Abstract

We experimentally demonstrate wavelength-preserving spectral phase conjugation for compensating chromatic dispersion and self-phase modulation in optical fibers. Our implementation is based on a temporal imaging scheme that uses time lenses realized by broadband four-wave mixing in silicon waveguides. By constructing a temporal analog of a 4-f imaging system, we compensate for pulse distortions arising from second- and third-order dispersion and self-phase modulation in optical fibers.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” IEEE J. Lightwave Tech. 14(3), 243–248 (1996).
    [CrossRef]
  2. A. Yariv, D. Fekete, and D. M. Pepper, “Compensation for channel dispersion by nonlinear optical phase conjugation,” Opt. Lett. 4(2), 52–54 (1979).
    [CrossRef] [PubMed]
  3. D. A. B. Miller, “Time reversal of optical pulses by four-wave mixing,” Opt. Lett. 5(7), 300–302 (1980).
    [CrossRef] [PubMed]
  4. M. Tsang and D. Psaltis, “Dispersion and nonlinearity compensation by spectral phase conjugation,” Opt. Lett. 28(17), 1558–1560 (2003).
    [CrossRef] [PubMed]
  5. M. C. Tatham, G. Sherlock, and L. D. Westbrook, “Compensation fibre chromatic dispersion by optical phase conjugation in a semiconductor laser amplifier,” Electron. Lett. 29(21), 1851–1852 (1993).
    [CrossRef]
  6. D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, “Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1146–1155 (1997).
    [CrossRef]
  7. J. Inoue, H. Sotobayashi, W. Chujo, and H. Kawaguchi, “80 Gbit/s OTDM signal transmission over 208 km standard fibre using midspan optical phase conjugation based on four-wave mixing in semiconductor optical amplifiers,” Electron. Lett. 38(15), 819–821 (2002).
    [CrossRef]
  8. S. Watanabe, T. Naito, and T. Chikama, “Compensation of chromatic dispersion in a single-mode fiber by optical phase conjugation,” IEEE Photon. Technol. Lett. 5(1), 92–95 (1993).
    [CrossRef]
  9. A. H. Gnauck, R. M. Jopson, and R. M. Derosier, “10-Gb/s 360-km transmission over dispersive fiber using midsystem spectral inversion,” IEEE Photon. Technol. Lett. 5(6), 663–666 (1993).
    [CrossRef]
  10. S. Watanabe, T. Chikama, G. Ishikawa, T. Terahara, and H. Kuwahara, “Compensation of pulse shape distortion due to chromatic dispersion and Kerr effect by optical phase conjugation,” IEEE Photon. Technol. Lett. 5(10), 1241–1243 (1993).
    [CrossRef]
  11. P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
    [CrossRef]
  12. S. Watanabe, G. Ishikawa, T. Naito, and T. Chikama, “Generation of optical phase-conjugate waves and compensation for pulse shape distortion in a single-mode fiber,” IEEE J. Lightwave Tech. 12(12), 2139–2146 (1994).
    [CrossRef]
  13. S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. J. Paniccia, “Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator,” Opt. Lett. 32(16), 2393–2395 (2007).
    [CrossRef] [PubMed]
  14. S. Ayotte, S. Xu, H. Rong, and M. J. Paniccia, “Dispersion compensation by optical phase conjugation in silicon waveguide,” Electron. Lett. 43(19), 1037–1039 (2007).
    [CrossRef]
  15. K. Inoue, “Spectral inversion with no wavelength shift based on four-wave mixing with orthogonal pump beams,” Opt. Lett. 22(23), 1772–1774 (1997).
    [CrossRef]
  16. A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28(10), 2251–2261 (1992).
    [CrossRef]
  17. A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Spectral holography of shaped femtosecond pulses,” Opt. Lett. 17(3), 224–226 (1992).
    [CrossRef] [PubMed]
  18. C. Joubert, M. L. Roblin, and R. Grousson, “Temporal reversal of picosecond optical pulses by holographic phase conjugation,” Appl. Opt. 28(21), 4604–4612 (1989).
    [CrossRef] [PubMed]
  19. M. L. Roblin, F. Gires, R. Grousson, and P. Lavallard, “Enregistrement par holographie de volume d’une loi de phase spectrale: Application a la compression d’impulsion picoseconde,” Opt. Commun. 62(3), 209–214 (1987).
    [CrossRef]
  20. D. M. Marom, D. Panasenko, R. Rokitski, P.-C. Sun, and Y. Fainman, “Time reversal of ultrafast waveforms by wave mixing of spectrally decomposed waves,” Opt. Lett. 25(2), 132–134 (2000).
    [CrossRef]
  21. D. M. Marom, D. Panasenko, P.-C. Sun, Y. T. Mazurenko, and Y. Fainman, “Real-time spatial-temporal signal processing with optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 7(4), 683–693 (2001).
    [CrossRef]
  22. H. Nishioka, S. Ichihashi, and K. Ueda, “Frequency-domain phase-conjugate femtosecond pulse generation using frequency resolved crossphase modulation,” Opt. Express 10(18), 920–926 (2002).
    [PubMed]
  23. T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhaowei, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photon. Technol. Lett. 20(13), 1097–1099 (2008).
    [CrossRef]
  24. H. Nishioka, H. Tomita, K. Hayasaka, and K. Ueda, “All-optical temporal phase correction scheme for few-cycle optical pulses using diffractive optics,” Opt. Express 14(16), 7447–7455 (2006).
    [CrossRef] [PubMed]
  25. V. L. da Silva, Y. Silberberg, J. P. Heritage, E. W. Chase, M. A. Saifi, and M. J. Andrejco, “Femtosecond accumulated photon echo in Er-doped fibers,” Opt. Lett. 16(17), 1340–1342 (1991).
    [CrossRef] [PubMed]
  26. N. W. Carlson, L. J. Rothberg, A. G. Yodh, W. R. Babbitt, and T. W. Mossberg, “Storage and time reversal of light pulses using photon echoes,” Opt. Lett. 8(9), 483–485 (1983).
    [CrossRef] [PubMed]
  27. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
    [CrossRef]
  28. C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - Part I: System configurations,” IEEE J. Quantum Electron. 36(4), 430–437 (2000).
    [CrossRef]
  29. C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - Part II: System performance,” IEEE J. Quantum Electron. 36(6), 649–655 (2000).
    [CrossRef]
  30. S. Kumar, “Compensation of third-order dispersion using time reversal in optical transmission systems,” Opt. Lett. 32(4), 346–348 (2007).
    [CrossRef] [PubMed]
  31. D. F. Geraghty, R. Salem, M. A. Foster, and A. L. Gaeta, “A simplified optical correlator and its application to packet-header recognition,” IEEE Photon. Technol. Lett. 20(7), 487–489 (2008).
    [CrossRef]
  32. J. W. Goodman, Introduction to Fourier Optics, (McGraw-Hill, San Francisco, CA, 1968).
  33. F. Li and J. Azaña, “Simplified system configuration for real-time Fourier transformation of optical pulses in amplitude and phase,” Opt. Commun. 274(1), 59–65 (2007).
    [CrossRef]
  34. J. Azaña, N. K. Berger, B. Levit, and B. Fischer, “Spectral Fraunhofer regime: time-to-frequency conversion by the action of a single time lens on an optical pulse,” Appl. Opt. 43(2), 483–490 (2004).
    [CrossRef] [PubMed]
  35. M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
    [CrossRef]
  36. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
    [CrossRef] [PubMed]
  37. M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
    [CrossRef] [PubMed]
  38. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
    [CrossRef] [PubMed]
  39. R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009).
    [CrossRef] [PubMed]
  40. Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009).
    [CrossRef] [PubMed]
  41. M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
    [CrossRef]
  42. D. Méchin, R. Provo, J. D. Harvey, and C. J. McKinstrie, “180-nm wavelength conversion based on Bragg scattering in an optical fiber,” Opt. Express 14(20), 8995–8999 (2006).
    [CrossRef] [PubMed]
  43. C. McKinstrie, J. Harvey, S. Radic, and M. Raymer, “Translation of quantum states by four-wave mixing in fibers,” Opt. Express 13(22), 9131–9142 (2005).
    [CrossRef] [PubMed]
  44. M. J. Potasek, G. P. Agrawal, and S. C. Pinault, “Analytic and numerical study of pulse broadening in nonlinear dispersive optical fibers,” J. Opt. Soc. Am. B 3(2), 205–211 (1986).
    [CrossRef]
  45. A. H. Gnauck, and R. M. Jopson, in Optical Fiber Telecommunications IIIA, I. P. Kaminov and T. L. Koch eds. (Academic Press, San Diego, 1997), p. 186.
  46. I. Brener, B. Mikkelsen, K. Rottwitt, W. Burkett, G. Raybon, J. B. Stark, K. Parameswaran, M. H. Chou, M. M. Fejer, E. E. Chaban, R. Harel, D. L. Philen, and S. Kosinski, “Cancellation of all Kerr nonlinearities in long fiber spans using a LiNbO3 phase conjugator and Raman amplification,” in Optical Fiber Communication Conference 2000,4, 266–268 (2000).

2009

2008

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
[CrossRef] [PubMed]

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhaowei, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photon. Technol. Lett. 20(13), 1097–1099 (2008).
[CrossRef]

D. F. Geraghty, R. Salem, M. A. Foster, and A. L. Gaeta, “A simplified optical correlator and its application to packet-header recognition,” IEEE Photon. Technol. Lett. 20(7), 487–489 (2008).
[CrossRef]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

2007

F. Li and J. Azaña, “Simplified system configuration for real-time Fourier transformation of optical pulses in amplitude and phase,” Opt. Commun. 274(1), 59–65 (2007).
[CrossRef]

S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. J. Paniccia, “Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator,” Opt. Lett. 32(16), 2393–2395 (2007).
[CrossRef] [PubMed]

S. Ayotte, S. Xu, H. Rong, and M. J. Paniccia, “Dispersion compensation by optical phase conjugation in silicon waveguide,” Electron. Lett. 43(19), 1037–1039 (2007).
[CrossRef]

S. Kumar, “Compensation of third-order dispersion using time reversal in optical transmission systems,” Opt. Lett. 32(4), 346–348 (2007).
[CrossRef] [PubMed]

2006

D. Méchin, R. Provo, J. D. Harvey, and C. J. McKinstrie, “180-nm wavelength conversion based on Bragg scattering in an optical fiber,” Opt. Express 14(20), 8995–8999 (2006).
[CrossRef] [PubMed]

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

H. Nishioka, H. Tomita, K. Hayasaka, and K. Ueda, “All-optical temporal phase correction scheme for few-cycle optical pulses using diffractive optics,” Opt. Express 14(16), 7447–7455 (2006).
[CrossRef] [PubMed]

