Abstract

Plasmonic gratings and nano-particle arrays in a metal-insulator-metal structures are fabricated on an erbium doped silicon nitride layer. This material system enables simple fabrication of the structure, since the active nitride layer can be directly grown on metal. Enhancement of collected emission of up to 12 is observed on resonance, while broad off-resonant enhancement is also present. The output polarization behavior of the gratings and nano-particle arrays is investigated and matched to plasmonic resonances, and the behavior of coupled modes as a function of inter-particle distance is also discussed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Yerci, R. Li, S. Kucheyev, A. van Buuren, S. N. Basu, and L. Dal Negro, "Energy transfer and 1.54mm emission in amorphous silicon nitride films in the absence of Si nanoclusters," Appl. Phys. Lett. 95, 031107 (2009).
    [CrossRef]
  2. R. Li, S. Yerci, and L. Dal Negro, "Temperature Dependence of the energy transfer from amorphous silicon nitride to Er ions," Appl. Phys. Lett. 95, 041111 (2009).
    [CrossRef]
  3. L. Dal Negro, R. Li, J. Warga, and S. N. Basu, "Sensitized Erbium emission from silicon-rich nitride/silicon superlattice structures," Appl. Phys. Lett. 92, 181105 (2008).
    [CrossRef]
  4. L. Dal Negro, R. Li, J. Warga, S. Yerci, S. Basu, S. Hamel, and G. Galli, Silicon Nanophotonics: Basic Principles, Present Status and Perspectives edited by L. Khriachtchev, (World Scientific, Singapore, 2008).
  5. R. Li, J. R. Schneck, J. Warga, L. Ziegler, and L. Dal Negro, "Carrier dynamics and erbium sensitization in silicon-rich nitride nanocrystals," Appl. Phys. Lett. 93, 091119 (2008).
    [CrossRef]
  6. W. C. Ding, D. Hu, J. Zheng, P. Chen, B. W. Cheng, J. Z. Yu, and Q. M. Wang. "Strong visible and infrared photoluminescence from Er-implanted silicon nitride films," J. Phys. D: Appl. 41, 135101 (2008).
    [CrossRef]
  7. J. Warga, R. Li, S. N. Basu, and L. Dal Negro, "Electroluminescence from silicon-rich nitride/silicon superlattice structures," Appl. Phys. Lett. 93, 151116 (2008).
    [CrossRef]
  8. M. Makarova, V. Sih, J. Warga, R. Li, L. dal Negro, and J. Vučković, "Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals," Appl. Phys. Lett. 92, 161107 (2008).
    [CrossRef]
  9. H. Mertens and A. Polman, "Plasmon-enhanced erbium luminescence," Appl. Phys. Lett. 89, 211107 (2006).
    [CrossRef]
  10. M. P. van Exter, G. Nienhuis, and J. P. Woerdman, "Two simple expressions for the spontaneous emission factor b, " Phys. Rev. A. 54, 3553 (1996).
    [CrossRef] [PubMed]
  11. E. Desurvire, Erbium-doped fiber amplifiers: principles and applications (John Wiley and Sons: New York, 1994) pp. 230-233.
  12. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars. "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B. 60, 11564-11567 (1999).
    [CrossRef]
  13. J. Vučković, M. Lončar, and A. Scherer. "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 1131 (2000).
    [CrossRef]
  14. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer. "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nature Mat. 3, 601 (2004).
    [CrossRef]
  15. K. Okamoto, S. Vyawahare, and A. Scherer. "Surface-plasmon enhanced bright emission from CdSe quantumdot nanocrystals," J. Opt. Soc. Am. B 23, 1674 (2006).
    [CrossRef]
  16. J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman. "Spectral tuning of plasmon-enhanced silicon quantum dot luminescence," Appl. Phys. Lett.131109 (2006).
    [CrossRef]
  17. Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vučković, "Plasmonic enhancement of emission from Sinanocrystals," Appl. Phys. Lett. 94, 013106 (2009).
    [CrossRef]
  18. H. Raether, Surface Plasmons (Springer, Berlin, 1988).
  19. D. K. Gifford and D. G. Hall. "Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling," Appl. Phys. Lett. 81, 4315.
  20. H. T. Miyazaki and Y. Kurokawa. "Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401 (2006).
    [CrossRef] [PubMed]
  21. Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma. "Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures," Phys. Rev. B 78, 153111 (2008).
    [CrossRef]
  22. Y. Kurokawa and H. T. Miyazaki. "Metal-insulator-metal plasmon nanocavities: Analysis of optical properties," Phys. Rev. B 75, 035411 (2007).
    [CrossRef]
  23. Y. Gong and J. Vučković, "Design of plasmon cavities for solid-state cavity quantum electrodynamics applications," Appl. Phys. Lett. 90, 033113 (2007).
    [CrossRef]
  24. D. E. Chandler, Z. K. Majumdar, G. J. Heiss, and R. M. Clegg, "Ruby Crystal for Demonstrating Time- and Frequency-Domain Methods of Fluorescence Lifetime Measurements," J. Fluoresc. 16, 793 (2006).
    [CrossRef] [PubMed]
  25. A. Kocabas, S. Seckin Senlik, and A. Aydinli, "Plasmonic band gap cavities on biharmonic gratings," Phys. Rev. B. 77, 195130 (2008).
    [CrossRef]

2009 (3)

S. Yerci, R. Li, S. Kucheyev, A. van Buuren, S. N. Basu, and L. Dal Negro, "Energy transfer and 1.54mm emission in amorphous silicon nitride films in the absence of Si nanoclusters," Appl. Phys. Lett. 95, 031107 (2009).
[CrossRef]

R. Li, S. Yerci, and L. Dal Negro, "Temperature Dependence of the energy transfer from amorphous silicon nitride to Er ions," Appl. Phys. Lett. 95, 041111 (2009).
[CrossRef]

Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vučković, "Plasmonic enhancement of emission from Sinanocrystals," Appl. Phys. Lett. 94, 013106 (2009).
[CrossRef]

2008 (7)

A. Kocabas, S. Seckin Senlik, and A. Aydinli, "Plasmonic band gap cavities on biharmonic gratings," Phys. Rev. B. 77, 195130 (2008).
[CrossRef]

L. Dal Negro, R. Li, J. Warga, and S. N. Basu, "Sensitized Erbium emission from silicon-rich nitride/silicon superlattice structures," Appl. Phys. Lett. 92, 181105 (2008).
[CrossRef]

R. Li, J. R. Schneck, J. Warga, L. Ziegler, and L. Dal Negro, "Carrier dynamics and erbium sensitization in silicon-rich nitride nanocrystals," Appl. Phys. Lett. 93, 091119 (2008).
[CrossRef]

W. C. Ding, D. Hu, J. Zheng, P. Chen, B. W. Cheng, J. Z. Yu, and Q. M. Wang. "Strong visible and infrared photoluminescence from Er-implanted silicon nitride films," J. Phys. D: Appl. 41, 135101 (2008).
[CrossRef]

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, "Electroluminescence from silicon-rich nitride/silicon superlattice structures," Appl. Phys. Lett. 93, 151116 (2008).
[CrossRef]

M. Makarova, V. Sih, J. Warga, R. Li, L. dal Negro, and J. Vučković, "Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals," Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma. "Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures," Phys. Rev. B 78, 153111 (2008).
[CrossRef]

2007 (2)

Y. Kurokawa and H. T. Miyazaki. "Metal-insulator-metal plasmon nanocavities: Analysis of optical properties," Phys. Rev. B 75, 035411 (2007).
[CrossRef]

Y. Gong and J. Vučković, "Design of plasmon cavities for solid-state cavity quantum electrodynamics applications," Appl. Phys. Lett. 90, 033113 (2007).
[CrossRef]

2006 (5)

D. E. Chandler, Z. K. Majumdar, G. J. Heiss, and R. M. Clegg, "Ruby Crystal for Demonstrating Time- and Frequency-Domain Methods of Fluorescence Lifetime Measurements," J. Fluoresc. 16, 793 (2006).
[CrossRef] [PubMed]

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman. "Spectral tuning of plasmon-enhanced silicon quantum dot luminescence," Appl. Phys. Lett.131109 (2006).
[CrossRef]

H. Mertens and A. Polman, "Plasmon-enhanced erbium luminescence," Appl. Phys. Lett. 89, 211107 (2006).
[CrossRef]

K. Okamoto, S. Vyawahare, and A. Scherer. "Surface-plasmon enhanced bright emission from CdSe quantumdot nanocrystals," J. Opt. Soc. Am. B 23, 1674 (2006).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa. "Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

2004 (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer. "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nature Mat. 3, 601 (2004).
[CrossRef]

2000 (1)

J. Vučković, M. Lončar, and A. Scherer. "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 1131 (2000).
[CrossRef]

1999 (1)

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars. "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B. 60, 11564-11567 (1999).
[CrossRef]

1996 (1)

M. P. van Exter, G. Nienhuis, and J. P. Woerdman, "Two simple expressions for the spontaneous emission factor b, " Phys. Rev. A. 54, 3553 (1996).
[CrossRef] [PubMed]

Atwater, H. A.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman. "Spectral tuning of plasmon-enhanced silicon quantum dot luminescence," Appl. Phys. Lett.131109 (2006).
[CrossRef]

Aydinli, A.

A. Kocabas, S. Seckin Senlik, and A. Aydinli, "Plasmonic band gap cavities on biharmonic gratings," Phys. Rev. B. 77, 195130 (2008).
[CrossRef]

Basu, S. N.

S. Yerci, R. Li, S. Kucheyev, A. van Buuren, S. N. Basu, and L. Dal Negro, "Energy transfer and 1.54mm emission in amorphous silicon nitride films in the absence of Si nanoclusters," Appl. Phys. Lett. 95, 031107 (2009).
[CrossRef]

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, "Electroluminescence from silicon-rich nitride/silicon superlattice structures," Appl. Phys. Lett. 93, 151116 (2008).
[CrossRef]

L. Dal Negro, R. Li, J. Warga, and S. N. Basu, "Sensitized Erbium emission from silicon-rich nitride/silicon superlattice structures," Appl. Phys. Lett. 92, 181105 (2008).
[CrossRef]

Biteen, J. S.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman. "Spectral tuning of plasmon-enhanced silicon quantum dot luminescence," Appl. Phys. Lett.131109 (2006).
[CrossRef]

Boroditsky, M.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars. "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B. 60, 11564-11567 (1999).
[CrossRef]

Brongersma, M. L.

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma. "Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures," Phys. Rev. B 78, 153111 (2008).
[CrossRef]

Chandler, D. E.

D. E. Chandler, Z. K. Majumdar, G. J. Heiss, and R. M. Clegg, "Ruby Crystal for Demonstrating Time- and Frequency-Domain Methods of Fluorescence Lifetime Measurements," J. Fluoresc. 16, 793 (2006).
[CrossRef] [PubMed]

Chen, P.

W. C. Ding, D. Hu, J. Zheng, P. Chen, B. W. Cheng, J. Z. Yu, and Q. M. Wang. "Strong visible and infrared photoluminescence from Er-implanted silicon nitride films," J. Phys. D: Appl. 41, 135101 (2008).
[CrossRef]

Cheng, B. W.

W. C. Ding, D. Hu, J. Zheng, P. Chen, B. W. Cheng, J. Z. Yu, and Q. M. Wang. "Strong visible and infrared photoluminescence from Er-implanted silicon nitride films," J. Phys. D: Appl. 41, 135101 (2008).
[CrossRef]

Cheng, S.-L.

Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vučković, "Plasmonic enhancement of emission from Sinanocrystals," Appl. Phys. Lett. 94, 013106 (2009).
[CrossRef]

Clegg, R. M.

D. E. Chandler, Z. K. Majumdar, G. J. Heiss, and R. M. Clegg, "Ruby Crystal for Demonstrating Time- and Frequency-Domain Methods of Fluorescence Lifetime Measurements," J. Fluoresc. 16, 793 (2006).
[CrossRef] [PubMed]

Dal Negro, L.

R. Li, S. Yerci, and L. Dal Negro, "Temperature Dependence of the energy transfer from amorphous silicon nitride to Er ions," Appl. Phys. Lett. 95, 041111 (2009).
[CrossRef]

S. Yerci, R. Li, S. Kucheyev, A. van Buuren, S. N. Basu, and L. Dal Negro, "Energy transfer and 1.54mm emission in amorphous silicon nitride films in the absence of Si nanoclusters," Appl. Phys. Lett. 95, 031107 (2009).
[CrossRef]

M. Makarova, V. Sih, J. Warga, R. Li, L. dal Negro, and J. Vučković, "Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals," Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, "Electroluminescence from silicon-rich nitride/silicon superlattice structures," Appl. Phys. Lett. 93, 151116 (2008).
[CrossRef]

L. Dal Negro, R. Li, J. Warga, and S. N. Basu, "Sensitized Erbium emission from silicon-rich nitride/silicon superlattice structures," Appl. Phys. Lett. 92, 181105 (2008).
[CrossRef]

R. Li, J. R. Schneck, J. Warga, L. Ziegler, and L. Dal Negro, "Carrier dynamics and erbium sensitization in silicon-rich nitride nanocrystals," Appl. Phys. Lett. 93, 091119 (2008).
[CrossRef]

DenBaars, S. P.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars. "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B. 60, 11564-11567 (1999).
[CrossRef]

Ding, W. C.

W. C. Ding, D. Hu, J. Zheng, P. Chen, B. W. Cheng, J. Z. Yu, and Q. M. Wang. "Strong visible and infrared photoluminescence from Er-implanted silicon nitride films," J. Phys. D: Appl. 41, 135101 (2008).
[CrossRef]

Gifford, D. K.

D. K. Gifford and D. G. Hall. "Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling," Appl. Phys. Lett. 81, 4315.

Gong, Y.

Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vučković, "Plasmonic enhancement of emission from Sinanocrystals," Appl. Phys. Lett. 94, 013106 (2009).
[CrossRef]

Y. Gong and J. Vučković, "Design of plasmon cavities for solid-state cavity quantum electrodynamics applications," Appl. Phys. Lett. 90, 033113 (2007).
[CrossRef]

Gontijo, I.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars. "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B. 60, 11564-11567 (1999).
[CrossRef]

Hall, D. G.

D. K. Gifford and D. G. Hall. "Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling," Appl. Phys. Lett. 81, 4315.

Heiss, G. J.

D. E. Chandler, Z. K. Majumdar, G. J. Heiss, and R. M. Clegg, "Ruby Crystal for Demonstrating Time- and Frequency-Domain Methods of Fluorescence Lifetime Measurements," J. Fluoresc. 16, 793 (2006).
[CrossRef] [PubMed]

Hu, D.

W. C. Ding, D. Hu, J. Zheng, P. Chen, B. W. Cheng, J. Z. Yu, and Q. M. Wang. "Strong visible and infrared photoluminescence from Er-implanted silicon nitride films," J. Phys. D: Appl. 41, 135101 (2008).
[CrossRef]

Jun, Y. C.

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma. "Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures," Phys. Rev. B 78, 153111 (2008).
[CrossRef]

Kekatpure, R. D.

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma. "Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures," Phys. Rev. B 78, 153111 (2008).
[CrossRef]

Keller, S.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars. "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B. 60, 11564-11567 (1999).
[CrossRef]

Kocabas, A.

A. Kocabas, S. Seckin Senlik, and A. Aydinli, "Plasmonic band gap cavities on biharmonic gratings," Phys. Rev. B. 77, 195130 (2008).
[CrossRef]

Kucheyev, S.

S. Yerci, R. Li, S. Kucheyev, A. van Buuren, S. N. Basu, and L. Dal Negro, "Energy transfer and 1.54mm emission in amorphous silicon nitride films in the absence of Si nanoclusters," Appl. Phys. Lett. 95, 031107 (2009).
[CrossRef]

Kurokawa, Y.

Y. Kurokawa and H. T. Miyazaki. "Metal-insulator-metal plasmon nanocavities: Analysis of optical properties," Phys. Rev. B 75, 035411 (2007).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa. "Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

Lewis, N. S.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman. "Spectral tuning of plasmon-enhanced silicon quantum dot luminescence," Appl. Phys. Lett.131109 (2006).
[CrossRef]

Li, R.

