso, and L. Pavesi, “High quality coupled ring resonators based on silicon clusters slot waveguide,” Proc. of 5th IEEE Int. Conf. on Group IV Photonics, 215–217 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Horizontal slot waveguide scheme, (b) simulated field profile for the quasi-TM polarization and (c) SEM image (cross section) of a representative waveguide.

Fig. 2
Fig. 2

Propagation losses of nano-Si slot waveguide with 8% Si excess annealed at 1000°C measured at 1550nm in TM and TE polarization. Inset: Top-view scheme of the waveguides on the mask.

Fig. 3
Fig. 3

Normalized transmission measurement of a ring resonator with R = 20μm and a ring-bus gap of 250nm. A resonance at 1533.8nm is observed with a quality factor Q = 30,000. The red line is a lorentzian fit to the dat. (Inset-right) Full spectral interval results for both TE and TM polarization. (Inset-left) SEM image.

Fig. 4
Fig. 4

Shift of the resonance peak position as a function of the input power.

Fig. 5
Fig. 5

Group index measurements and simulations.

Fig. 6
Fig. 6

Resonance at 1543.97nm for double (red) and at 1544.3nm for single (black) ring (R = 10μm with gaps of 250nm). Inset left: transmission spectra in a large wavelength range (1500-1550nm). Inset right: Optical image of the R = 10μm doubled coupled ring resonators.

Tables (2)

Tables Icon

Table 1 Propagations losses for different slot waveguides for quasi-TE and -TM polarization at 1550 nm.

Tables Icon

Table 2 Qr and αr in coupled rings (R = 20μm) with and without Si-nc at different input powers at λ = 1533nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

1 Q t o t = 1 Q r + 1 Q c o u p l
Q c o u p l = 2 Q t o t 1 T min
α r = 2 π n g λ Q r
F S R =     λ 2 n g ( λ ) × 2 π R
n g = n e f f ( λ ) λ d n e f f ( λ ) d λ

Metrics