2005

2004

2003

2002

J. Inoue, H. Sotobayashi, W. Chujo, and H. Kawaguchi, “80 Gbit/s OTDM signal transmission over 208 km standard fibre using midspan optical phase conjugation based on four-wave mixing in semiconductor optical amplifiers,” Electron. Lett. 38(15), 819–821 (2002).
[CrossRef]

H. Nishioka, S. Ichihashi, and K. Ueda, “Frequency-domain phase-conjugate femtosecond pulse generation using frequency resolved crossphase modulation,” Opt. Express 10(18), 920–926 (2002).
[PubMed]

2001

D. M. Marom, D. Panasenko, P.-C. Sun, Y. T. Mazurenko, and Y. Fainman, “Real-time spatial-temporal signal processing with optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 7(4), 683–693 (2001).
[CrossRef]

2000

D. M. Marom, D. Panasenko, R. Rokitski, P.-C. Sun, and Y. Fainman, “Time reversal of ultrafast waveforms by wave mixing of spectrally decomposed waves,” Opt. Lett. 25(2), 132–134 (2000).
[CrossRef]

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - Part I: System configurations,” IEEE J. Quantum Electron. 36(4), 430–437 (2000).
[CrossRef]

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - Part II: System performance,” IEEE J. Quantum Electron. 36(6), 649–655 (2000).
[CrossRef]

1997

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, “Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1146–1155 (1997).
[CrossRef]

K. Inoue, “Spectral inversion with no wavelength shift based on four-wave mixing with orthogonal pump beams,” Opt. Lett. 22(23), 1772–1774 (1997).
[CrossRef]

1996

S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” IEEE J. Lightwave Tech. 14(3), 243–248 (1996).
[CrossRef]

1994

S. Watanabe, G. Ishikawa, T. Naito, and T. Chikama, “Generation of optical phase-conjugate waves and compensation for pulse shape distortion in a single-mode fiber,” IEEE J. Lightwave Tech. 12(12), 2139–2146 (1994).
[CrossRef]

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[CrossRef]

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[CrossRef]

1993

M. C. Tatham, G. Sherlock, and L. D. Westbrook, “Compensation fibre chromatic dispersion by optical phase conjugation in a semiconductor laser amplifier,” Electron. Lett. 29(21), 1851–1852 (1993).
[CrossRef]

S. Watanabe, T. Naito, and T. Chikama, “Compensation of chromatic dispersion in a single-mode fiber by optical phase conjugation,” IEEE Photon. Technol. Lett. 5(1), 92–95 (1993).
[CrossRef]

A. H. Gnauck, R. M. Jopson, and R. M. Derosier, “10-Gb/s 360-km transmission over dispersive fiber using midsystem spectral inversion,” IEEE Photon. Technol. Lett. 5(6), 663–666 (1993).
[CrossRef]

S. Watanabe, T. Chikama, G. Ishikawa, T. Terahara, and H. Kuwahara, “Compensation of pulse shape distortion due to chromatic dispersion and Kerr effect by optical phase conjugation,” IEEE Photon. Technol. Lett. 5(10), 1241–1243 (1993).
[CrossRef]

1992

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28(10), 2251–2261 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Spectral holography of shaped femtosecond pulses,” Opt. Lett. 17(3), 224–226 (1992).
[CrossRef] [PubMed]

1991

1989

1987

M. L. Roblin, F. Gires, R. Grousson, and P. Lavallard, “Enregistrement par holographie de volume d’une loi de phase spectrale: Application a la compression d’impulsion picoseconde,” Opt. Commun. 62(3), 209–214 (1987).
[CrossRef]

1986

1983

1980

1979

Agrawal, G. P.

Andrejco, M. J.

Ayotte, S.

S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. J. Paniccia, “Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator,” Opt. Lett. 32(16), 2393–2395 (2007).
[CrossRef] [PubMed]

S. Ayotte, S. Xu, H. Rong, and M. J. Paniccia, “Dispersion compensation by optical phase conjugation in silicon waveguide,” Electron. Lett. 43(19), 1037–1039 (2007).
[CrossRef]

Azaña, J.

F. Li and J. Azaña, “Simplified system configuration for real-time Fourier transformation of optical pulses in amplitude and phase,” Opt. Commun. 274(1), 59–65 (2007).
[CrossRef]

J. Azaña, N. K. Berger, B. Levit, and B. Fischer, “Spectral Fraunhofer regime: time-to-frequency conversion by the action of a single time lens on an optical pulse,” Appl. Opt. 43(2), 483–490 (2004).
[CrossRef] [PubMed]

Babbitt, W. R.

Banyai, W. C.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[CrossRef]

Bennett, C. V.

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - Part I: System configurations,” IEEE J. Quantum Electron. 36(4), 430–437 (2000).
[CrossRef]

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - Part II: System performance,” IEEE J. Quantum Electron. 36(6), 649–655 (2000).
[CrossRef]

Berger, N. K.

Bloom, D. M.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[CrossRef]

Carlson, N. W.

Chase, E. W.

Chikama, T.