S. Yerci, R. Li, S. Kucheyev, A. van Buuren, S. N. Basu, and L. Dal Negro, "Energy transfer and 1.54mm emission in amorphous silicon nitride films in the absence of Si nanoclusters," Appl. Phys. Lett. 95, 031107 (2009).
[CrossRef]

R. Li, S. Yerci, and L. Dal Negro, "Temperature Dependence of the energy transfer from amorphous silicon nitride to Er ions," Appl. Phys. Lett. 95, 041111 (2009).
[CrossRef]

M. Makarova, V. Sih, J. Warga, R. Li, L. dal Negro, and J. Vučković, "Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals," Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, "Electroluminescence from silicon-rich nitride/silicon superlattice structures," Appl. Phys. Lett. 93, 151116 (2008).
[CrossRef]

L. Dal Negro, R. Li, J. Warga, and S. N. Basu, "Sensitized Erbium emission from silicon-rich nitride/silicon superlattice structures," Appl. Phys. Lett. 92, 181105 (2008).
[CrossRef]

R. Li, J. R. Schneck, J. Warga, L. Ziegler, and L. Dal Negro, "Carrier dynamics and erbium sensitization in silicon-rich nitride nanocrystals," Appl. Phys. Lett. 93, 091119 (2008).
[CrossRef]

Loncar, M.

J. Vučković, M. Lončar, and A. Scherer. "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 1131 (2000).
[CrossRef]

Lu, J.

Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vučković, "Plasmonic enhancement of emission from Sinanocrystals," Appl. Phys. Lett. 94, 013106 (2009).
[CrossRef]

Majumdar, Z. K.

D. E. Chandler, Z. K. Majumdar, G. J. Heiss, and R. M. Clegg, "Ruby Crystal for Demonstrating Time- and Frequency-Domain Methods of Fluorescence Lifetime Measurements," J. Fluoresc. 16, 793 (2006).
[CrossRef] [PubMed]

Makarova, M.

M. Makarova, V. Sih, J. Warga, R. Li, L. dal Negro, and J. Vučković, "Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals," Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

Mertens, H.

H. Mertens and A. Polman, "Plasmon-enhanced erbium luminescence," Appl. Phys. Lett. 89, 211107 (2006).
[CrossRef]

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman. "Spectral tuning of plasmon-enhanced silicon quantum dot luminescence," Appl. Phys. Lett.131109 (2006).
[CrossRef]

Mishra, U. K.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars. "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B. 60, 11564-11567 (1999).
[CrossRef]

Miyazaki, H. T.

Y. Kurokawa and H. T. Miyazaki. "Metal-insulator-metal plasmon nanocavities: Analysis of optical properties," Phys. Rev. B 75, 035411 (2007).
[CrossRef]

H. T. Miyazaki and Y. Kurokawa. "Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer. "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nature Mat. 3, 601 (2004).
[CrossRef]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer. "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nature Mat. 3, 601 (2004).
[CrossRef]

Nienhuis, G.

M. P. van Exter, G. Nienhuis, and J. P. Woerdman, "Two simple expressions for the spontaneous emission factor b, " Phys. Rev. A. 54, 3553 (1996).
[CrossRef] [PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer. "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nature Mat. 3, 601 (2004).
[CrossRef]

Nishi, Y.

Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vučković, "Plasmonic enhancement of emission from Sinanocrystals," Appl. Phys. Lett. 94, 013106 (2009).
[CrossRef]

Okamoto, K.

K. Okamoto, S. Vyawahare, and A. Scherer. "Surface-plasmon enhanced bright emission from CdSe quantumdot nanocrystals," J. Opt. Soc. Am. B 23, 1674 (2006).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer. "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nature Mat. 3, 601 (2004).
[CrossRef]

Polman, A.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman. "Spectral tuning of plasmon-enhanced silicon quantum dot luminescence," Appl. Phys. Lett.131109 (2006).
[CrossRef]

H. Mertens and A. Polman, "Plasmon-enhanced erbium luminescence," Appl. Phys. Lett. 89, 211107 (2006).
[CrossRef]

Scherer, A.

K. Okamoto, S. Vyawahare, and A. Scherer. "Surface-plasmon enhanced bright emission from CdSe quantumdot nanocrystals," J. Opt. Soc. Am. B 23, 1674 (2006).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer. "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nature Mat. 3, 601 (2004).
[CrossRef]

J. Vučković, M. Lončar, and A. Scherer. "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 1131 (2000).
[CrossRef]

Schneck, J. R.

R. Li, J. R. Schneck, J. Warga, L. Ziegler, and L. Dal Negro, "Carrier dynamics and erbium sensitization in silicon-rich nitride nanocrystals," Appl. Phys. Lett. 93, 091119 (2008).
[CrossRef]

Seckin Senlik, S.

