Abstract

In this paper, a generalized reference-plane-based calibration method is proposed in optical triangular profilometry by exploring projection ray tracing method and image ray tracing method. The pin-hole camera model is used to model the camera and the projector, and parallel planes model is used to model the reference and test planes. The camera, projector, and planes can be in arbitrary positions and arbitrary directions. The reciprocal of the height and the reciprocal of the phase shift (or pixel position vertical distance) are in linear relationship. Experiments are conducted to verify the proposed method.

© 2009 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Zhou and X. Y. Su, “A direct mapping algorithm for phase-measuring profilometry,” J. Mod. Opt. 41(1), 89–94 (1994).
    [CrossRef]
  2. L. Chen and C. Quan, “Fringe projection profilometry with nonparallel illumination: a least-squares approach,” Opt. Lett. 30(16), 2101–2103 (2005).
    [CrossRef]
  3. L. Chen and C. J. Tay, “Carrier phase component removal: a generalized least-square approach,” J. Opt. Soc. Am. A 23(2), 435–443 (2006).
    [CrossRef]
  4. H. Guo, H. He, Y. Yu, and M. Chen, “Least-squares calibration method for fringe projection profilometry,” Opt. Eng. 44(3), 033603 (2005).
    [CrossRef]
  5. H. Guo, M. Chen, and P. Zheng, “Least-squares fitting of carrier phase distribution by using a rational function in fringe projection profilometry,” Opt. Lett. 31(24), 3588–3590 (2006).
    [CrossRef]
  6. B. A. Rajoub, M. J. Lalor, D. R. Burton, and S. A. Karout, “A new model for measuring object shape using non-collimated fringe-pattern projections,” J. Opt. A, Pure Appl. Opt. 9(6), S66–S75 (2007).
    [CrossRef]
  7. Z. Wang, H. Du, and H. Bi, “Out-of-plane shape determination in generalized fringe projection profilometry,” Opt. Express 14(25), 12122–12133 (2006).
    [CrossRef]
  8. H. Du and Z. Wang, “Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilometry system,” Opt. Lett. 32(16), 2438–2440 (2007).
    [CrossRef]
  9. Z. Wang, H. Du, S. Park, and H. Xie, “Three-dimensional shape measurement with a fast and accurate approach,” Appl. Opt. 48(6), 1052–1061 (2009).
    [CrossRef]
  10. A. Asundi and Z. Wensen, “Unified calibration technique and its applications in optical triangular profilometry,” Appl. Opt. 38(16), 3556–3561 (1999).
    [CrossRef]
  11. J. Heikkila, and O. Silven, “Calibration Procedure for short focal length off-the-shelf CCD cameras,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Vienna, Austria, 1996), pp. 166–170.
  12. Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
    [CrossRef]
  13. S. Cui, X. Zhu, W. Wang, and Y. Xie, “Calibration of a laser galvanometric scanning system by adapting a camera model,” Appl. Opt. 48(14), 2632–2637 (2009).
    [CrossRef]
  14. S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45(8), 083601 (2006).
    [CrossRef]
  15. R. L. Saenz, T. Bothe, and W. P. Juptner, “Accurate procedure for the calibration of a structured light system,” Opt. Eng. 43, 467–471 (2004).
  16. O. Faugeras, “Three-Dimensional Computer Vision: A Geometric Viewpoint,” (MIT Press, 1993).
  17. C. Steger, “An Unbiased Detector of Curvilinear Structures,” IEEE Trans. Pattern Anal. Mach. Intell. 20(2), 113–125 (1998).
    [CrossRef]
  18. P. S. Huang and S. Zhang, “Fast three-step phase-shifting algorithm,” Appl. Opt. 45(21), 5086–5091 (2006).
    [CrossRef]
  19. J. Meneses, T. Gharbi, and P. Humbert, “Phase-unwrapping algorithm for images with high noise content based on a local histogram,” Appl. Opt. 44(7), 1207–1215 (2005).
    [CrossRef]

2009 (2)

2007 (2)

B. A. Rajoub, M. J. Lalor, D. R. Burton, and S. A. Karout, “A new model for measuring object shape using non-collimated fringe-pattern projections,” J. Opt. A, Pure Appl. Opt. 9(6), S66–S75 (2007).
[CrossRef]

H. Du and Z. Wang, “Three-dimensional shape measurement with an arbitrarily arranged fringe projection profilometry system,” Opt. Lett. 32(16), 2438–2440 (2007).
[CrossRef]

2006 (5)

2005 (3)

2004 (1)

R. L. Saenz, T. Bothe, and W. P. Juptner, “Accurate procedure for the calibration of a structured light system,” Opt. Eng. 43, 467–471 (2004).

2000 (1)

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[CrossRef]

1999 (1)

1998 (1)

C. Steger, “An Unbiased Detector of Curvilinear Structures,” IEEE Trans. Pattern Anal. Mach. Intell. 20(2), 113–125 (1998).
[CrossRef]

1994 (1)

W. S. Zhou and X. Y. Su, “A direct mapping algorithm for phase-measuring profilometry,” J. Mod. Opt. 41(1), 89–94 (1994).
[CrossRef]

Asundi, A.

Bi, H.

Bothe, T.

R. L. Saenz, T. Bothe, and W. P. Juptner, “Accurate procedure for the calibration of a structured light system,” Opt. Eng. 43, 467–471 (2004).

Burton, D. R.

B. A. Rajoub, M. J. Lalor, D. R. Burton, and S. A. Karout, “A new model for measuring object shape using non-collimated fringe-pattern projections,” J. Opt. A, Pure Appl. Opt. 9(6), S66–S75 (2007).
[CrossRef]

Chen, L.