S. Watanabe, G. Ishikawa, T. Naito, and T. Chikama, “Generation of optical phase-conjugate waves and compensation for pulse shape distortion in a single-mode fiber,” IEEE J. Lightwave Tech. 12(12), 2139–2146 (1994).
[CrossRef]

S. Watanabe, T. Naito, and T. Chikama, “Compensation of chromatic dispersion in a single-mode fiber by optical phase conjugation,” IEEE Photon. Technol. Lett. 5(1), 92–95 (1993).
[CrossRef]

S. Watanabe, T. Chikama, G. Ishikawa, T. Terahara, and H. Kuwahara, “Compensation of pulse shape distortion due to chromatic dispersion and Kerr effect by optical phase conjugation,” IEEE Photon. Technol. Lett. 5(10), 1241–1243 (1993).
[CrossRef]

Chujo, W.

J. Inoue, H. Sotobayashi, W. Chujo, and H. Kawaguchi, “80 Gbit/s OTDM signal transmission over 208 km standard fibre using midspan optical phase conjugation based on four-wave mixing in semiconductor optical amplifiers,” Electron. Lett. 38(15), 819–821 (2002).
[CrossRef]

Cohen, O.

Cristiani, I.

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[CrossRef]

da Silva, V. L.

Degiorgio, V.

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[CrossRef]

Derosier, R. M.

A. H. Gnauck, R. M. Jopson, and R. M. Derosier, “10-Gb/s 360-km transmission over dispersive fiber using midsystem spectral inversion,” IEEE Photon. Technol. Lett. 5(6), 663–666 (1993).
[CrossRef]

Fainman, Y.

D. M. Marom, D. Panasenko, P.-C. Sun, Y. T. Mazurenko, and Y. Fainman, “Real-time spatial-temporal signal processing with optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 7(4), 683–693 (2001).
[CrossRef]

D. M. Marom, D. Panasenko, R. Rokitski, P.-C. Sun, and Y. Fainman, “Time reversal of ultrafast waveforms by wave mixing of spectrally decomposed waves,” Opt. Lett. 25(2), 132–134 (2000).
[CrossRef]

Fejer, M. M.

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[CrossRef]

Fekete, D.

Fischer, B.

Foster, M. A.

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009).
[CrossRef] [PubMed]

Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[CrossRef]

D. F. Geraghty, R. Salem, M. A. Foster, and A. L. Gaeta, “A simplified optical correlator and its application to packet-header recognition,” IEEE Photon. Technol. Lett. 20(7), 487–489 (2008).
[CrossRef]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Gaeta, A. L.

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009).
[CrossRef] [PubMed]

Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

D. F. Geraghty, R. Salem, M. A. Foster, and A. L. Gaeta, “A simplified optical correlator and its application to packet-header recognition,” IEEE Photon. Technol. Lett. 20(7), 487–489 (2008).
[CrossRef]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

D. F. Geraghty, R. Salem, M. A. Foster, and A. L. Gaeta, “A simplified optical correlator and its application to packet-header recognition,” IEEE Photon. Technol. Lett. 20(7), 487–489 (2008).
[CrossRef]

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, “Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1146–1155 (1997).
[CrossRef]

Gires, F.

M. L. Roblin, F. Gires, R. Grousson, and P. Lavallard, “Enregistrement par holographie de volume d’une loi de phase spectrale: Application a la compression d’impulsion picoseconde,” Opt. Commun. 62(3), 209–214 (1987).
[CrossRef]

Gnauck, A. H.

A. H. Gnauck, R. M. Jopson, and R. M. Derosier, “10-Gb/s 360-km transmission over dispersive fiber using midsystem spectral inversion,” IEEE Photon. Technol. Lett. 5(6), 663–666 (1993).
[CrossRef]

Godil, A. A.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[CrossRef]

Grousson, R.

C. Joubert, M. L. Roblin, and R. Grousson, “Temporal reversal of picosecond optical pulses by holographic phase conjugation,” Appl. Opt. 28(21), 4604–4612 (1989).
[CrossRef] [PubMed]

M. L. Roblin, F. Gires, R. Grousson, and P. Lavallard, “Enregistrement par holographie de volume d’une loi de phase spectrale: Application a la compression d’impulsion picoseconde,” Opt. Commun. 62(3), 209–214 (1987).
[CrossRef]

Harvey, J.

Harvey, J. D.

Hayasaka, K.

Heritage, J. P.

Ibsen, M.

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhaowei, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photon. Technol. Lett. 20(13), 1097–1099 (2008).
[CrossRef]

Ichihashi, S.

Inoue, J.

J. Inoue, H. Sotobayashi, W. Chujo, and H. Kawaguchi, “80 Gbit/s OTDM signal transmission over 208 km standard fibre using midspan optical phase conjugation based on four-wave mixing in semiconductor optical amplifiers,” Electron. Lett. 38(15), 819–821 (2002).
[CrossRef]

Inoue, K.

Ishikawa, G.

S. Watanabe, G. Ishikawa, T. Naito, and T. Chikama, “Generation of optical phase-conjugate waves and compensation for pulse shape distortion in a single-mode fiber,” IEEE J. Lightwave Tech. 12(12), 2139–2146 (1994).
[CrossRef]

S. Watanabe, T. Chikama, G. Ishikawa, T. Terahara, and H. Kuwahara, “Compensation of pulse shape distortion due to chromatic dispersion and Kerr effect by optical phase conjugation,” IEEE Photon. Technol. Lett. 5(10), 1241–1243 (1993).
[CrossRef]

Jopson, R. M.

A. H. Gnauck, R. M. Jopson, and R. M. Derosier, “10-Gb/s 360-km transmission over dispersive fiber using midsystem spectral inversion,” IEEE Photon. Technol. Lett. 5(6), 663–666 (1993).
[CrossRef]

Joubert, C.

