Abstract

In this paper, we derive the average bit error rate (BER) of subcarrier multiplexing (SCM)-based free space optics (FSO) systems using a dual-drive Mach-Zehnder modulator (DD-MZM) for optical single-sideband (OSSB) signals under atmospheric turbulence channels. In particular, we consider the third-order intermodulation (IM3), a significant performance degradation factor, in the case of high input signal power systems. The derived average BER, as a function of the input signal power and the scintillation index, is employed to determine the optimum number of SCM users upon the designing FSO systems. For instance, when the user number doubles, the input signal power decreases by almost 2 dBm under the log-normal and exponential turbulence channels at a given average BER.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Olshansky, V. A. Lanzisera, and P. M. Hill, "Subcarrier multiplexed lightwave systems for broad-band distribution," J. Lightwave Technol. 7, 1329-1342 (1989).
    [CrossRef]
  2. V. W. S. Chan, "Free-space optical communications," J. Lightwave Technol. 24, 4750-4762 (2006).
    [CrossRef]
  3. T. Cho and K. Kim, "Effect of third-order intermodulation on radio-over-fiber systems by a dual-electrode machzehnder modulator with ODSB and OSSB signals," J. Lightwave Technol. 24, 2052-2058 (2006).
    [CrossRef]
  4. L. Besser and R. Gilmore, Practical RF Circuit Design For Modern Wireless Systems, (Artech House, Boston • London, 2003)
  5. K. Kiasaleh, "Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence," IEEE Trans. Commun. 53, 1455-1461 (2005).
    [CrossRef]
  6. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, San Diego, 2001).
  7. Y. Palaskas and Y. Tsividis, "Power-area-DR-frequency-selectivity trade-offs in weakly nonlinear active filters," in Proceedings of ISCAS, (Bagnkok, Thailand, 2003), pp. I-453-I-456.
  8. M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels, (Wiley, New York, 2000).
    [CrossRef]

2006

2005

K. Kiasaleh, "Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence," IEEE Trans. Commun. 53, 1455-1461 (2005).
[CrossRef]

1989

R. Olshansky, V. A. Lanzisera, and P. M. Hill, "Subcarrier multiplexed lightwave systems for broad-band distribution," J. Lightwave Technol. 7, 1329-1342 (1989).
[CrossRef]

Chan, V. W. S.

Cho, T.

Hill, P. M.

R. Olshansky, V. A. Lanzisera, and P. M. Hill, "Subcarrier multiplexed lightwave systems for broad-band distribution," J. Lightwave Technol. 7, 1329-1342 (1989).
[CrossRef]

Kiasaleh, K.

K. Kiasaleh, "Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence," IEEE Trans. Commun. 53, 1455-1461 (2005).
[CrossRef]

Kim, K.

Lanzisera, V. A.

R. Olshansky, V. A. Lanzisera, and P. M. Hill, "Subcarrier multiplexed lightwave systems for broad-band distribution," J. Lightwave Technol. 7, 1329-1342 (1989).
[CrossRef]

Olshansky, R.

R. Olshansky, V. A. Lanzisera, and P. M. Hill, "Subcarrier multiplexed lightwave systems for broad-band distribution," J. Lightwave Technol. 7, 1329-1342 (1989).
[CrossRef]

IEEE Trans. Commun.

K. Kiasaleh, "Performance of APD-based, PPM free-space optical communication systems in atmospheric turbulence," IEEE Trans. Commun. 53, 1455-1461 (2005).
[CrossRef]

J. Lightwave Technol.

Other

L. Besser and R. Gilmore, Practical RF Circuit Design For Modern Wireless Systems, (Artech House, Boston • London, 2003)

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, San Diego, 2001).

Y. Palaskas and Y. Tsividis, "Power-area-DR-frequency-selectivity trade-offs in weakly nonlinear active filters," in Proceedings of ISCAS, (Bagnkok, Thailand, 2003), pp. I-453-I-456.

M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels, (Wiley, New York, 2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Overall architecture of the FSO system considering of optical transmitter, turbulence channels, and optical receiver.

Fig. 2.
Fig. 2.

