Abstract

A highly sensitive detection method based on the evanescent wave of a terahertz subwavelength plastic wire was demonstrated for liquid sensing. Terahertz power spreading outside the wire core makes the waveguide dispersion sensitive to the cladding index variation, resulting in a considerable deviation of waveguide dispersion. Two liquids with transparent appearances, water and alcohol, are easily distinguished based on the waveguide dispersion, which is consistent with theoretical predictions. A melamine alcohol solution with various concentrations is identified successfully, and the detection limit is up to 20ppm, i.e. equivalent to the index variation on the order of 0.01.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Cheng, H. Shin'ichiro, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, “Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,” Appl. Phys. Lett. 92(18), 181104 (2008).
    [CrossRef]
  2. M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87(26), 261107 (2005).
    [CrossRef]
  3. Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92(22), 221101 (2008).
    [CrossRef]
  4. A. Ibraheem, I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
    [CrossRef]
  5. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
    [CrossRef] [PubMed]
  6. H. Kur, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87(24), 241119 (2005).
    [CrossRef]
  7. F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006).
    [CrossRef] [PubMed]
  8. H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91(25), 253901 (2007).
    [CrossRef]
  9. S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2, 012301 (2009).
    [CrossRef]
  10. M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Bu¨ttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
    [CrossRef]
  11. A. Chakraborty and N. Guchhait, “Inclusion complex of charge transfer probe 4-amino-3-methyl benzoic acid methyl ester (AMBME) with b-CD in aqueous and non-aqueous medium: medium dependent stoichiometry of the complex and orientation of probe molecule inside b-CD nanocavity,” J. Incl. Phenom. Macrocycl. Chem. 62(1-2), 91–97 (2008).
    [CrossRef]
  12. N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid Nanofluid 4(1-2), 117–127 (2008).
    [CrossRef]
  13. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006).
    [CrossRef] [PubMed]
  14. A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17(10), 8012–8028 (2009).
    [CrossRef] [PubMed]
  15. J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett. 92(8), 084102 (2008).
    [CrossRef]
  16. C.-M. Chiu, H.-W. Chen, Y.-R. Huang, Y.-J. Hwang, W.-J. Lee, H.-Y. Huang, and C.-K. Sun, “All-terahertz fiber-scanning near-field microscopy,” Opt. Lett. 34(7), 1084–1086 (2009).
    [CrossRef] [PubMed]
  17. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12(6), 1025–1035 (2004).
    [CrossRef] [PubMed]
  18. J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared. Milli. 17, 1996–2034 (1996).
  19. J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13(6), 2135–2140 (2005).
    [CrossRef] [PubMed]
  20. H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, “Investigation on spectral loss characteristics of subwavelength terahertz fibers,” Opt. Lett. 32(9), 1017–1019 (2007).
    [CrossRef] [PubMed]
  21. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [CrossRef] [PubMed]
  22. H. Kitahara, T. Yagi, K. Mano, and M. W. Takeda, “Dielectric characteristics of water solutions of ethanol in the terahertz region,” J. Korean Phys. Soc. 46, 82–85 (2005).
  23. L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240(4), 330–333 (1995).
    [CrossRef]
  24. B. E. A. Saleh, and M. C. Teich, fundamentals of photonics (John Wiley & Sons, New York, NY 1991).
  25. J. Lou, L. Tong, and Z. Ye, “Dispersion shifts in optical nanowires with thin dielectric coatings,” Opt. Express 14(16), 6993–6998 (2006).
    [CrossRef] [PubMed]
  26. C.-L. Chen, elements of optoelectronics and fiber optics, chap.8 (Times Mirror Higher Education Group, Inc. company, 1996).
  27. A. Sano, Kawasaki, T. Kuroishi, Chiba, Y. Miyazaki, Machida, S. Yokoyama, Yokohama, K. Matsuura, “Easily soluble polyethylene powder for the preparation of fibers or films having high strength and high elastic modulus,” united states patent 4760120 (1988). http://www.freepatentsonline.com/4760120.pdf
  28. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, “Some chemicals that cause tumours of the kidney or urinary bladder in rodents, and some other substances”. http://monographs.iarc.fr/ENG/Monographs/vol73/index.php
  29. R. E. N. Baozeng, L. I. Chen, Y. U. A. N. Xiaoliang, and W. A. N. G. Fu'an, “Determination and correlation of melamine solubility,” Chin. J. Chem. Eng. 54(7), 1001–1003 (2003).