Kauffman, M. T.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[CrossRef]

Kawaguchi, H.

J. Inoue, H. Sotobayashi, W. Chujo, and H. Kawaguchi, “80 Gbit/s OTDM signal transmission over 208 km standard fibre using midspan optical phase conjugation based on four-wave mixing in semiconductor optical amplifiers,” Electron. Lett. 38(15), 819–821 (2002).
[CrossRef]

Kolner, B. H.

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - Part II: System performance,” IEEE J. Quantum Electron. 36(6), 649–655 (2000).
[CrossRef]

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - Part I: System configurations,” IEEE J. Quantum Electron. 36(4), 430–437 (2000).
[CrossRef]

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[CrossRef]

Kumar, S.

Kuwahara, H.

S. Watanabe, T. Chikama, G. Ishikawa, T. Terahara, and H. Kuwahara, “Compensation of pulse shape distortion due to chromatic dispersion and Kerr effect by optical phase conjugation,” IEEE Photon. Technol. Lett. 5(10), 1241–1243 (1993).
[CrossRef]

Langrock, C.

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[CrossRef]

Lavallard, P.

M. L. Roblin, F. Gires, R. Grousson, and P. Lavallard, “Enregistrement par holographie de volume d’une loi de phase spectrale: Application a la compression d’impulsion picoseconde,” Opt. Commun. 62(3), 209–214 (1987).
[CrossRef]

Leaird, D. E.

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28(10), 2251–2261 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Spectral holography of shaped femtosecond pulses,” Opt. Lett. 17(3), 224–226 (1992).
[CrossRef] [PubMed]

Lee, R. B.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, “Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1146–1155 (1997).
[CrossRef]

Levit, B.

Li, F.

F. Li and J. Azaña, “Simplified system configuration for real-time Fourier transformation of optical pulses in amplitude and phase,” Opt. Commun. 274(1), 59–65 (2007).
[CrossRef]

Lipson, M.

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009).
[CrossRef] [PubMed]

Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Marazzi, L.

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[CrossRef]

Marom, D. M.

D. M. Marom, D. Panasenko, P.-C. Sun, Y. T. Mazurenko, and Y. Fainman, “Real-time spatial-temporal signal processing with optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 7(4), 683–693 (2001).
[CrossRef]

D. M. Marom, D. Panasenko, R. Rokitski, P.-C. Sun, and Y. Fainman, “Time reversal of ultrafast waveforms by wave mixing of spectrally decomposed waves,” Opt. Lett. 25(2), 132–134 (2000).
[CrossRef]

Martinelli, M.

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[CrossRef]

Mathur, A.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, “Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1146–1155 (1997).
[CrossRef]

Mazurenko, Y. T.

D. M. Marom, D. Panasenko, P.-C. Sun, Y. T. Mazurenko, and Y. Fainman, “Real-time spatial-temporal signal processing with optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 7(4), 683–693 (2001).
[CrossRef]

McKinstrie, C.

McKinstrie, C. J.

Méchin, D.

Miller, D. A. B.

Minzioni, P.

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[CrossRef]

Mossberg, T. W.

Naito, T.

S. Watanabe, G. Ishikawa, T. Naito, and T. Chikama, “Generation of optical phase-conjugate waves and compensation for pulse shape distortion in a single-mode fiber,” IEEE J. Lightwave Tech. 12(12), 2139–2146 (1994).
[CrossRef]

S. Watanabe, T. Naito, and T. Chikama, “Compensation of chromatic dispersion in a single-mode fiber by optical phase conjugation,” IEEE Photon. Technol. Lett. 5(1), 92–95 (1993).
[CrossRef]

Ng, T. T.

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhaowei, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photon. Technol. Lett. 20(13), 1097–1099 (2008).
[CrossRef]

Nishioka, H.

Okawachi, Y.

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[CrossRef]

Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009).
[CrossRef] [PubMed]

Paek, E. G.

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Spectral holography of shaped femtosecond pulses,” Opt. Lett. 17(3), 224–226 (1992).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28(10), 2251–2261 (1992).
[CrossRef]

Panasenko, D.

D. M. Marom, D. Panasenko, P.-C. Sun, Y. T. Mazurenko, and Y. Fainman, “Real-time spatial-temporal signal processing with optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 7(4), 683–693 (2001).
[CrossRef]

D. M. Marom, D. Panasenko, R. Rokitski, P.-C. Sun, and Y. Fainman, “Time reversal of ultrafast waveforms by wave mixing of spectrally decomposed waves,” Opt. Lett. 25(2), 132–134 (2000).
[CrossRef]

Paniccia, M. J.

S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. J. Paniccia, “Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator,” Opt. Lett. 32(16), 2393–2395 (2007).
[CrossRef] [PubMed]

S. Ayotte, S. Xu, H. Rong, and M. J. Paniccia, “Dispersion compensation by optical phase conjugation in silicon waveguide,” Electron. Lett. 43(19), 1037–1039 (2007).
[CrossRef]

Parmigiani, F.

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhaowei, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photon. Technol. Lett. 20(13), 1097–1099 (2008).
[CrossRef]

Pepper, D. M.

Petropoulos, P.

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhaowei, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photon. Technol. Lett. 20(13), 1097–1099 (2008).
[CrossRef]

Pinault, S. C.

Potasek, M. J.

Provo, R.

Psaltis, D.

