Abstract

Using an all-fiber laser system consisting of a femtosecond Er/Yb fiber oscillator as the pump and an ultra-highly nonlinear fiber for Stokes generation, we demonstrate multimodal (TPF+SHG+CARS) nonlinear optical microscopy of both tissue samples and live cells. Multimodal imaging was successfully performed with pixel dwell times as short as 4 µs at low laser powers (<40 mW total).

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-X. Cheng and X. Xie, "Coherent anti-stokes raman scattering microscopy: Instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004).
    [CrossRef]
  2. E. O. Potma and X. S. Xie, "Cars microscopy for biology and medicine," Opt. Photon. News 15, 40-45 (2004).
    [CrossRef]
  3. D. J. Jones, E. O. Potma, J.-X. Cheng, B. Burfeindt, Y. Pang, J. Ye, and X. S. Xie, "Synchronization of two passively mode-locked, picosecond lasers within 20 fs for coherent anti-stokes raman scattering microscopy," Review of Scientific Instruments 73, 2843-2848 (2002).
    [CrossRef]
  4. F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, "Broadly tunable dual-wavelength light source for coherent anti-stokes raman scattering microscopy," Opt. Lett. 31, 1292-1294 (2006).
    [CrossRef] [PubMed]
  5. V. Yakovlev and G. I. Petrov, "Enhancing red-shifted white-light continuum generation in optical fibers for applications in nonlinear raman microscopy," Opt. Express 13, 1299-1306 (2005).
    [CrossRef] [PubMed]
  6. H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-stokes raman scattering microscopy with a photonic crystal fiber based light source," Opt. Lett. 28, 1123-1125 (2003).
    [CrossRef] [PubMed]
  7. E. R. Andresen, H. N. Paulsen, V. Birkedal, J. Thøgersen, and S. R. Keiding, "Broadband multiplex coherent anti-stokes raman scattering microscopy employing photonic-crystal fibers," J. Opt. Soc. Am. B 22, 1934-1938 (2005).
    [CrossRef]
  8. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, "Optimally chirped multimodal cars microscopy based on a single ti:sapphireoscillator," Opt. Express 17, 2984-2996 (2009).
    [CrossRef] [PubMed]
  9. W. Denk, J. Strickler, and W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
    [CrossRef] [PubMed]
  10. P. J. Campagnola, M.-d. Wei, A. Lewis, and L. M. Loew, "High-Resolution Nonlinear Optical Imaging of Live Cells by Second Harmonic Generation," Biophys. J. 77, 3341-3349 (1999).
    [CrossRef] [PubMed]
  11. K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, "High-power picosecond fiber source for coherent raman microscopy," Opt. Lett. 34, 2051-2053 (2009).
    [CrossRef] [PubMed]
  12. E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R. Keiding, "Fiber laser-based light source for coherent anti-stokes raman scattering microspectroscopy," Opt. Express 15, 4848-4856 (2007).
    [CrossRef] [PubMed]
  13. G. Krauss, T. Hanke, A. Sell, D. Tr¨autlein, A. Leitenstorfer, R. Selm, M. Winterhalder, and A. Zumbusch, "Compact coherent anti-stokes raman scattering microscope based on a picosecond two-color er:fiber laser system," Opt. Lett. 34, 2847-2849 (2009).
    [CrossRef] [PubMed]
  14. F. L’egar’e, C. L. Evans, F. Ganikhanov, and X. S. Xie, "Towards cars endoscopy," Opt. Express 14, 4427-4432 (2006).
    [CrossRef] [PubMed]
  15. K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045-1054 (2004).
    [CrossRef] [PubMed]
  16. L. Fu, B. K. Thomas, and L. Dong, "Efficient supercontinuum generations in silica suspended core fibers," Opt. Express 16, 19629-19642 (2008).
    [CrossRef] [PubMed]
  17. K. Tada and N. Karasawa, "Broadband coherent anti-stokes raman scattering spectroscopy using soliton pulse trains from a photonic crystal fiber," Optics Communications 282, 3948 - 3952 (2009).
    [CrossRef]
  18. A. Efimov and A. J. Taylor, "Supercontinuum generation and soliton timing jitter in sf6 soft glass photonic crystal fibers," Opt. Express 16, 5942-5953 (2008).
    [CrossRef] [PubMed]
  19. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeller, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," App. Phys. B 77, 269-277 (2003).
    [CrossRef]
  20. B. Washburn and N. Newbury, "Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber," Opt. Express 12, 2166-2175 (2004).
    [CrossRef] [PubMed]
  21. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Reviews of Modern Physics 78, 1135 (2006).
    [CrossRef]
  22. M. Shiomi, T. Ito, S. Yamada, S. Kawashima, and J. Fan, "Development of an Animal Model for Spontaneous Myocardial Infarction (WHHLMI Rabbit)," Arterioscler Thromb Vasc Biol 23, 1239-1244 (2003).
    [CrossRef] [PubMed]
  23. E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, "Ultrafast nonlinear spectroscopy with chirped optical pulses," Phys. Rev. Lett. 68, 514-517 (1992).
    [CrossRef] [PubMed]
  24. T. Hellerer, A. M. Enejder, and A. Zumbusch, "Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses," Appl. Phys. Lett. 85, 25-27 (2004).
    [CrossRef]
  25. Ultrafast Lasers: Technology and Applications (Marcel Dekker Inc., 2003).
  26. A. M. Zheltikov, "Let there be white light: supercontinuum generation by ultrashort laser pulses," Physics-Uspekhi 49, 605-628 (2006).
    [CrossRef]

