Abstract

We observed generation of stable picoseconds pulse train and double-scale optical lumps with picosecond envelope and femtosecond noise-like oscillations in the same Yb-doped fiber laser with all-positive-dispersion cavity mode-locked due to the effect of non-linear polarization evolution. In the noise-like pulse generation regime the auto-correlation function has a non-usual double (femto- and picosecond) scale shape. We discuss mechanisms of laser switching between two operation regimes and demonstrate a good qualitative agreement between experimental results and numerical modeling based on modified nonlinear Schrödinger equations.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tamura, H. A. Haus, and E. P. Ippen, "Self-starting additive pulse mode-locked erbium fiber ring laser," Electron. Lett. 28, 2226-2228 (1992).
    [CrossRef]
  2. C. J. Chen, P. K. A. Wai, and C. R. Menyuk, "Soliton fiber ring laser," Opt. Lett. 17, 417-419 (1992), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-17-6-417.
    [CrossRef] [PubMed]
  3. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fiber ring soliton laser exploiting non linear polarisation rotation," Electron. Lett. 28, 2226-2228 (1992).
    [CrossRef]
  4. A. Chong, W. H. Renninger, and F. W. Wise, "Propeties of normal-dispersion femtosecond fiber lasers," J. Opt. Soc. Am. B 25, 140-148 (2008), http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-25-2-140.
    [CrossRef]
  5. F. W. Wise, A. Chong, and W. H. Renninger, "High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion," Laser Photonics Rev. 1-2, 58-73, (2008).
    [CrossRef]
  6. V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B  83, 503-510 (2006).
    [CrossRef]
  7. S. Kobtsev, S. Kukarin, and Yu. Fedotov. "Ultra-low repetition rate mode-locked fiber laser with high-energy pulses," Opt. Express 16, 21936-21941 (2008).
    [CrossRef] [PubMed]
  8. S. Kobtsev, S. Kukarin, S. Smirnov, A. Latkin, and S. Turitsyn. "High-energy all-fiber all-positive-dispersion mode-locked ring Yb laser with 8 km optical cavity length," CLEO-Europe/EQEC-2009, CJ8.4. Munich, Germany, 14-19 June 2009.
  9. M. Horowitz, Y. Barad, and Y. Silberberg, "Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser," Opt. Lett. 22(11),799-801 (1997).
    [CrossRef]
  10. M. Horowitz and Y. Silberberg. "Control of noiselike pulse generation in erbium-doped fiber lasers," IEEE Phot. Technol. Lett. 10, 1389-1391 (1998).
    [CrossRef]
  11. L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen. "Noise-like pulse in a gain-guided soliton fiber laser." Opt. Express 15,2145-2150 (2006). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2145
    [CrossRef]
  12. S. Chouli and Ph. Grelu, "Rains of solitons in a fiber laser," Opt. Express 17, 11776-11781 (2009). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-11776
    [CrossRef] [PubMed]
  13. A. I. Chernykh and S. K. Turitsyn, "Soliton and collapse regimes of pulse generation in passively modelocking laser systems," Opt. Lett. 20,398-400 (1995).
    [CrossRef] [PubMed]
  14. A. B. Grudinin, D. N. Payne, P. W. Turner, L. J. A. Nilsson, M. N. Zervas, M. Ibsen, and M. K. Durkin, "Multi-fiber arrangements for high power fiber lasers and amplifiers," United States Patent 6826335, 30.11.2004.
  15. G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 2001).
  16. A. Komarov, H. Leblond, and F. Sanchez, "Quintic complex Ginzburg-Landau model for ring fiber lasers," Phys. Rev. E 72, 025604 (2005).
    [CrossRef]
  17. N. Akhmediev, J. M. Soto-Crespo, and G. Town, "Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach," Phys. Rev. E 63, 056602 (2001).
    [CrossRef]

2009 (1)

2008 (3)

2006 (2)

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B  83, 503-510 (2006).
[CrossRef]

L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen. "Noise-like pulse in a gain-guided soliton fiber laser." Opt. Express 15,2145-2150 (2006). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2145
[CrossRef]

2005 (1)

A. Komarov, H. Leblond, and F. Sanchez, "Quintic complex Ginzburg-Landau model for ring fiber lasers," Phys. Rev. E 72, 025604 (2005).
[CrossRef]

2001 (1)

N. Akhmediev, J. M. Soto-Crespo, and G. Town, "Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach," Phys. Rev. E 63, 056602 (2001).
[CrossRef]

1998 (1)

M. Horowitz and Y. Silberberg. "Control of noiselike pulse generation in erbium-doped fiber lasers," IEEE Phot. Technol. Lett. 10, 1389-1391 (1998).
[CrossRef]

1997 (1)

1995 (1)

1992 (3)

C. J. Chen, P. K. A. Wai, and C. R. Menyuk, "Soliton fiber ring laser," Opt. Lett. 17, 417-419 (1992), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-17-6-417.
[CrossRef] [PubMed]

K. Tamura, H. A. Haus, and E. P. Ippen, "Self-starting additive pulse mode-locked erbium fiber ring laser," Electron. Lett. 28, 2226-2228 (1992).
[CrossRef]

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fiber ring soliton laser exploiting non linear polarisation rotation," Electron. Lett. 28, 2226-2228 (1992).
[CrossRef]

Akhmediev, N.