Radic, S.

Raymer, M.

Reitze, D. H.

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Spectral holography of shaped femtosecond pulses,” Opt. Lett. 17(3), 224–226 (1992).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28(10), 2251–2261 (1992).
[CrossRef]

Richardson, D. J.

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhaowei, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photon. Technol. Lett. 20(13), 1097–1099 (2008).
[CrossRef]

Roblin, M. L.

C. Joubert, M. L. Roblin, and R. Grousson, “Temporal reversal of picosecond optical pulses by holographic phase conjugation,” Appl. Opt. 28(21), 4604–4612 (1989).
[CrossRef] [PubMed]

M. L. Roblin, F. Gires, R. Grousson, and P. Lavallard, “Enregistrement par holographie de volume d’une loi de phase spectrale: Application a la compression d’impulsion picoseconde,” Opt. Commun. 62(3), 209–214 (1987).
[CrossRef]

Rokitski, R.

Rong, H.

S. Ayotte, S. Xu, H. Rong, and M. J. Paniccia, “Dispersion compensation by optical phase conjugation in silicon waveguide,” Electron. Lett. 43(19), 1037–1039 (2007).
[CrossRef]

S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. J. Paniccia, “Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator,” Opt. Lett. 32(16), 2393–2395 (2007).
[CrossRef] [PubMed]

Rothberg, L. J.

Saifi, M. A.

Salem, R.

Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

D. F. Geraghty, R. Salem, M. A. Foster, and A. L. Gaeta, “A simplified optical correlator and its application to packet-header recognition,” IEEE Photon. Technol. Lett. 20(7), 487–489 (2008).
[CrossRef]

Schmidt, B. S.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Sharping, J. E.

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Sherlock, G.

M. C. Tatham, G. Sherlock, and L. D. Westbrook, “Compensation fibre chromatic dispersion by optical phase conjugation in a semiconductor laser amplifier,” Electron. Lett. 29(21), 1851–1852 (1993).
[CrossRef]

Shirasaki, M.

S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” IEEE J. Lightwave Tech. 14(3), 243–248 (1996).
[CrossRef]

Silberberg, Y.

Sotobayashi, H.

J. Inoue, H. Sotobayashi, W. Chujo, and H. Kawaguchi, “80 Gbit/s OTDM signal transmission over 208 km standard fibre using midspan optical phase conjugation based on four-wave mixing in semiconductor optical amplifiers,” Electron. Lett. 38(15), 819–821 (2002).
[CrossRef]

Sun, P.-C.

D. M. Marom, D. Panasenko, P.-C. Sun, Y. T. Mazurenko, and Y. Fainman, “Real-time spatial-temporal signal processing with optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 7(4), 683–693 (2001).
[CrossRef]

D. M. Marom, D. Panasenko, R. Rokitski, P.-C. Sun, and Y. Fainman, “Time reversal of ultrafast waveforms by wave mixing of spectrally decomposed waves,” Opt. Lett. 25(2), 132–134 (2000).
[CrossRef]

Tatham, M. C.

M. C. Tatham, G. Sherlock, and L. D. Westbrook, “Compensation fibre chromatic dispersion by optical phase conjugation in a semiconductor laser amplifier,” Electron. Lett. 29(21), 1851–1852 (1993).
[CrossRef]

Terahara, T.

S. Watanabe, T. Chikama, G. Ishikawa, T. Terahara, and H. Kuwahara, “Compensation of pulse shape distortion due to chromatic dispersion and Kerr effect by optical phase conjugation,” IEEE Photon. Technol. Lett. 5(10), 1241–1243 (1993).
[CrossRef]

Tomita, H.

Tsang, M.

Turner, A. C.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Turner-Foster, A. C.

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[CrossRef]

Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009).
[CrossRef] [PubMed]

R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

Ueda, K.

Vahala, K. J.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, “Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1146–1155 (1997).
[CrossRef]

Verdiell, M.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, “Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1146–1155 (1997).
[CrossRef]

Watanabe, S.

S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” IEEE J. Lightwave Tech. 14(3), 243–248 (1996).
[CrossRef]

S. Watanabe, G. Ishikawa, T. Naito, and T. Chikama, “Generation of optical phase-conjugate waves and compensation for pulse shape distortion in a single-mode fiber,” IEEE J. Lightwave Tech. 12(12), 2139–2146 (1994).
[CrossRef]

S. Watanabe, T. Naito, and T. Chikama, “Compensation of chromatic dispersion in a single-mode fiber by optical phase conjugation,” IEEE Photon. Technol. Lett. 5(1), 92–95 (1993).
[CrossRef]

S. Watanabe, T. Chikama, G. Ishikawa, T. Terahara, and H. Kuwahara, “Compensation of pulse shape distortion due to chromatic dispersion and Kerr effect by optical phase conjugation,” IEEE Photon. Technol. Lett. 5(10), 1241–1243 (1993).
[CrossRef]

Weiner, A. M.

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28(10), 2251–2261 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Spectral holography of shaped femtosecond pulses,” Opt. Lett. 17(3), 224–226 (1992).
[CrossRef] [PubMed]

Westbrook, L. D.

M. C. Tatham, G. Sherlock, and L. D. Westbrook, “Compensation fibre chromatic dispersion by optical phase conjugation in a semiconductor laser amplifier,” Electron. Lett. 29(21), 1851–1852 (1993).
[CrossRef]

Xu, S.