2009 (4)

2008 (2)

2007 (1)

2006 (4)

F. L’egar’e, C. L. Evans, F. Ganikhanov, and X. S. Xie, "Towards cars endoscopy," Opt. Express 14, 4427-4432 (2006).
[CrossRef] [PubMed]

F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, "Broadly tunable dual-wavelength light source for coherent anti-stokes raman scattering microscopy," Opt. Lett. 31, 1292-1294 (2006).
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Reviews of Modern Physics 78, 1135 (2006).
[CrossRef]

A. M. Zheltikov, "Let there be white light: supercontinuum generation by ultrashort laser pulses," Physics-Uspekhi 49, 605-628 (2006).
[CrossRef]

2005 (2)

2004 (5)

J.-X. Cheng and X. Xie, "Coherent anti-stokes raman scattering microscopy: Instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004).
[CrossRef]

E. O. Potma and X. S. Xie, "Cars microscopy for biology and medicine," Opt. Photon. News 15, 40-45 (2004).
[CrossRef]

K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045-1054 (2004).
[CrossRef] [PubMed]

B. Washburn and N. Newbury, "Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber," Opt. Express 12, 2166-2175 (2004).
[CrossRef] [PubMed]

T. Hellerer, A. M. Enejder, and A. Zumbusch, "Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses," Appl. Phys. Lett. 85, 25-27 (2004).
[CrossRef]

2003 (3)

M. Shiomi, T. Ito, S. Yamada, S. Kawashima, and J. Fan, "Development of an Animal Model for Spontaneous Myocardial Infarction (WHHLMI Rabbit)," Arterioscler Thromb Vasc Biol 23, 1239-1244 (2003).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeller, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," App. Phys. B 77, 269-277 (2003).
[CrossRef]

H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-stokes raman scattering microscopy with a photonic crystal fiber based light source," Opt. Lett. 28, 1123-1125 (2003).
[CrossRef] [PubMed]

2002 (1)

D. J. Jones, E. O. Potma, J.-X. Cheng, B. Burfeindt, Y. Pang, J. Ye, and X. S. Xie, "Synchronization of two passively mode-locked, picosecond lasers within 20 fs for coherent anti-stokes raman scattering microscopy," Review of Scientific Instruments 73, 2843-2848 (2002).
[CrossRef]

1999 (1)

P. J. Campagnola, M.-d. Wei, A. Lewis, and L. M. Loew, "High-Resolution Nonlinear Optical Imaging of Live Cells by Second Harmonic Generation," Biophys. J. 77, 3341-3349 (1999).
[CrossRef] [PubMed]

1992 (1)

E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, "Ultrafast nonlinear spectroscopy with chirped optical pulses," Phys. Rev. Lett. 68, 514-517 (1992).
[CrossRef] [PubMed]

1990 (1)

W. Denk, J. Strickler, and W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Andersen, T.

Andresen, E. R.

Birkedal, V.

Burfeindt, B.

D. J. Jones, E. O. Potma, J.-X. Cheng, B. Burfeindt, Y. Pang, J. Ye, and X. S. Xie, "Synchronization of two passively mode-locked, picosecond lasers within 20 fs for coherent anti-stokes raman scattering microscopy," Review of Scientific Instruments 73, 2843-2848 (2002).
[CrossRef]

Campagnola, P. J.

P. J. Campagnola, M.-d. Wei, A. Lewis, and L. M. Loew, "High-Resolution Nonlinear Optical Imaging of Live Cells by Second Harmonic Generation," Biophys. J. 77, 3341-3349 (1999).
[CrossRef] [PubMed]

Carrasco, S.

Cheng, J.-X.

J.-X. Cheng and X. Xie, "Coherent anti-stokes raman scattering microscopy: Instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004).
[CrossRef]

D. J. Jones, E. O. Potma, J.-X. Cheng, B. Burfeindt, Y. Pang, J. Ye, and X. S. Xie, "Synchronization of two passively mode-locked, picosecond lasers within 20 fs for coherent anti-stokes raman scattering microscopy," Review of Scientific Instruments 73, 2843-2848 (2002).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Reviews of Modern Physics 78, 1135 (2006).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeller, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," App. Phys. B 77, 269-277 (2003).
[CrossRef]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeller, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," App. Phys. B 77, 269-277 (2003).
[CrossRef]

Denk, W.

W. Denk, J. Strickler, and W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeller, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," App. Phys. B 77, 269-277 (2003).
[CrossRef]

Dong, L.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Reviews of Modern Physics 78, 1135 (2006).
[CrossRef]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeller, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," App. Phys. B 77, 269-277 (2003).
[CrossRef]

Duppen, K.

E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, "Ultrafast nonlinear spectroscopy with chirped optical pulses," Phys. Rev. Lett. 68, 514-517 (1992).
[CrossRef] [PubMed]

Efimov, A.

Enejder, A. M.

T. Hellerer, A. M. Enejder, and A. Zumbusch, "Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses," Appl. Phys. Lett. 85, 25-27 (2004).
[CrossRef]

Fan, J.

M. Shiomi, T. Ito, S. Yamada, S. Kawashima, and J. Fan, "Development of an Animal Model for Spontaneous Myocardial Infarction (WHHLMI Rabbit)," Arterioscler Thromb Vasc Biol 23, 1239-1244 (2003).
[CrossRef] [PubMed]

Fu, L.

Ganikhanov, F.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Reviews of Modern Physics 78, 1135 (2006).
[CrossRef]

Hanke, T.

Hansen, K.

Hellerer, T.

T. Hellerer, A. M. Enejder, and A. Zumbusch, "Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses," Appl. Phys. Lett. 85, 25-27 (2004).
[CrossRef]

Hilligsøe, K. M.

Holtom, G. R.

Ito, T.

M. Shiomi, T. Ito, S. Yamada, S. Kawashima, and J. Fan, "Development of an Animal Model for Spontaneous Myocardial Infarction (WHHLMI Rabbit)," Arterioscler Thromb Vasc Biol 23, 1239-1244 (2003).
[CrossRef] [PubMed]

Jia, Y.

Jones, D. J.

D. J. Jones, E. O. Potma, J.-X. Cheng, B. Burfeindt, Y. Pang, J. Ye, and X. S. Xie, "Synchronization of two passively mode-locked, picosecond lasers within 20 fs for coherent anti-stokes raman scattering microscopy," Review of Scientific Instruments 73, 2843-2848 (2002).
[CrossRef]

Karasawa, N.

K. Tada and N. Karasawa, "Broadband coherent anti-stokes raman scattering spectroscopy using soliton pulse trains from a photonic crystal fiber," Optics Communications 282, 3948 - 3952 (2009).
[CrossRef]

Katz, M.

Kawashima, S.

M. Shiomi, T. Ito, S. Yamada, S. Kawashima, and J. Fan, "Development of an Animal Model for Spontaneous Myocardial Infarction (WHHLMI Rabbit)," Arterioscler Thromb Vasc Biol 23, 1239-1244 (2003).
[CrossRef] [PubMed]

Keiding, S.

Keiding, S. R.

Kieu, K.

Kopf, D.

Krauss, G.

Kristiansen, R.

Larsen, J.

Larsen, J. J.

Leitenstorfer, A.

Lewis, A.

P. J. Campagnola, M.-d. Wei, A. Lewis, and L. M. Loew, "High-Resolution Nonlinear Optical Imaging of Live Cells by Second Harmonic Generation," Biophys. J. 77, 3341-3349 (1999).
[CrossRef] [PubMed]

Loew, L. M.

P. J. Campagnola, M.-d. Wei, A. Lewis, and L. M. Loew, "High-Resolution Nonlinear Optical Imaging of Live Cells by Second Harmonic Generation," Biophys. J. 77, 3341-3349 (1999).
[CrossRef] [PubMed]

Moffatt, D. J.

Mølmer, K.

Newbury, N.

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeller, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," App. Phys. B 77, 269-277 (2003).
[CrossRef]

Nibbering, E. T. J.

E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, "Ultrafast nonlinear spectroscopy with chirped optical pulses," Phys. Rev. Lett. 68, 514-517 (1992).
[CrossRef] [PubMed]

Nielsen, C.

Nielsen, C. K.

Pang, Y.

D. J. Jones, E. O. Potma, J.-X. Cheng, B. Burfeindt, Y. Pang, J. Ye, and X. S. Xie, "Synchronization of two passively mode-locked, picosecond lasers within 20 fs for coherent anti-stokes raman scattering microscopy," Review of Scientific Instruments 73, 2843-2848 (2002).
[CrossRef]

Paulsen, H.

Paulsen, H. N.

Pegoraro, A. F.

Petrov, G. I.

Pezacki, J. P.

Potma, E. O.

E. O. Potma and X. S. Xie, "Cars microscopy for biology and medicine," Opt. Photon. News 15, 40-45 (2004).
[CrossRef]

D. J. Jones, E. O. Potma, J.-X. Cheng, B. Burfeindt, Y. Pang, J. Ye, and X. S. Xie, "Synchronization of two passively mode-locked, picosecond lasers within 20 fs for coherent anti-stokes raman scattering microscopy," Review of Scientific Instruments 73, 2843-2848 (2002).
[CrossRef]

Ridsdale, A.

Saar, B. G.

Seitz, W.

Sell, A.

Selm, R.

Shiomi, M.

M. Shiomi, T. Ito, S. Yamada, S. Kawashima, and J. Fan, "Development of an Animal Model for Spontaneous Myocardial Infarction (WHHLMI Rabbit)," Arterioscler Thromb Vasc Biol 23, 1239-1244 (2003).
[CrossRef] [PubMed]

Stolow, A.

Strickler, J.

W. Denk, J. Strickler, and W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Tada, K.

K. Tada and N. Karasawa, "Broadband coherent anti-stokes raman scattering spectroscopy using soliton pulse trains from a photonic crystal fiber," Optics Communications 282, 3948 - 3952 (2009).
[CrossRef]

Taylor, A. J.

Thøgersen, J.

Thomas, B. K.

Tr¨autlein, D.

Washburn, B.

Washburn, B. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeller, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," App. Phys. B 77, 269-277 (2003).
[CrossRef]

Webb, W.

W. Denk, J. Strickler, and W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeller, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," App. Phys. B 77, 269-277 (2003).
[CrossRef]

Wei, M.-d.

P. J. Campagnola, M.-d. Wei, A. Lewis, and L. M. Loew, "High-Resolution Nonlinear Optical Imaging of Live Cells by Second Harmonic Generation," Biophys. J. 77, 3341-3349 (1999).
[CrossRef] [PubMed]

Wiersma, D. A.

E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, "Ultrafast nonlinear spectroscopy with chirped optical pulses," Phys. Rev. Lett. 68, 514-517 (1992).
[CrossRef] [PubMed]

Windeller, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeller, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," App. Phys. B 77, 269-277 (2003).
[CrossRef]

Winterhalder, M.

Wise, F. W.

Xie, X.

J.-X. Cheng and X. Xie, "Coherent anti-stokes raman scattering microscopy: Instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004).
[CrossRef]

Xie, X. S.

K. Kieu, B. G. Saar, G. R. Holtom, X. S. Xie, and F. W. Wise, "High-power picosecond fiber source for coherent raman microscopy," Opt. Lett. 34, 2051-2053 (2009).
[CrossRef] [PubMed]

F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, "Broadly tunable dual-wavelength light source for coherent anti-stokes raman scattering microscopy," Opt. Lett. 31, 1292-1294 (2006).
[CrossRef] [PubMed]

E. O. Potma and X. S. Xie, "Cars microscopy for biology and medicine," Opt. Photon. News 15, 40-45 (2004).
[CrossRef]

D. J. Jones, E. O. Potma, J.-X. Cheng, B. Burfeindt, Y. Pang, J. Ye, and X. S. Xie, "Synchronization of two passively mode-locked, picosecond lasers within 20 fs for coherent anti-stokes raman scattering microscopy," Review of Scientific Instruments 73, 2843-2848 (2002).
[CrossRef]

Yakovlev, V.

Yamada, S.

M. Shiomi, T. Ito, S. Yamada, S. Kawashima, and J. Fan, "Development of an Animal Model for Spontaneous Myocardial Infarction (WHHLMI Rabbit)," Arterioscler Thromb Vasc Biol 23, 1239-1244 (2003).
[CrossRef] [PubMed]

Ye, J.

D. J. Jones, E. O. Potma, J.-X. Cheng, B. Burfeindt, Y. Pang, J. Ye, and X. S. Xie, "Synchronization of two passively mode-locked, picosecond lasers within 20 fs for coherent anti-stokes raman scattering microscopy," Review of Scientific Instruments 73, 2843-2848 (2002).
[CrossRef]

Zheltikov, A. M.

A. M. Zheltikov, "Let there be white light: supercontinuum generation by ultrashort laser pulses," Physics-Uspekhi 49, 605-628 (2006).
[CrossRef]

Zumbusch, A.

App. Phys. B (1)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeller, "Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber," App. Phys. B 77, 269-277 (2003).
[CrossRef]

Applied Physics Letters (1)

T. Hellerer, A. M. Enejder, and A. Zumbusch, "Spectral focusing: High spectral resolution spectroscopy with broad-bandwidth laser pulses," Appl. Phys. Lett. 85, 25-27 (2004).
[CrossRef]

Arterioscler Thromb Vasc Biol (1)

M. Shiomi, T. Ito, S. Yamada, S. Kawashima, and J. Fan, "Development of an Animal Model for Spontaneous Myocardial Infarction (WHHLMI Rabbit)," Arterioscler Thromb Vasc Biol 23, 1239-1244 (2003).
[CrossRef] [PubMed]

Biophys. J. (1)

P. J. Campagnola, M.-d. Wei, A. Lewis, and L. M. Loew, "High-Resolution Nonlinear Optical Imaging of Live Cells by Second Harmonic Generation," Biophys. J. 77, 3341-3349 (1999).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

J.-X. Cheng and X. Xie, "Coherent anti-stokes raman scattering microscopy: Instrumentation, theory, and applications," J. Phys. Chem. B 108, 827-840 (2004).
[CrossRef]

Opt. Express (8)

V. Yakovlev and G. I. Petrov, "Enhancing red-shifted white-light continuum generation in optical fibers for applications in nonlinear raman microscopy," Opt. Express 13, 1299-1306 (2005).
[CrossRef] [PubMed]

A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, "Optimally chirped multimodal cars microscopy based on a single ti:sapphireoscillator," Opt. Express 17, 2984-2996 (2009).
[CrossRef] [PubMed]

F. L’egar’e, C. L. Evans, F. Ganikhanov, and X. S. Xie, "Towards cars endoscopy," Opt. Express 14, 4427-4432 (2006).
[CrossRef] [PubMed]

K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045-1054 (2004).
[CrossRef] [PubMed]

L. Fu, B. K. Thomas, and L. Dong, "Efficient supercontinuum generations in silica suspended core fibers," Opt. Express 16, 19629-19642 (2008).
[CrossRef] [PubMed]

E. R. Andresen, C. K. Nielsen, J. Thøgersen, and S. R. Keiding, "Fiber laser-based light source for coherent anti-stokes raman scattering microspectroscopy," Opt. Express 15, 4848-4856 (2007).
[CrossRef] [PubMed]

A. Efimov and A. J. Taylor, "Supercontinuum generation and soliton timing jitter in sf6 soft glass photonic crystal fibers," Opt. Express 16, 5942-5953 (2008).
[CrossRef] [PubMed]

B. Washburn and N. Newbury, "Phase, timing, and amplitude noise on supercontinua generated in microstructure fiber," Opt. Express 12, 2166-2175 (2004).
[CrossRef] [PubMed]

Opt. Lett. (4)

Opt. Photon. News (1)

E. O. Potma and X. S. Xie, "Cars microscopy for biology and medicine," Opt. Photon. News 15, 40-45 (2004).
[CrossRef]

Optics Communications (1)

K. Tada and N. Karasawa, "Broadband coherent anti-stokes raman scattering spectroscopy using soliton pulse trains from a photonic crystal fiber," Optics Communications 282, 3948 - 3952 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, "Ultrafast nonlinear spectroscopy with chirped optical pulses," Phys. Rev. Lett. 68, 514-517 (1992).
[CrossRef] [PubMed]

Physics-Uspekhi (1)

A. M. Zheltikov, "Let there be white light: supercontinuum generation by ultrashort laser pulses," Physics-Uspekhi 49, 605-628 (2006).
[CrossRef]

Review of Scientific Instruments (1)

D. J. Jones, E. O. Potma, J.-X. Cheng, B. Burfeindt, Y. Pang, J. Ye, and X. S. Xie, "Synchronization of two passively mode-locked, picosecond lasers within 20 fs for coherent anti-stokes raman scattering microscopy," Review of Scientific Instruments 73, 2843-2848 (2002).
[CrossRef]

Reviews of Modern Physics (1)

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Reviews of Modern Physics 78, 1135 (2006).
[CrossRef]

Science (1)

W. Denk, J. Strickler, and W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[CrossRef] [PubMed]

Other (1)

Ultrafast Lasers: Technology and Applications (Marcel Dekker Inc., 2003).

Supplementary Material (1)

» Media 1: AVI (3727 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

All-fiber CARS microscopy arrangement. The fiber pump pulse is split using a half-wave plate (HWP) and polarizing beamsplitter (PBS). Part of the beam is sent to an UHNLF to generate the Stokes pulse. The Stokes and pump can both be chirped using blocks of SF6 glass before recombination on a dichroic mirror (DM). The combined beams are sent to the microscope. Left inset is a SEM image of the end face of the UHNLF. Right inset are the spectra of the pump and Stokes (Stokes scaled by 50 times) pulses.

Fig. 2.
Fig. 2.

All-fiber multimodal images of biological samples. All signals were collected simultaneously (4 µs/pixel, two frames averaged) (a) Aorta section from a 6 month old WHHLMI rabbit. Blue is SHG from collagen, green is TPF from elastin and red is CARS from lipids. Scale bar is 25 µm. (b) Live HuH-7 human hepatoma cells which have been stained with Hoescht 33342. Green is due to TPF from the Hoescht stain and red is due to CARS from lipids. Scale bar is 7 µm.

Fig. 3.
Fig. 3.

First and last frame from a two hour video taken of live HuH-7 human hepatoma cells 4 µs/pixel, no averaging. Green is two-photon autofluorescence and red is CARS, tuned to the Raman lipid stretch (2850 cm-1). A cross-section is included for the first frame showing the CARS signal and contrast. Both frames have a slightly contracted color range to allow more image detail to be viewed. Full video is included online (Media 1). Scale bar is 7 µm

Fig. 4.
Fig. 4.

(a) Multimodal CARS image with both signals collected simultaneously. Green is TPF from fluorescein and red is CARS tuned to observe the Raman stretch of lipids at 2850 cm-1. There is a noticeable periodic noise source in the CARS image (TPF does not demonstrate the same noise). Scale bar is 5 µm. (b) RF spectrum of the Stokes output of the UHNLF measured with a photodiode and electrical spectrum analyzer. Two noise peaks are clearly visible at ~48 kHz and ~68 kHz. From analyzing the images (Fourier transform of each scan line), it appears the the noise source at 48 kHz corresponds to noise observed in the images. There is no evidence of broadband white noise due to MI.

Metrics