2009 (3)

2008 (7)

J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett. 92(8), 084102 (2008).
[CrossRef]

A. Chakraborty and N. Guchhait, “Inclusion complex of charge transfer probe 4-amino-3-methyl benzoic acid methyl ester (AMBME) with b-CD in aqueous and non-aqueous medium: medium dependent stoichiometry of the complex and orientation of probe molecule inside b-CD nanocavity,” J. Incl. Phenom. Macrocycl. Chem. 62(1-2), 91–97 (2008).
[CrossRef]

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid Nanofluid 4(1-2), 117–127 (2008).
[CrossRef]

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92(22), 221101 (2008).
[CrossRef]

A. Ibraheem, I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

L. Cheng, H. Shin'ichiro, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, “Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,” Appl. Phys. Lett. 92(18), 181104 (2008).
[CrossRef]

2007 (2)

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91(25), 253901 (2007).
[CrossRef]

H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, “Investigation on spectral loss characteristics of subwavelength terahertz fibers,” Opt. Lett. 32(9), 1017–1019 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (4)

M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87(26), 261107 (2005).
[CrossRef]

H. Kur, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87(24), 241119 (2005).
[CrossRef]

J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13(6), 2135–2140 (2005).
[CrossRef] [PubMed]

H. Kitahara, T. Yagi, K. Mano, and M. W. Takeda, “Dielectric characteristics of water solutions of ethanol in the terahertz region,” J. Korean Phys. Soc. 46, 82–85 (2005).

2004 (1)

2003 (1)

R. E. N. Baozeng, L. I. Chen, Y. U. A. N. Xiaoliang, and W. A. N. G. Fu'an, “Determination and correlation of melamine solubility,” Chin. J. Chem. Eng. 54(7), 1001–1003 (2003).

2002 (2)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Bu¨ttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

1996 (1)

J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared. Milli. 17, 1996–2034 (1996).

1995 (1)

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240(4), 330–333 (1995).
[CrossRef]

Allard, J.-F.

Al-Naib, I.

A. Ibraheem, I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[CrossRef]

Baozeng, R. E. N.

R. E. N. Baozeng, L. I. Chen, Y. U. A. N. Xiaoliang, and W. A. N. G. Fu'an, “Determination and correlation of melamine solubility,” Chin. J. Chem. Eng. 54(7), 1001–1003 (2003).

Bosserhoff, A.

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Bu¨ttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

Brener, I.

Brucherseifer, M.

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Bu¨ttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

Bu¨ttner, R.

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Bu¨ttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

Chakraborty, A.

A. Chakraborty and N. Guchhait, “Inclusion complex of charge transfer probe 4-amino-3-methyl benzoic acid methyl ester (AMBME) with b-CD in aqueous and non-aqueous medium: medium dependent stoichiometry of the complex and orientation of probe molecule inside b-CD nanocavity,” J. Incl. Phenom. Macrocycl. Chem. 62(1-2), 91–97 (2008).
[CrossRef]

Chang, H.-C.

J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett. 92(8), 084102 (2008).
[CrossRef]

Chen, H.-W.

Chen, L. I.

R. E. N. Baozeng, L. I. Chen, Y. U. A. N. Xiaoliang, and W. A. N. G. Fu'an, “Determination and correlation of melamine solubility,” Chin. J. Chem. Eng. 54(7), 1001–1003 (2003).

Chen, L.-J.

Cheng, L.

L. Cheng, H. Shin'ichiro, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, “Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,” Appl. Phys. Lett. 92(18), 181104 (2008).
[CrossRef]

Chiu, C.-M.

C.-M. Chiu, H.-W. Chen, Y.-R. Huang, Y.-J. Hwang, W.-J. Lee, H.-Y. Huang, and C.-K. Sun, “All-terahertz fiber-scanning near-field microscopy,” Opt. Lett. 34(7), 1084–1086 (2009).
[CrossRef] [PubMed]

J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett. 92(8), 084102 (2008).
[CrossRef]

Dobroiu, A.

L. Cheng, H. Shin'ichiro, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, “Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,” Appl. Phys. Lett. 92(18), 181104 (2008).
[CrossRef]

Dubois, C.

Dupuis, A.

Feng, H.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92(22), 221101 (2008).
[CrossRef]

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

Freeman, M. R.

M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87(26), 261107 (2005).
[CrossRef]

Fu'an, W. A. N. G.

R. E. N. Baozeng, L. I. Chen, Y. U. A. N. Xiaoliang, and W. A. N. G. Fu'an, “Determination and correlation of melamine solubility,” Chin. J. Chem. Eng. 54(7), 1001–1003 (2003).