N. Akhmediev, J. M. Soto-Crespo, and G. Town, "Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach," Phys. Rev. E 63, 056602 (2001).
[CrossRef]

Apolonski, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B  83, 503-510 (2006).
[CrossRef]

Barad, Y.

Chen, C. J.

Chernykh, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B  83, 503-510 (2006).
[CrossRef]

Chernykh, A. I.

Chong, A.

A. Chong, W. H. Renninger, and F. W. Wise, "Propeties of normal-dispersion femtosecond fiber lasers," J. Opt. Soc. Am. B 25, 140-148 (2008), http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-25-2-140.
[CrossRef]

F. W. Wise, A. Chong, and W. H. Renninger, "High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion," Laser Photonics Rev. 1-2, 58-73, (2008).
[CrossRef]

Chouli, S.

Fedotov, Yu.

Fu, X. Q.

Grelu, Ph.

Haus, H. A.

K. Tamura, H. A. Haus, and E. P. Ippen, "Self-starting additive pulse mode-locked erbium fiber ring laser," Electron. Lett. 28, 2226-2228 (1992).
[CrossRef]

Horowitz, M.

M. Horowitz and Y. Silberberg. "Control of noiselike pulse generation in erbium-doped fiber lasers," IEEE Phot. Technol. Lett. 10, 1389-1391 (1998).
[CrossRef]

M. Horowitz, Y. Barad, and Y. Silberberg, "Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser," Opt. Lett. 22(11),799-801 (1997).
[CrossRef]

Ippen, E. P.

K. Tamura, H. A. Haus, and E. P. Ippen, "Self-starting additive pulse mode-locked erbium fiber ring laser," Electron. Lett. 28, 2226-2228 (1992).
[CrossRef]

Kalashnikov, V. L.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B  83, 503-510 (2006).
[CrossRef]

Kobtsev, S.

Komarov, A.

A. Komarov, H. Leblond, and F. Sanchez, "Quintic complex Ginzburg-Landau model for ring fiber lasers," Phys. Rev. E 72, 025604 (2005).
[CrossRef]

Kukarin, S.

Leblond, H.

A. Komarov, H. Leblond, and F. Sanchez, "Quintic complex Ginzburg-Landau model for ring fiber lasers," Phys. Rev. E 72, 025604 (2005).
[CrossRef]

Matsas, V. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fiber ring soliton laser exploiting non linear polarisation rotation," Electron. Lett. 28, 2226-2228 (1992).
[CrossRef]

Menyuk, C. R.

Newson, T. P.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fiber ring soliton laser exploiting non linear polarisation rotation," Electron. Lett. 28, 2226-2228 (1992).
[CrossRef]

Payne, D. N.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fiber ring soliton laser exploiting non linear polarisation rotation," Electron. Lett. 28, 2226-2228 (1992).
[CrossRef]

Podivilov, E.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B  83, 503-510 (2006).
[CrossRef]

Renninger, W. H.

F. W. Wise, A. Chong, and W. H. Renninger, "High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion," Laser Photonics Rev. 1-2, 58-73, (2008).
[CrossRef]

A. Chong, W. H. Renninger, and F. W. Wise, "Propeties of normal-dispersion femtosecond fiber lasers," J. Opt. Soc. Am. B 25, 140-148 (2008), http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-25-2-140.
[CrossRef]

Richardson, D. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fiber ring soliton laser exploiting non linear polarisation rotation," Electron. Lett. 28, 2226-2228 (1992).
[CrossRef]

Sanchez, F.

A. Komarov, H. Leblond, and F. Sanchez, "Quintic complex Ginzburg-Landau model for ring fiber lasers," Phys. Rev. E 72, 025604 (2005).
[CrossRef]

Silberberg, Y.

M. Horowitz and Y. Silberberg. "Control of noiselike pulse generation in erbium-doped fiber lasers," IEEE Phot. Technol. Lett. 10, 1389-1391 (1998).
[CrossRef]

M. Horowitz, Y. Barad, and Y. Silberberg, "Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser," Opt. Lett. 22(11),799-801 (1997).
[CrossRef]

Soto-Crespo, J. M.