A. Kocabas, S. Seckin Senlik, and A. Aydinli, "Plasmonic band gap cavities on biharmonic gratings," Phys. Rev. B. 77, 195130 (2008).
[CrossRef]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer. "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nature Mat. 3, 601 (2004).
[CrossRef]

Sih, V.

M. Makarova, V. Sih, J. Warga, R. Li, L. dal Negro, and J. Vučković, "Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals," Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

van Buuren, A.

S. Yerci, R. Li, S. Kucheyev, A. van Buuren, S. N. Basu, and L. Dal Negro, "Energy transfer and 1.54mm emission in amorphous silicon nitride films in the absence of Si nanoclusters," Appl. Phys. Lett. 95, 031107 (2009).
[CrossRef]

van Exter, M. P.

M. P. van Exter, G. Nienhuis, and J. P. Woerdman, "Two simple expressions for the spontaneous emission factor b, " Phys. Rev. A. 54, 3553 (1996).
[CrossRef] [PubMed]

Vuckovic, J.

Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vučković, "Plasmonic enhancement of emission from Sinanocrystals," Appl. Phys. Lett. 94, 013106 (2009).
[CrossRef]

M. Makarova, V. Sih, J. Warga, R. Li, L. dal Negro, and J. Vučković, "Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals," Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

Y. Gong and J. Vučković, "Design of plasmon cavities for solid-state cavity quantum electrodynamics applications," Appl. Phys. Lett. 90, 033113 (2007).
[CrossRef]

J. Vučković, M. Lončar, and A. Scherer. "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 1131 (2000).
[CrossRef]

Vyawahare, S.

Wang, Q. M.

W. C. Ding, D. Hu, J. Zheng, P. Chen, B. W. Cheng, J. Z. Yu, and Q. M. Wang. "Strong visible and infrared photoluminescence from Er-implanted silicon nitride films," J. Phys. D: Appl. 41, 135101 (2008).
[CrossRef]

Warga, J.

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, "Electroluminescence from silicon-rich nitride/silicon superlattice structures," Appl. Phys. Lett. 93, 151116 (2008).
[CrossRef]

R. Li, J. R. Schneck, J. Warga, L. Ziegler, and L. Dal Negro, "Carrier dynamics and erbium sensitization in silicon-rich nitride nanocrystals," Appl. Phys. Lett. 93, 091119 (2008).
[CrossRef]

L. Dal Negro, R. Li, J. Warga, and S. N. Basu, "Sensitized Erbium emission from silicon-rich nitride/silicon superlattice structures," Appl. Phys. Lett. 92, 181105 (2008).
[CrossRef]

M. Makarova, V. Sih, J. Warga, R. Li, L. dal Negro, and J. Vučković, "Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals," Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

White, J. S.

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma. "Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures," Phys. Rev. B 78, 153111 (2008).
[CrossRef]

Woerdman, J. P.

M. P. van Exter, G. Nienhuis, and J. P. Woerdman, "Two simple expressions for the spontaneous emission factor b, " Phys. Rev. A. 54, 3553 (1996).
[CrossRef] [PubMed]

Yablonovitch, E.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars. "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B. 60, 11564-11567 (1999).
[CrossRef]

Yerci, S.

S. Yerci, R. Li, S. Kucheyev, A. van Buuren, S. N. Basu, and L. Dal Negro, "Energy transfer and 1.54mm emission in amorphous silicon nitride films in the absence of Si nanoclusters," Appl. Phys. Lett. 95, 031107 (2009).
[CrossRef]

R. Li, S. Yerci, and L. Dal Negro, "Temperature Dependence of the energy transfer from amorphous silicon nitride to Er ions," Appl. Phys. Lett. 95, 041111 (2009).
[CrossRef]

Yu, J. Z.

W. C. Ding, D. Hu, J. Zheng, P. Chen, B. W. Cheng, J. Z. Yu, and Q. M. Wang. "Strong visible and infrared photoluminescence from Er-implanted silicon nitride films," J. Phys. D: Appl. 41, 135101 (2008).
[CrossRef]

Zheng, J.

W. C. Ding, D. Hu, J. Zheng, P. Chen, B. W. Cheng, J. Z. Yu, and Q. M. Wang. "Strong visible and infrared photoluminescence from Er-implanted silicon nitride films," J. Phys. D: Appl. 41, 135101 (2008).
[CrossRef]

Ziegler, L.

R. Li, J. R. Schneck, J. Warga, L. Ziegler, and L. Dal Negro, "Carrier dynamics and erbium sensitization in silicon-rich nitride nanocrystals," Appl. Phys. Lett. 93, 091119 (2008).
[CrossRef]

Appl. Phys. Lett. (11)

S. Yerci, R. Li, S. Kucheyev, A. van Buuren, S. N. Basu, and L. Dal Negro, "Energy transfer and 1.54mm emission in amorphous silicon nitride films in the absence of Si nanoclusters," Appl. Phys. Lett. 95, 031107 (2009).
[CrossRef]

R. Li, S. Yerci, and L. Dal Negro, "Temperature Dependence of the energy transfer from amorphous silicon nitride to Er ions," Appl. Phys. Lett. 95, 041111 (2009).
[CrossRef]

L. Dal Negro, R. Li, J. Warga, and S. N. Basu, "Sensitized Erbium emission from silicon-rich nitride/silicon superlattice structures," Appl. Phys. Lett. 92, 181105 (2008).
[CrossRef]

J. Warga, R. Li, S. N. Basu, and L. Dal Negro, "Electroluminescence from silicon-rich nitride/silicon superlattice structures," Appl. Phys. Lett. 93, 151116 (2008).
[CrossRef]

M. Makarova, V. Sih, J. Warga, R. Li, L. dal Negro, and J. Vučković, "Enhanced light emission in photonic crystal nanocavities with Erbium-doped silicon nanocrystals," Appl. Phys. Lett. 92, 161107 (2008).
[CrossRef]

H. Mertens and A. Polman, "Plasmon-enhanced erbium luminescence," Appl. Phys. Lett. 89, 211107 (2006).
[CrossRef]

R. Li, J. R. Schneck, J. Warga, L. Ziegler, and L. Dal Negro, "Carrier dynamics and erbium sensitization in silicon-rich nitride nanocrystals," Appl. Phys. Lett. 93, 091119 (2008).
[CrossRef]

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman. "Spectral tuning of plasmon-enhanced silicon quantum dot luminescence," Appl. Phys. Lett.131109 (2006).
[CrossRef]

Y. Gong, J. Lu, S.-L. Cheng, Y. Nishi, and J. Vučković, "Plasmonic enhancement of emission from Sinanocrystals," Appl. Phys. Lett. 94, 013106 (2009).
[CrossRef]

D. K. Gifford and D. G. Hall. "Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling," Appl. Phys. Lett. 81, 4315.

Y. Gong and J. Vučković, "Design of plasmon cavities for solid-state cavity quantum electrodynamics applications," Appl. Phys. Lett. 90, 033113 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Vučković, M. Lončar, and A. Scherer. "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 1131 (2000).
[CrossRef]

J. Fluoresc. (1)

D. E. Chandler, Z. K. Majumdar, G. J. Heiss, and R. M. Clegg, "Ruby Crystal for Demonstrating Time- and Frequency-Domain Methods of Fluorescence Lifetime Measurements," J. Fluoresc. 16, 793 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. (1)

W. C. Ding, D. Hu, J. Zheng, P. Chen, B. W. Cheng, J. Z. Yu, and Q. M. Wang. "Strong visible and infrared photoluminescence from Er-implanted silicon nitride films," J. Phys. D: Appl. 41, 135101 (2008).
[CrossRef]

Nature Mat. (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer. "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nature Mat. 3, 601 (2004).
[CrossRef]

Phys. Rev. A. (1)

M. P. van Exter, G. Nienhuis, and J. P. Woerdman, "Two simple expressions for the spontaneous emission factor b, " Phys. Rev. A. 54, 3553 (1996).
[CrossRef] [PubMed]

Phys. Rev. B (2)

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma. "Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures," Phys. Rev. B 78, 153111 (2008).
[CrossRef]

Y. Kurokawa and H. T. Miyazaki. "Metal-insulator-metal plasmon nanocavities: Analysis of optical properties," Phys. Rev. B 75, 035411 (2007).
[CrossRef]

Phys. Rev. B. (2)

A. Kocabas, S. Seckin Senlik, and A. Aydinli, "Plasmonic band gap cavities on biharmonic gratings," Phys. Rev. B. 77, 195130 (2008).
[CrossRef]