Gu, C.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92(22), 221101 (2008).
[CrossRef]

Guchhait, N.

A. Chakraborty and N. Guchhait, “Inclusion complex of charge transfer probe 4-amino-3-methyl benzoic acid methyl ester (AMBME) with b-CD in aqueous and non-aqueous medium: medium dependent stoichiometry of the complex and orientation of probe molecule inside b-CD nanocavity,” J. Incl. Phenom. Macrocycl. Chem. 62(1-2), 91–97 (2008).
[CrossRef]

Han, J.

Haring Bolivar, P.

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Bu¨ttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

Hayashi, A.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91(25), 253901 (2007).
[CrossRef]

Hayashi, S.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91(25), 253901 (2007).
[CrossRef]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006).
[CrossRef] [PubMed]

Hegmann, F. A.

M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87(26), 261107 (2005).
[CrossRef]

Huang, H.-Y.

Huang, Y.-R.

Hwang, Y.-J.

C.-M. Chiu, H.-W. Chen, Y.-R. Huang, Y.-J. Hwang, W.-J. Lee, H.-Y. Huang, and C.-K. Sun, “All-terahertz fiber-scanning near-field microscopy,” Opt. Lett. 34(7), 1084–1086 (2009).
[CrossRef] [PubMed]

J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett. 92(8), 084102 (2008).
[CrossRef]

Ibraheem, A.

A. Ibraheem, I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[CrossRef]

Jacobsen, R. H.

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240(4), 330–333 (1995).
[CrossRef]

Jansen, C.

A. Ibraheem, I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[CrossRef]

Kao, T.-F.

Kato, E.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2, 012301 (2009).
[CrossRef]

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91(25), 253901 (2007).
[CrossRef]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006).
[CrossRef] [PubMed]

Kawai, Y.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91(25), 253901 (2007).
[CrossRef]

Kawase, K.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2, 012301 (2009).
[CrossRef]

L. Cheng, H. Shin'ichiro, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, “Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,” Appl. Phys. Lett. 92(18), 181104 (2008).
[CrossRef]

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91(25), 253901 (2007).
[CrossRef]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006).
[CrossRef] [PubMed]

Keiding, S. R.

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240(4), 330–333 (1995).
[CrossRef]

Kitahara, H.

H. Kitahara, T. Yagi, K. Mano, and M. W. Takeda, “Dielectric characteristics of water solutions of ethanol in the terahertz region,” J. Korean Phys. Soc. 46, 82–85 (2005).

Koch, M.

A. Ibraheem, I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[CrossRef]

Kuo, C.-C.

J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett. 92(8), 084102 (2008).
[CrossRef]

Kuo, J.-L.

Kur, H.

H. Kur, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87(24), 241119 (2005).
[CrossRef]

Kurz, H.

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Bu¨ttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

Lai, C.-H.

J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett. 92(8), 084102 (2008).
[CrossRef]

Lamb, J. W.

J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared. Milli. 17, 1996–2034 (1996).

Lee, W.-J.

Li, Y.-T.

Lou, J.

Lu, J.-Y.

Mano, K.

H. Kitahara, T. Yagi, K. Mano, and M. W. Takeda, “Dielectric characteristics of water solutions of ethanol in the terahertz region,” J. Korean Phys. Soc. 46, 82–85 (2005).

Mazur, E.

Miyamaru, F.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91(25), 253901 (2007).
[CrossRef]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006).
[CrossRef] [PubMed]

Miyazawa, T.

L. Cheng, H. Shin'ichiro, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, “Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,” Appl. Phys. Lett. 92(18), 181104 (2008).
[CrossRef]

Morris, D.

Mortensen, N. A.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid Nanofluid 4(1-2), 117–127 (2008).
[CrossRef]

Nagel, M.

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Bu¨ttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

Nakagomi, Y.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2, 012301 (2009).
[CrossRef]

O’Hara, J. F.

Ogawa, Y.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2, 012301 (2009).
[CrossRef]

L. Cheng, H. Shin'ichiro, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, “Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,” Appl. Phys. Lett. 92(18), 181104 (2008).
[CrossRef]

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91(25), 253901 (2007).
[CrossRef]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006).
[CrossRef] [PubMed]

Otani, C.

L. Cheng, H. Shin'ichiro, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, “Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,” Appl. Phys. Lett. 92(18), 181104 (2008).
[CrossRef]

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91(25), 253901 (2007).
[CrossRef]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006).
[CrossRef] [PubMed]

Pan, C.-L.