S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. J. Paniccia, “Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator,” Opt. Lett. 32(16), 2393–2395 (2007).
[CrossRef] [PubMed]

S. Ayotte, S. Xu, H. Rong, and M. J. Paniccia, “Dispersion compensation by optical phase conjugation in silicon waveguide,” Electron. Lett. 43(19), 1037–1039 (2007).
[CrossRef]

Yariv, A.

Yodh, A. G.

Zhaowei, Z.

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhaowei, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photon. Technol. Lett. 20(13), 1097–1099 (2008).
[CrossRef]

Ziari, M.

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, “Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1146–1155 (1997).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64(3), 270–272 (1994).
[CrossRef]

Electron. Lett.

J. Inoue, H. Sotobayashi, W. Chujo, and H. Kawaguchi, “80 Gbit/s OTDM signal transmission over 208 km standard fibre using midspan optical phase conjugation based on four-wave mixing in semiconductor optical amplifiers,” Electron. Lett. 38(15), 819–821 (2002).
[CrossRef]

M. C. Tatham, G. Sherlock, and L. D. Westbrook, “Compensation fibre chromatic dispersion by optical phase conjugation in a semiconductor laser amplifier,” Electron. Lett. 29(21), 1851–1852 (1993).
[CrossRef]

S. Ayotte, S. Xu, H. Rong, and M. J. Paniccia, “Dispersion compensation by optical phase conjugation in silicon waveguide,” Electron. Lett. 43(19), 1037–1039 (2007).
[CrossRef]

IEEE J. Lightwave Tech.

S. Watanabe, G. Ishikawa, T. Naito, and T. Chikama, “Generation of optical phase-conjugate waves and compensation for pulse shape distortion in a single-mode fiber,” IEEE J. Lightwave Tech. 12(12), 2139–2146 (1994).
[CrossRef]

S. Watanabe and M. Shirasaki, “Exact compensation for both chromatic dispersion and Kerr effect in a transmission fiber using optical phase conjugation,” IEEE J. Lightwave Tech. 14(3), 243–248 (1996).
[CrossRef]

IEEE J. Quantum Electron.

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28(10), 2251–2261 (1992).
[CrossRef]

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994).
[CrossRef]

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - Part I: System configurations,” IEEE J. Quantum Electron. 36(4), 430–437 (2000).
[CrossRef]

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging - Part II: System performance,” IEEE J. Quantum Electron. 36(6), 649–655 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. M. Marom, D. Panasenko, P.-C. Sun, Y. T. Mazurenko, and Y. Fainman, “Real-time spatial-temporal signal processing with optical nonlinearities,” IEEE J. Sel. Top. Quantum Electron. 7(4), 683–693 (2001).
[CrossRef]

D. F. Geraghty, R. B. Lee, M. Verdiell, M. Ziari, A. Mathur, and K. J. Vahala, “Wavelength conversion for WDM communication systems using four-wave mixing in semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1146–1155 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Watanabe, T. Naito, and T. Chikama, “Compensation of chromatic dispersion in a single-mode fiber by optical phase conjugation,” IEEE Photon. Technol. Lett. 5(1), 92–95 (1993).
[CrossRef]

A. H. Gnauck, R. M. Jopson, and R. M. Derosier, “10-Gb/s 360-km transmission over dispersive fiber using midsystem spectral inversion,” IEEE Photon. Technol. Lett. 5(6), 663–666 (1993).
[CrossRef]

S. Watanabe, T. Chikama, G. Ishikawa, T. Terahara, and H. Kuwahara, “Compensation of pulse shape distortion due to chromatic dispersion and Kerr effect by optical phase conjugation,” IEEE Photon. Technol. Lett. 5(10), 1241–1243 (1993).
[CrossRef]

P. Minzioni, I. Cristiani, V. Degiorgio, L. Marazzi, M. Martinelli, C. Langrock, and M. M. Fejer, “Experimental demonstration of nonlinearity and dispersion compensation in an embedded link by optical phase conjugation,” IEEE Photon. Technol. Lett. 18(9), 995–997 (2006).
[CrossRef]

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhaowei, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photon. Technol. Lett. 20(13), 1097–1099 (2008).
[CrossRef]

D. F. Geraghty, R. Salem, M. A. Foster, and A. L. Gaeta, “A simplified optical correlator and its application to packet-header recognition,” IEEE Photon. Technol. Lett. 20(7), 487–489 (2008).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Photonics

M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009).
[CrossRef]

Nature

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[CrossRef] [PubMed]

M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature 441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Opt. Commun.

M. L. Roblin, F. Gires, R. Grousson, and P. Lavallard, “Enregistrement par holographie de volume d’une loi de phase spectrale: Application a la compression d’impulsion picoseconde,” Opt. Commun. 62(3), 209–214 (1987).
[CrossRef]

F. Li and J. Azaña, “Simplified system configuration for real-time Fourier transformation of optical pulses in amplitude and phase,” Opt. Commun. 274(1), 59–65 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

V. L. da Silva, Y. Silberberg, J. P. Heritage, E. W. Chase, M. A. Saifi, and M. J. Andrejco, “Femtosecond accumulated photon echo in Er-doped fibers,” Opt. Lett. 16(17), 1340–1342 (1991).
[CrossRef] [PubMed]

N. W. Carlson, L. J. Rothberg, A. G. Yodh, W. R. Babbitt, and T. W. Mossberg, “Storage and time reversal of light pulses using photon echoes,” Opt. Lett. 8(9), 483–485 (1983).
[CrossRef] [PubMed]