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars. "Coupling of InGaN quantum-well photoluminescence to silver surface plasmons," Phys. Rev. B. 60, 11564-11567 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

H. T. Miyazaki and Y. Kurokawa. "Squeezing Visible Light Waves into a 3-nm-Thick and 55-nm-Long Plasmon Cavity," Phys. Rev. Lett. 96, 097401 (2006).
[CrossRef] [PubMed]

Other (3)

H. Raether, Surface Plasmons (Springer, Berlin, 1988).

E. Desurvire, Erbium-doped fiber amplifiers: principles and applications (John Wiley and Sons: New York, 1994) pp. 230-233.

L. Dal Negro, R. Li, J. Warga, S. Yerci, S. Basu, S. Hamel, and G. Galli, Silicon Nanophotonics: Basic Principles, Present Status and Perspectives edited by L. Khriachtchev, (World Scientific, Singapore, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) The wavelengths of the first and second order field-symmetric MIM SPP modes for different grating periods, with a 52nm thick layer of Er:SiNx between the metal layers. The analytical solution for a MIM structure with semi-infinite metal thickness and the same Er:SiNx thickness is also shown. (b) The magnetic field (B) and (c) the electric field intensity (|E|2) of the first (top) and second (bottom) order modes near free space λ 0≈1500nm. The MIM SPP modes in a 2D simulation have B fields perpendicular to plane of the figures, while the E field is restricted to the plane of the figures. The inset of (b) shows the magnetic field through a vertical slice of the structure, as well as the analytical solution of a MIM system with semi-infinite metal thicknesses and a 52nm Er:SiN x spacer layer [22].

Fig. 2.
Fig. 2.

(a) Top gold grating imaged by SEM. The marker denotes 2 µm, while the double arrows indicate the approximate alignment of the polarizer (0°) (b) PL from on and off the grating structure, as well as from a reference sample with the same Er:SiN x thickness grown on quartz. The same excitation power was used in all three cases. The region off the grating is a region with Er:SiN x on top of Au without the top metal layer.

Fig. 3.
Fig. 3.

(a) The enhancement of integrated emission from grating structures relative to off grating areas, as a function of grating period. The three curves correspond to two different duty cycles (d), and to a biharmonic grating. (b) The enhancement of emission as a function of polarization angle for the resonant first and second order grating modes, as well as for the resonant biharmonic grating. The angle dependence of the Er:SiN x on Au off grating is also shown.

Fig. 4.
Fig. 4.

(a) The design of the square array of square metal particles. (b) The enhancement of emission from the shown nano-particle array structures relative to off-array areas, as a function of array period (a). (c) The angle dependence of the output from a near-resonant nano-particle array with lattice constant of a=290nm.

Fig. 5.
Fig. 5.

(a) The enhancement of emission from a square array of square metallic particles (Fig. 4(a)), as the duty cycle (d) and lattice constant (a) are varied. (b) The same set of data is replotted against the particle width, w=d×a.

Fig. 6.
Fig. 6.

(a) Asymmetric particle arrays used to examine the role of inter-particle distance in the directions parallel and perpendicular to the plasmonic mode polarization. The vertical period v and horizontal period a are changed independently of each other. The polarization of the plasmonic resonances observed is shown by the double arrows. (b) The enhancement of emission from asymmetric particle arrays as a function of horizontal period a, while v is changed. Vertical period v is increased in increments of 200nm. The particle has a width of w=0.8a, and height of h=0.4v for all measurements. The horizontal period a that produces maximum enhancement remains the same for all v. (c) The enhancement of emission from arrays where v is fixed at 600nm, h is fixed at 360nm, and the horizontal width and period are varied independently.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F = 3 4 π 2 ( λ n ) 3 Q V mode ψ ( θ , r , ω ) , ¯
ψ ( θ , r , ω ) = 1 3 ( E ( r ) E max ) 2 ( ω ( 2 Q ) ) 2 ( ω v ) 2 + ( ω ( 2 Q ) ) 2 ) ,
k = ω c ε d ε m ( ω ) ε d + ε m ( ω ) ,
κ = ω c ε d 2 ε d + ε m ( ω ) ,
k m k d = ε m ( ω ) ε d tanh ( k d t 2 ) ,

Metrics