N. Akhmediev, J. M. Soto-Crespo, and G. Town, "Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach," Phys. Rev. E 63, 056602 (2001).
[CrossRef]

Tamura, K.

K. Tamura, H. A. Haus, and E. P. Ippen, "Self-starting additive pulse mode-locked erbium fiber ring laser," Electron. Lett. 28, 2226-2228 (1992).
[CrossRef]

Tang, D. Y.

Town, G.

N. Akhmediev, J. M. Soto-Crespo, and G. Town, "Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach," Phys. Rev. E 63, 056602 (2001).
[CrossRef]

Turitsyn, S. K.

Wai, P. K. A.

Wen, S. C.

Wise, F. W.

A. Chong, W. H. Renninger, and F. W. Wise, "Propeties of normal-dispersion femtosecond fiber lasers," J. Opt. Soc. Am. B 25, 140-148 (2008), http://www.opticsinfobase.org/josab/abstract.cfm?uri=josab-25-2-140.
[CrossRef]

F. W. Wise, A. Chong, and W. H. Renninger, "High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion," Laser Photonics Rev. 1-2, 58-73, (2008).
[CrossRef]

Wu, J.

Zhao, L. M.

Appl. Phys. B (1)

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, "Chirped-pulse oscillators: theory and experiment," Appl. Phys. B  83, 503-510 (2006).
[CrossRef]

Electron. Lett. (2)

K. Tamura, H. A. Haus, and E. P. Ippen, "Self-starting additive pulse mode-locked erbium fiber ring laser," Electron. Lett. 28, 2226-2228 (1992).
[CrossRef]

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fiber ring soliton laser exploiting non linear polarisation rotation," Electron. Lett. 28, 2226-2228 (1992).
[CrossRef]

IEEE Phot. Technol. Lett. (1)

M. Horowitz and Y. Silberberg. "Control of noiselike pulse generation in erbium-doped fiber lasers," IEEE Phot. Technol. Lett. 10, 1389-1391 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

F. W. Wise, A. Chong, and W. H. Renninger, "High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion," Laser Photonics Rev. 1-2, 58-73, (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. E (2)

A. Komarov, H. Leblond, and F. Sanchez, "Quintic complex Ginzburg-Landau model for ring fiber lasers," Phys. Rev. E 72, 025604 (2005).
[CrossRef]

N. Akhmediev, J. M. Soto-Crespo, and G. Town, "Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach," Phys. Rev. E 63, 056602 (2001).
[CrossRef]

Other (3)

S. Kobtsev, S. Kukarin, S. Smirnov, A. Latkin, and S. Turitsyn. "High-energy all-fiber all-positive-dispersion mode-locked ring Yb laser with 8 km optical cavity length," CLEO-Europe/EQEC-2009, CJ8.4. Munich, Germany, 14-19 June 2009.

A. B. Grudinin, D. N. Payne, P. W. Turner, L. J. A. Nilsson, M. N. Zervas, M. Ibsen, and M. K. Durkin, "Multi-fiber arrangements for high power fiber lasers and amplifiers," United States Patent 6826335, 30.11.2004.

G. P. Agrawal, Nonlinear Fiber Optics, (Academic Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental laser scheme: PC - polarization controller, PIFI - polarization-independent fiber isolator, FPBS - fiber polarization beam splitter, LD - pump laser diode.

Fig. 2.
Fig. 2.

Stable single-pulse generation: a,b - experimental results, c,d - simulations; a,c - spectra, b,d - ACFs.

Fig. 3.
Fig. 3.

Quasi-stochastic generation regime: a-c - experimental results, d-f - simulations; a,d - spectra, b,e - ACFs, c - pulse train from oscilloscope, f - non-averaged intensity distribution.

Fig. 4.
Fig. 4.

Net gain per roundtrip vs. initial pulse power. Curves 1–3 correspond to slightly different cavity parameters close to boundary of single-pulse generation regime area.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A x z { A x 2 A x + 2 3 A y 2 A x + 1 3 A y 2 A x * } + g 0 2 1 + E P sat · τ ) A x i 2 β 2 · 2 A x t 2 ,
A y z { A y 2 A y + 2 3 A x 2 A y + 1 3 A x 2 A y * } + g 0 2 1 + E ( P sat · τ ) A y i 2 β 2 · 2 A y t 2
PC 1 = ( cos α i · sin α i · sin α cos α )
PC 2 = ( cos β i sin β cos 2 ϕ i sin β sin 2 ϕ i sin β sin 2 ϕ cos β + i sin β cos 2 ϕ · ) · ( i ) · ( cos 2 ψ sin 2 ψ sin 2 ψ cos 2 ψ )

Metrics