Average BER: (a) as a function of the input signal power under the log-normal channel (with SI=0.25) and the exponential channel (E[δ]=3) according to three sets of users (e.g., 8, 16, 32), and (b) as a function of the scintillation index under the log-normal channel according to three sets of users with an optimal input signal power.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

E T ( t ) = L att · A · e j ω LD t 2 { exp j [ π · x RF ( t ) 2 V π ] + exp j [ π 2 + π · x ˜ RF ( t ) 2 V π ] }
L att · A · e j ω LD t 2 { B ( t ) + C ( t ) }
B ( t ) = n = j n e j n ω 1 t J n ( β π ) × × n = j n e j n ω m t J n ( β π ) × × n = j n e j n ω M t J n ( β π )
C ( t ) = j n = e j n ω 1 t J n ( β π ) × × j n = e j n ω m t J n ( β π ) × × j n = e j n ω M t J n ( β π )
i ( t ) = E R ( t ) 2 + n ( t )
= i f w ( t ) + i 2 f w + 1 f w + 2 ( t ) + i 2 f w + 2 f w + 4 ( t ) + i 2 f w + 3 f w + 6 ( t ) +
+ i 2 f w + m f w + 2 m ( t ) + + i 2 f w + M 1 2 f w + 2 M 1 2 ( t ) + i s , o ( t ) + n ( t )
P f w = ( δ L att 2 A 2 · J 0 2 M 1 ( β π ) · J 1 ( β π ) ) 2
( 1 2 β π δ L att 2 A 2 ) 2 , β π 1
P 2 f w + m f w + 2 m = 2 M 1 2 ( δ L att 2 A 2 ) 2 ( D IM 2 + E IM 2 )
2 M 1 2 ( 1 16 ( β π ) 3 δ L att 2 A 2 ) 2 Ψ , β π 1
D IM = 1 2 { J 0 M ( β π ) J 1 ( β π ) J 2 ( β π ) [ cos ( ϕ 2 f w + m ϕ f w + 2 m + π 4 ) + sin ( ϕ 2 f w + m f w + m π 4 ) ]
J 0 ( β π ) M 1 J 1 3 ( β π ) sin ( ϕ f w + 2 m f w + m ϕ f w + m + π 4 ) }
E IM = 1 2 { J 0 M ( β π ) J 1 ( β π ) J 2 ( β π ) [ cos ( ϕ 2 f w + m ϕ f w + 2 m π 4 ) + sin ( ϕ 2 f w + m f w + m + π 4 ) ]
J 0 ( β π ) M 1 J 1 3 ( β π ) sin ( ϕ f w + 2 m f w + m ϕ f w + m π 4 ) }
Ψ = 3 cos ( ϕ 2 f w + m f w + 2 m ϕ 2 f w + m + ϕ f w + 2 m ) + 2 cos ( ϕ 2 f w + m f w + 2 m
+ ϕ f w + 2 m f w + m ϕ f w + m ) 2 cos ( ϕ 2 f w + m ϕ f w + 2 m + ϕ f w + 2 m f w + m ϕ f w + m )
Ψ 5 3 cos ( 2 π L D λ 2 f w 2 c ) .
f δ ( δ ) = 1 2 π σ k 2 δ exp ( ( ln ( δ ) μ k ) 2 2 σ k 2 ) , δ > 0
f δ ( δ ) = 1 δ ¯ exp ( δ δ ¯ ) , δ > 0
SNDR = P f w P 2 f w + m f w + 2 m + P th + P shot
δ 2 G P RF δ 2 H P RF 2 + 4 k T B + q A 2 δ B for β π 1
G = ( π L att 2 A 2 2 V π ) 2 , H = 1 128 M 1 2 ( π 3 L att 2 A 2 V π 3 ) 2 . Ψ ,
P b = 0 Q ( SNDR ) f δ ( δ ) d δ .
P b = 1 π i = 1 N w i Q ( G P RF e 2 ( 2 σ k x i + μ k ) H P RF 2 e 2 ( 2 σ k x i + μ k ) + 4 k T B + q A 2 B e ( 2 σ k x i + μ k ) )
P b = i = 1 N w i x i Q ( δ ¯ 2 G P RF x i 4 δ ¯ 2 H P RF 3 x i 4 + 4 k T B + q A 2 B δ ¯ x i 2 ) .

Metrics