Chen, M.

H. Guo, M. Chen, and P. Zheng, “Least-squares fitting of carrier phase distribution by using a rational function in fringe projection profilometry,” Opt. Lett. 31(24), 3588–3590 (2006).
[CrossRef]

H. Guo, H. He, Y. Yu, and M. Chen, “Least-squares calibration method for fringe projection profilometry,” Opt. Eng. 44(3), 033603 (2005).
[CrossRef]

Cui, S.

Du, H.

Gharbi, T.

Guo, H.

H. Guo, M. Chen, and P. Zheng, “Least-squares fitting of carrier phase distribution by using a rational function in fringe projection profilometry,” Opt. Lett. 31(24), 3588–3590 (2006).
[CrossRef]

H. Guo, H. He, Y. Yu, and M. Chen, “Least-squares calibration method for fringe projection profilometry,” Opt. Eng. 44(3), 033603 (2005).
[CrossRef]

He, H.

H. Guo, H. He, Y. Yu, and M. Chen, “Least-squares calibration method for fringe projection profilometry,” Opt. Eng. 44(3), 033603 (2005).
[CrossRef]

Huang, P. S.

P. S. Huang and S. Zhang, “Fast three-step phase-shifting algorithm,” Appl. Opt. 45(21), 5086–5091 (2006).
[CrossRef]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45(8), 083601 (2006).
[CrossRef]

Humbert, P.

Juptner, W. P.

R. L. Saenz, T. Bothe, and W. P. Juptner, “Accurate procedure for the calibration of a structured light system,” Opt. Eng. 43, 467–471 (2004).

Karout, S. A.

B. A. Rajoub, M. J. Lalor, D. R. Burton, and S. A. Karout, “A new model for measuring object shape using non-collimated fringe-pattern projections,” J. Opt. A, Pure Appl. Opt. 9(6), S66–S75 (2007).
[CrossRef]

Lalor, M. J.

B. A. Rajoub, M. J. Lalor, D. R. Burton, and S. A. Karout, “A new model for measuring object shape using non-collimated fringe-pattern projections,” J. Opt. A, Pure Appl. Opt. 9(6), S66–S75 (2007).
[CrossRef]

Meneses, J.

Park, S.

Quan, C.

Rajoub, B. A.

B. A. Rajoub, M. J. Lalor, D. R. Burton, and S. A. Karout, “A new model for measuring object shape using non-collimated fringe-pattern projections,” J. Opt. A, Pure Appl. Opt. 9(6), S66–S75 (2007).
[CrossRef]

Saenz, R. L.

R. L. Saenz, T. Bothe, and W. P. Juptner, “Accurate procedure for the calibration of a structured light system,” Opt. Eng. 43, 467–471 (2004).

Steger, C.

C. Steger, “An Unbiased Detector of Curvilinear Structures,” IEEE Trans. Pattern Anal. Mach. Intell. 20(2), 113–125 (1998).
[CrossRef]

Su, X. Y.

W. S. Zhou and X. Y. Su, “A direct mapping algorithm for phase-measuring profilometry,” J. Mod. Opt. 41(1), 89–94 (1994).
[CrossRef]

Tay, C. J.

Wang, W.

Wang, Z.

Wensen, Z.

Xie, H.

Xie, Y.

Yu, Y.

H. Guo, H. He, Y. Yu, and M. Chen, “Least-squares calibration method for fringe projection profilometry,” Opt. Eng. 44(3), 033603 (2005).
[CrossRef]

Zhang, S.

P. S. Huang and S. Zhang, “Fast three-step phase-shifting algorithm,” Appl. Opt. 45(21), 5086–5091 (2006).
[CrossRef]

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45(8), 083601 (2006).
[CrossRef]

Zhang, Z.

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[CrossRef]

Zheng, P.

Zhou, W. S.

W. S. Zhou and X. Y. Su, “A direct mapping algorithm for phase-measuring profilometry,” J. Mod. Opt. 41(1), 89–94 (1994).
[CrossRef]

Zhu, X.

Appl. Opt. (5)

IEEE Trans. Pattern Anal. Mach. Intell. (2)

Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000).
[CrossRef]

C. Steger, “An Unbiased Detector of Curvilinear Structures,” IEEE Trans. Pattern Anal. Mach. Intell. 20(2), 113–125 (1998).
[CrossRef]

J. Mod. Opt. (1)

W. S. Zhou and X. Y. Su, “A direct mapping algorithm for phase-measuring profilometry,” J. Mod. Opt. 41(1), 89–94 (1994).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

B. A. Rajoub, M. J. Lalor, D. R. Burton, and S. A. Karout, “A new model for measuring object shape using non-collimated fringe-pattern projections,” J. Opt. A, Pure Appl. Opt. 9(6), S66–S75 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Eng. (3)

S. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45(8), 083601 (2006).
[CrossRef]

R. L. Saenz, T. Bothe, and W. P. Juptner, “Accurate procedure for the calibration of a structured light system,” Opt. Eng. 43, 467–471 (2004).

H. Guo, H. He, Y. Yu, and M. Chen, “Least-squares calibration method for fringe projection profilometry,” Opt. Eng. 44(3), 033603 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Other (2)

J. Heikkila, and O. Silven, “Calibration Procedure for short focal length off-the-shelf CCD cameras,” in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Vienna, Austria, 1996), pp. 166–170.

O. Faugeras, “Three-Dimensional Computer Vision: A Geometric Viewpoint,” (MIT Press, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics