Abstract

We propose and analyze a 90° polarization rotator based on wave coupling through an intermediate, multimode, axially uniform waveguide. The coupling efficiency of the x- and y-polarized fundamental modes between the horizontal and vertical rectangular waveguides is remarkably enhanced with the help of the TE01 mode in the multimode waveguide. The polarization rotator has a very short (21-μm) conversion length with a 17.22 dB extinction ratio. It also exhibits a 68-nm bandwidth for polarization conversion efficiency above 90%.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Vinegoni, M. Karlsson, M. Petersson, and H. Sunnerud, “The statistics of polarization-dependent loss in a recirculating loop,” J. Lightwave Technol. 22(4), 968–976 (2004).
    [CrossRef]
  2. X. B. Yu, H. Y. Zhang, and X. P. Zheng, “High carrier suppression double sideband modulation using polarization state rotation filter and optical external modulator,” Opt. Commun. 267(1), 83–87 (2006).
    [CrossRef]
  3. C. E. Soccolich and M. N. Islam, “Fiber polarization-rotation switch based on modulation instability,” Opt. Lett. 14(12), 645–647 (1989).
    [CrossRef] [PubMed]
  4. T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
    [CrossRef]
  5. Y. Ohmachi and J. Noda, “LiNbO3 TE-TM mode converter using collinear acoustooptic interaction,” IEEE J. Quantum Electron. 13(2), 43–46 (1977).
    [CrossRef]
  6. R. C. Alferness and L. L. Buhl, “Waveguide electrooptic polarization transformer,” Appl. Phys. Lett. 38(9), 655–657 (1981).
    [CrossRef]
  7. N.-N. Feng, R. Sun, J. Michel, and L. C. Kimerling, “Low-loss compact-size slotted waveguide polarization rotator and transformer,” Opt. Lett. 32(15), 2131–2133 (2007).
    [CrossRef] [PubMed]
  8. A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38(7), 880–884 (2002).
    [CrossRef]
  9. T. Mangeat, L. Escoubas, F. Flory, L. Roussel, M. De Micheli, and P. Coudray, “Integrated polarization rotator made of periodic asymmetric buried Ta2O5 / silica sol-gel waveguides,” Opt. Express 15(19), 12436–12442 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-19-12436 .
    [CrossRef] [PubMed]
  10. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Polarization rotator based on silicon wire waveguides,” Opt. Express 16(4), 2628–2635 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2628 .
    [CrossRef] [PubMed]
  11. Z. Wang and D. Dai, “Ultrasmall Si-nanowire-based polarization rotator,” J. Opt. Soc. Am. B 25(5), 747–753 (2008).
    [CrossRef]
  12. H. Deng, D. O. Yevick, C. Brooks, and P. E. Jessop, “Design Rules for Slanted-Angle Polarization Rotators,” J. Lightwave Technol. 23(1), 432–445 (2005).
    [CrossRef]
  13. Y. Yue, L. Zhang, M. Song, R. G. Beausoleil, and A. E. Willner, “On-Chip 90 Degree Polarization Rotator Using Wave Coupling through an Intermediate, Multimode, Uniform Waveguide,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuL6.
  14. J. P. Donnelly, H. A. Haus, and N. Whitaker, “Symmetric three-guide optical coupler with nonidentical center and outside guides,” IEEE J. Quantum Electron. 23(4), 401–406 (1987).
    [CrossRef]

2008 (2)

2007 (3)

2006 (1)

X. B. Yu, H. Y. Zhang, and X. P. Zheng, “High carrier suppression double sideband modulation using polarization state rotation filter and optical external modulator,” Opt. Commun. 267(1), 83–87 (2006).
[CrossRef]

2005 (1)

2004 (1)

2002 (1)

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38(7), 880–884 (2002).
[CrossRef]

1989 (1)

1987 (1)

J. P. Donnelly, H. A. Haus, and N. Whitaker, “Symmetric three-guide optical coupler with nonidentical center and outside guides,” IEEE J. Quantum Electron. 23(4), 401–406 (1987).
[CrossRef]

1981 (1)

R. C. Alferness and L. L. Buhl, “Waveguide electrooptic polarization transformer,” Appl. Phys. Lett. 38(9), 655–657 (1981).
[CrossRef]

1977 (1)

Y. Ohmachi and J. Noda, “LiNbO3 TE-TM mode converter using collinear acoustooptic interaction,” IEEE J. Quantum Electron. 13(2), 43–46 (1977).
[CrossRef]

Alferness, R. C.

R. C. Alferness and L. L. Buhl, “Waveguide electrooptic polarization transformer,” Appl. Phys. Lett. 38(9), 655–657 (1981).
[CrossRef]

Astratov, V. N.

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38(7), 880–884 (2002).
[CrossRef]

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Bristow, A. D.

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38(7), 880–884 (2002).
[CrossRef]

Brooks, C.

Buhl, L. L.

R. C. Alferness and L. L. Buhl, “Waveguide electrooptic polarization transformer,” Appl. Phys. Lett. 38(9), 655–657 (1981).
[CrossRef]

Coudray, P.

Culshaw, I. S.

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38(7), 880–884 (2002).
[CrossRef]

Dai, D.

De Micheli, M.

Deng, H.

Donnelly, J. P.

J. P. Donnelly, H. A. Haus, and N. Whitaker, “Symmetric three-guide optical coupler with nonidentical center and outside guides,” IEEE J. Quantum Electron. 23(4), 401–406 (1987).
[CrossRef]

Escoubas, L.

Feng, N.-N.

Flory, F.

Fukuda, H.

Haus, H. A.

J. P. Donnelly, H. A. Haus, and N. Whitaker, “Symmetric three-guide optical coupler with nonidentical center and outside guides,” IEEE J. Quantum Electron. 23(4), 401–406 (1987).
[CrossRef]

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Islam, M. N.

Itabashi, S.

Jessop, P. E.

Karlsson, M.

Kartner, F. X.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Kimerling, L. C.

Krauss, T. F.

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38(7), 880–884 (2002).
[CrossRef]

Mangeat, T.

Michel, J.

Noda, J.

Y. Ohmachi and J. Noda, “LiNbO3 TE-TM mode converter using collinear acoustooptic interaction,” IEEE J. Quantum Electron. 13(2), 43–46 (1977).
[CrossRef]

Ohmachi, Y.

Y. Ohmachi and J. Noda, “LiNbO3 TE-TM mode converter using collinear acoustooptic interaction,” IEEE J. Quantum Electron. 13(2), 43–46 (1977).
[CrossRef]

Petersson, M.

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Roussel, L.

Shimada, R.

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38(7), 880–884 (2002).
[CrossRef]

Shinojima, H.

Skolnick, M. S.

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38(7), 880–884 (2002).
[CrossRef]

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Soccolich, C. E.

Sun, R.

Sunnerud, H.

Tahraoui, A.

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38(7), 880–884 (2002).
[CrossRef]

Tsuchizawa, T.

Vinegoni, C.

Wang, Z.

Watanabe, T.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Whitaker, N.

J. P. Donnelly, H. A. Haus, and N. Whitaker, “Symmetric three-guide optical coupler with nonidentical center and outside guides,” IEEE J. Quantum Electron. 23(4), 401–406 (1987).
[CrossRef]

Whittaker, D. M.

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38(7), 880–884 (2002).
[CrossRef]

Yamada, K.

Yevick, D. O.

Yu, X. B.

X. B. Yu, H. Y. Zhang, and X. P. Zheng, “High carrier suppression double sideband modulation using polarization state rotation filter and optical external modulator,” Opt. Commun. 267(1), 83–87 (2006).
[CrossRef]

Zhang, H. Y.

X. B. Yu, H. Y. Zhang, and X. P. Zheng, “High carrier suppression double sideband modulation using polarization state rotation filter and optical external modulator,” Opt. Commun. 267(1), 83–87 (2006).
[CrossRef]

Zheng, X. P.