D. M. Marom, D. Panasenko, R. Rokitski, P.-C. Sun, and Y. Fainman, “Time reversal of ultrafast waveforms by wave mixing of spectrally decomposed waves,” Opt. Lett. 25(2), 132–134 (2000).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008).
[CrossRef] [PubMed]

S. Kumar, “Compensation of third-order dispersion using time reversal in optical transmission systems,” Opt. Lett. 32(4), 346–348 (2007).
[CrossRef] [PubMed]

A. Yariv, D. Fekete, and D. M. Pepper, “Compensation for channel dispersion by nonlinear optical phase conjugation,” Opt. Lett. 4(2), 52–54 (1979).
[CrossRef] [PubMed]

D. A. B. Miller, “Time reversal of optical pulses by four-wave mixing,” Opt. Lett. 5(7), 300–302 (1980).
[CrossRef] [PubMed]

M. Tsang and D. Psaltis, “Dispersion and nonlinearity compensation by spectral phase conjugation,” Opt. Lett. 28(17), 1558–1560 (2003).
[CrossRef] [PubMed]

S. Ayotte, H. Rong, S. Xu, O. Cohen, and M. J. Paniccia, “Multichannel dispersion compensation using a silicon waveguide-based optical phase conjugator,” Opt. Lett. 32(16), 2393–2395 (2007).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, D. H. Reitze, and E. G. Paek, “Spectral holography of shaped femtosecond pulses,” Opt. Lett. 17(3), 224–226 (1992).
[CrossRef] [PubMed]

K. Inoue, “Spectral inversion with no wavelength shift based on four-wave mixing with orthogonal pump beams,” Opt. Lett. 22(23), 1772–1774 (1997).
[CrossRef]

Other

J. W. Goodman, Introduction to Fourier Optics, (McGraw-Hill, San Francisco, CA, 1968).

A. H. Gnauck, and R. M. Jopson, in Optical Fiber Telecommunications IIIA, I. P. Kaminov and T. L. Koch eds. (Academic Press, San Diego, 1997), p. 186.

I. Brener, B. Mikkelsen, K. Rottwitt, W. Burkett, G. Raybon, J. B. Stark, K. Parameswaran, M. H. Chou, M. M. Fejer, E. E. Chaban, R. Harel, D. L. Philen, and S. Kosinski, “Cancellation of all Kerr nonlinearities in long fiber spans using a LiNbO3 phase conjugator and Raman amplification,” in Optical Fiber Communication Conference 2000,4, 266–268 (2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Color online) Spatial analog of the temporal imaging system for spectral phase conjugation. Input electric field envelope (red) and phase (blue) are transformed by a two-stage FWM configuration to generate an output field with temporal reversal and phase conjugation, i.e. Eout(τ)Ein(τ) . The amplitude (red) and phase (blue) of sample input and output electric fields are sketched for ideal SPC operation.

Fig. 2
Fig. 2

(Color online) Wavelength layout of the two FWM processes to implement time reversal and conjugation of the input waveforms for realizing wavelength-preserving SPC operation. The idler output of the first FWM operation is amplified and used as one of the pump inputs to the second FWM stage to provide single conjugation for the signal field. The center wavelength of the quasi-cw source is adjusted to generate the second idler output at the original signal wavelength. The input fields to each stage are sketched with solid fill whereas the generated outputs are drawn with dashed lines.

Fig. 3
Fig. 3

(Color online) Schematic of the temporal imaging system. Two time-lens setups realize consecutive Fourier transformations on the signal with the output field being time-flipped and conjugated version of the input field in time. The amount of GDD applied to each path in the system is indicated on the figure, with ϕ" -22 ps2. EDFA: Erbium-doped fiber amplifier, WDM: Wavelength division multiplexer, BPF: Band-pass filter, IM: Intensity modulator.

Fig. 4
Fig. 4

(Color online) The output spectra recorded after (a) the first FWM stage and (b) the second FWM stage. The signal pulses are sent through the TOD fiber link with a dispersion slope of ~0.11 ps3/km. The inset in (a) shows the high-resolution trace of the idler spectrum after the first FWM stage, confirming time-to-frequency conversion.

Fig. 5
Fig. 5

(Color online) Cross-correlation of the signal pulses with GVD (red) and TOD (blue) compensation (a) before the circulator, (b) after the dispersive fiber, (c) after SPC, and (d) after final propagation through the dispersive fiber link. The pulses are intentionally separated for clarity. 1.5-ps input pulses are broadened to 30 and 20 ps for GVD- and TOD-inducing fiber links, respectively. The time-reversed and conjugated pulses after the SPC setup compress back to their original 1.5-ps duration.

Fig. 6
Fig. 6

(Color online) (a) Spectra of signal pulses before and after the HNLF. The nonlinear phase shift is estimated to be π radians for 0.1 mW average signal power coupled into the HNLF. (b) Conjugated signal spectra upon the second pass through the HNLF. Compensation of spectral broadening is shown for various back-coupled conjugated signal power levels. Under-compensated (0.01 mW), compensated (0.1 mW), and over-compensated (0.25 mW) spectra are indicated.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Eidler,1(τ)=1{[(Ein*(ω)G11*(ω))H1(ω)]G12(ω)},
Eidler,2(τ)=1{[(Eidler,1(ω)G21(ω))H2*(ω)]G22(ω)}.

Metrics