J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett. 92(8), 084102 (2008).
[CrossRef]

H.-W. Chen, Y.-T. Li, C.-L. Pan, J.-L. Kuo, J.-Y. Lu, L.-J. Chen, and C.-K. Sun, “Investigation on spectral loss characteristics of subwavelength terahertz fibers,” Opt. Lett. 32(9), 1017–1019 (2007).
[CrossRef] [PubMed]

Pedersen, J.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid Nanofluid 4(1-2), 117–127 (2008).
[CrossRef]

Shin'ichiro, H.

L. Cheng, H. Shin'ichiro, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, “Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,” Appl. Phys. Lett. 92(18), 181104 (2008).
[CrossRef]

Singh, R.

Skorobogatiy, M.

Smirnova, E.

Stoeffler, K.

Suizu, K.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2, 012301 (2009).
[CrossRef]

Sun, C.-K.

Sun, Y.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92(22), 221101 (2008).
[CrossRef]

Takeda, M. W.

H. Kitahara, T. Yagi, K. Mano, and M. W. Takeda, “Dielectric characteristics of water solutions of ethanol in the terahertz region,” J. Korean Phys. Soc. 46, 82–85 (2005).

Taylor, A. J.

Thrane, L.

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240(4), 330–333 (1995).
[CrossRef]

Tong, L.

Uhd Jepsen, P.

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240(4), 330–333 (1995).
[CrossRef]

Walther, M.

M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87(26), 261107 (2005).
[CrossRef]

Wang, L.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92(22), 221101 (2008).
[CrossRef]

Xia, X.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92(22), 221101 (2008).
[CrossRef]

Xiao, S.

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid Nanofluid 4(1-2), 117–127 (2008).
[CrossRef]

Xiaoliang, Y. U. A. N.

R. E. N. Baozeng, L. I. Chen, Y. U. A. N. Xiaoliang, and W. A. N. G. Fu'an, “Determination and correlation of melamine solubility,” Chin. J. Chem. Eng. 54(7), 1001–1003 (2003).

Yagi, T.

H. Kitahara, T. Yagi, K. Mano, and M. W. Takeda, “Dielectric characteristics of water solutions of ethanol in the terahertz region,” J. Korean Phys. Soc. 46, 82–85 (2005).

Yang, H.

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92(22), 221101 (2008).
[CrossRef]

Ye, Z.

Yoshida, H.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91(25), 253901 (2007).
[CrossRef]

F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa, H. Yoshida, and E. Kato, “Terahertz surface-wave resonant sensor with a metal hole array,” Opt. Lett. 31(8), 1118–1120 (2006).
[CrossRef] [PubMed]

Yoshida, S.

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2, 012301 (2009).
[CrossRef]

Zhang, W.

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

Appl. Phys. Express (1)

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa, and K. Kawase, “Terahertz sensing of thin poly(ethylene terephthalate) film thickness using a metallic mesh,” Appl. Phys. Express 2, 012301 (2009).
[CrossRef]

Appl. Phys. Lett. (8)

M. Nagel, P. Haring Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Bu¨ttner, “Integrated THz technology for label-free genetic diagnostics,” Appl. Phys. Lett. 80(1), 154–156 (2002).
[CrossRef]

L. Cheng, H. Shin'ichiro, A. Dobroiu, C. Otani, K. Kawase, T. Miyazawa, and Y. Ogawa, “Terahertz-wave absorption in liquids measured using the evanescent field of a silicon waveguide,” Appl. Phys. Lett. 92(18), 181104 (2008).
[CrossRef]

M. Walther, M. R. Freeman, and F. A. Hegmann, “Metal-wire terahertz time-domain spectroscopy,” Appl. Phys. Lett. 87(26), 261107 (2005).
[CrossRef]

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92(22), 221101 (2008).
[CrossRef]

A. Ibraheem, I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[CrossRef]

H. Kur, “Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett. 87(24), 241119 (2005).
[CrossRef]

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91(25), 253901 (2007).
[CrossRef]

J.-Y. Lu, C.-M. Chiu, C.-C. Kuo, C.-H. Lai, H.-C. Chang, Y.-J. Hwang, C.-L. Pan, and C.-K. Sun, “Terahertz scanning imaging with a subwavelength plastic fiber,” Appl. Phys. Lett. 92(8), 084102 (2008).
[CrossRef]

Chem. Phys. Lett. (1)

L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection spectroscopy of liquid water,” Chem. Phys. Lett. 240(4), 330–333 (1995).
[CrossRef]

Chin. J. Chem. Eng. (1)

R. E. N. Baozeng, L. I. Chen, Y. U. A. N. Xiaoliang, and W. A. N. G. Fu'an, “Determination and correlation of melamine solubility,” Chin. J. Chem. Eng. 54(7), 1001–1003 (2003).

Int. J. Infrared. Milli. (1)

J. W. Lamb, “Miscellancous data on materials for millimetre and submillimetre optics,” Int. J. Infrared. Milli. 17, 1996–2034 (1996).

J. Incl. Phenom. Macrocycl. Chem. (1)

A. Chakraborty and N. Guchhait, “Inclusion complex of charge transfer probe 4-amino-3-methyl benzoic acid methyl ester (AMBME) with b-CD in aqueous and non-aqueous medium: medium dependent stoichiometry of the complex and orientation of probe molecule inside b-CD nanocavity,” J. Incl. Phenom. Macrocycl. Chem. 62(1-2), 91–97 (2008).
[CrossRef]

J. Korean Phys. Soc. (1)

H. Kitahara, T. Yagi, K. Mano, and M. W. Takeda, “Dielectric characteristics of water solutions of ethanol in the terahertz region,” J. Korean Phys. Soc. 46, 82–85 (2005).

Microfluid Nanofluid (1)

N. A. Mortensen, S. Xiao, and J. Pedersen, “Liquid-infiltrated photonic crystals: enhanced light-matter interactions for lab-on-a-chip applications,” Microfluid Nanofluid 4(1-2), 117–127 (2008).
[CrossRef]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Other (4)

C.-L. Chen, elements of optoelectronics and fiber optics, chap.8 (Times Mirror Higher Education Group, Inc. company, 1996).

A. Sano, Kawasaki, T. Kuroishi, Chiba, Y. Miyazaki, Machida, S. Yokoyama, Yokohama, K. Matsuura, “Easily soluble polyethylene powder for the preparation of fibers or films having high strength and high elastic modulus,” united states patent 4760120 (1988). http://www.freepatentsonline.com/4760120.pdf

IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, “Some chemicals that cause tumours of the kidney or urinary bladder in rodents, and some other substances”. http://monographs.iarc.fr/ENG/Monographs/vol73/index.php

B. E. A. Saleh, and M. C. Teich, fundamentals of photonics (John Wiley & Sons, New York, NY 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Fractional power in the air cladding for a 300μm-core-diameter-PS wire. The inset shows the THz power distribution across the PS wire. The black dash line indicates the radius of PS wire (150μm) and the blue dash dot line represents the full with of half maximum (FWHM) range of HE11 mode. (b) Normalized waveguide dispersion of 300μm-core-diameter PS wire with various cladding indexes ranging from 1.00 to 1.07.

Fig. 2
Fig. 2

(a) Experimental setup for THz evanescent wave sensing by using a subwavelength plastic wire. The inset illustrates the cross section of interaction between THz evanescent wave and the sample where D1 refers to the separation between wire and top surface of sample and D2 denotes the depth of the PP holder. (b) The attenuation of THz pulse propagated on an air-clad PS wire (thick dash dot line), and on a PS wire across an alcohol-filled (thin solid line) and a water-filled (thick dash line) PP sample holders. The core diameter of PS wire is 300μm.

Fig. 3
Fig. 3

(a) Simulated waveguide dispersion of 300μm-core-diameter-PS wire with an alcohol-cladding and a water-cladding. Notably, ΔDWG in the graph represents the decreased percentage of waveguide dispersion dips. (b) The measured waveguide dispersions for 300μm-core-diameter-PS wire with liquid claddings of water and alcohol.

Fig. 4
Fig. 4

(a) Normalized waveguide dispersions for various mixed melamine concentrations in alcohol. (b) Normalized waveguide dispersions for various mixed PE powder concentrations in alcohol. (c) Material dispersion of melamine and PE bulk materials. (d) Linear relation of effective cladding index and the dip-variation of waveguide dispersion derived from the melamine powder mixed in an alcohol solution at concentration of 20ppm to 80ppm. The effective cladding indices for different concentrations are referred to the waveguide dispersion dips located in the wavelength range of 0.93~0.94mm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ φ ( φ s L 1 φ a i r L 1 ) ( φ s L 2 φ a i r L 2 )
n eff = λ · Δ φ 2 π ( L 2 L 1 ) +
V g = 2 π C λ 2 · 1 d β d λ  
D w g = d ( V g 1 ) d λ
n Eff , c l a d = n a i r · σ + n s a m p l e · ( 1 σ )
σ = 1 2 θ 360  
θ = cos 1 ( r + D 1 r + D 1 + D 2 )  

Metrics