X. B. Yu, H. Y. Zhang, and X. P. Zheng, “High carrier suppression double sideband modulation using polarization state rotation filter and optical external modulator,” Opt. Commun. 267(1), 83–87 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

R. C. Alferness and L. L. Buhl, “Waveguide electrooptic polarization transformer,” Appl. Phys. Lett. 38(9), 655–657 (1981).
[CrossRef]

IEEE J. Quantum Electron. (3)

A. D. Bristow, V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, “Polarization conversion in the reflectivity properties of photonic crystal waveguides,” IEEE J. Quantum Electron. 38(7), 880–884 (2002).
[CrossRef]

Y. Ohmachi and J. Noda, “LiNbO3 TE-TM mode converter using collinear acoustooptic interaction,” IEEE J. Quantum Electron. 13(2), 43–46 (1977).
[CrossRef]

J. P. Donnelly, H. A. Haus, and N. Whitaker, “Symmetric three-guide optical coupler with nonidentical center and outside guides,” IEEE J. Quantum Electron. 23(4), 401–406 (1987).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

T. Barwicz, M. R. Watts, M. A. Popovic, P. T. Rakich, L. Socci, F. X. Kartner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1(1), 57–60 (2007).
[CrossRef]

Opt. Commun. (1)

X. B. Yu, H. Y. Zhang, and X. P. Zheng, “High carrier suppression double sideband modulation using polarization state rotation filter and optical external modulator,” Opt. Commun. 267(1), 83–87 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (1)

Y. Yue, L. Zhang, M. Song, R. G. Beausoleil, and A. E. Willner, “On-Chip 90 Degree Polarization Rotator Using Wave Coupling through an Intermediate, Multimode, Uniform Waveguide,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OTuL6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Operating principle (a) No coupling case. (b) Weak coupling case. (c) Proposed 90° polarization rotator using wave coupling through an intermediate multimode waveguide. (d) Schematic of proposed 90° polarization rotator.

Fig. 2
Fig. 2

(a) X-, Y- polarized electric field distributions and electric field lines of the three supermodes in the proposed waveguide structure. (b) Equivalent E-field distribution of the supermodes in three waveguides (solid line: fundamental modes, dot line: TE01 mode).

Fig. 3
Fig. 3

(a) Effective refractive indices of the three supermodes in Fig. 2 as a function of wavelength. (b) Conversion lengths of the fundamental and TE01 modes.

Fig. 4
Fig. 4

(a) X-polarized normalized power exchange along the propagation distance in three waveguides. (b) Y-polarized normalized power exchange along the propagation distance in three waveguides.

Fig. 5
Fig. 5

PCE as a function of wavelength and >90% PCE Bandwidth.

Fig. 6
Fig. 6

(a) PCE@21 μm, optimized PCE and its corresponding conversion length as a function of waveguide distance (D). (b) PCE@21 μm, optimized PCE and its corresponding conversion length as a function of waveguide width (W).

Fig. 7
Fig. 7

(a) PCE@21 μm, optimized PCE and its corresponding conversion length as a function of WG distance variation (ΔD). (b) PCE@21 μm, optimized PCE and its corresponding conversion length as a function of WG width variation (ΔW).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L c 1 = λ / [ 2 × ( n eff 1 n eff 2 ) ]
L c 2 = λ / [ 2 × ( n eff 1 n eff 3 ) ] .
n eff 1 n eff 3 = 2 × ( n eff 2 n eff 3 )
E ( x , y ) = k 1 E 1 A ( x , y ) e j β 1 z + k 2 E 2 ( x , y ) e j β 2 z + k 3 E 3 ( x , y ) e j β 3 z
E ( x , y ) = E x ( x , y ) x ^ + E y ( x , y ) y ^ ,   E i ( x , y ) = E i x ( x , y ) x ^ + E i y ( x , y ) y ^ ,

Metrics