Abstract

We developed a predictive model describing harmonic generation and intermodulation distortions in semiconductor optical amplifiers (SOAs). This model takes into account the variations of the saturation parameters along the propagation axis inside the SOA, and uses a rigorous expression of the gain oscillations harmonics. We derived the spurious-free dynamic range (SFDR) of a slow light delay line based on coherent population oscillation (CPO) effects, in a frequency range covering radar applications (from 40kHz up to 30GHz), and for a large range of injected currents. The influence of the high order distortions in the input microwave spectrum is discussed, and in particular, an interpretation of the SFDR improvement of a Mach-Zehnder modulator by CPOs effects in a SOA is given.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, "Microwave Photonics," J. Lightwave Technol. 27,314-335 (2009).
    [CrossRef]
  2. D. Dolfi, P. Joffre, J. Antoine, J-P. Huignard, D. Philippet, and P. Granger, "Experimental demonstration of a phased-array antenna optically controlled with phase and time delays," Appl. Opt. 35,5293-5300 (1996).
    [CrossRef] [PubMed]
  3. J. Capmany, B. Ortega, and D. Pastor, "A Tutorial on Microwave Photonic Filters," J. Lightwave Technol. 24, 201-229 (2006).
    [CrossRef]
  4. G. M. Gehring, R. W. Boyd, A. L. Gaeta, D. J. Gauthier, A. E. Willner, "Fiber-Based Slow-Light Technologies," J. Lightwave Technol. 26, 3752-3762 (2008).
    [CrossRef]
  5. Y. Chen, W. Xue, F. Ohman, J. Mørk, "Theory of Optical-Filtering Enhanced Slow and Fast Light Effects in Semiconductor Optical Waveguides," J. Lightwave Technol. 26, 3734-3743 (2008).
    [CrossRef]
  6. M. González Herráez, K. Song, and L. Thévenaz, "Arbitrary-bandwidth Brillouin slow light in optical fibers," Opt. Express 14, 1395-1400 (2006).
    [CrossRef] [PubMed]
  7. W. Xue, S. Sales, J. Capmany, J. Mørk, "Experimental Demonstration of 360? Tunable RF Phase Shift Using Slow and Fast Light Effects", Slow and Fast Light 2009, OSA conference proceed., paper SMB6.
  8. G. P. Agrawal, "Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers," J. Opt. Soc. Am. B 5, 147-159 (1988).
    [CrossRef]
  9. C. J. Chang-Hasnain and S. L. Chuang, "Slow and Fast Light in Semiconductor Quantum-Well and Quantum-Dot Devices," J. Lightwave Technol. 24, 4642-4654 (2006).
    [CrossRef]
  10. H. Su, P. Kondratko, and S. L. Chuang, "Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers," Opt. Express 14, 4801-4807 (2006).
    [CrossRef]
  11. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, "Slow light in a semiconductor waveguide at gigahertz frequencies," Opt. Express 13, 8136-8145 (2005).
    [CrossRef] [PubMed]
  12. H. Zmuda, E. N. Toughlian, Photonic Aspects of modern radar, Artech House, 1994.
  13. J. H. Seo, Y. K. Seo, and W. Y. Choi, "Spurious-Free Dynamic Range Characteristics of the Photonic Up- Converter Based on a Semiconductor Optical Amplifier," IEEE Photon. Technol. Lett. 15, 1591-1593 (2003).
    [CrossRef]
  14. A. Sharaiha, "Harmonic and Intermodulation Distortion Analysis by Perturbation and Harmonic Balance Method for In-Line Photodetection in a Semiconductor Optical Amplifier," IEEE Photon. Technol. Lett. 10, 421-423 (1998).
    [CrossRef]
  15. E. Udvary, T. Berceli, T. Marozsak, A. Hilt, "Semiconductor Optical Amplifiers in Analog Optical Links," in Proc. of IEEE Transparent Optical Network Conf., 2003, paper ThC3.
  16. J. Herrera, F. Ramos, and J. Marti, "Nonlinear distortion generated by semiconductor optical amplifier boosters in analog optical system," Opt. Lett. 28, 1102-1104 (2003).
    [CrossRef] [PubMed]
  17. T. Mukai, and T. Saitoh, "Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-m traveling-wave semiconductor laser amplifier," IEEE Quantum Electron. 26, 865-875 (1990).
    [CrossRef]
  18. S. O´ Ó Dúill, R. F. O Dowd, G. Eisenstein, "On the Role of High-Order Coherent Population Oscillations in Slow and Fast Light Propagation Using Semiconductor Optical Amplifiers," IEEE J. Sel. Top. Quantum Electron. 15, 578-584 (2009).
    [CrossRef]
  19. P. Berger, J. Bourderionnet, F. Bretenaker, D. Dolfi, M. Alouini, "Dynamic saturation in semiconductor optical amplifiers: accurate model, role of carrier density, and slow light," to be published
  20. Y. Shi, L. Yan, A. E. Willner, "High-Speed Electrooptic Modulator Characterization Using Optical Spectrum Analysis," J. Lightwave Technol. 21, 2358-2367 (2003).
    [CrossRef]
  21. N. Breuil, M. Dispenza, L. Morvan, A.-M. Fiorello, S. Tonda, D. Dolfi, M. Varasi, J. Chazelas, "New optical modulation schemes applied to local oscillator distribution in radar systems," in Proc. of IEEE Microwave Photonics conf. 119-122, (2004).
  22. M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, et P. Thony, "Offset phase locking of Er:Yb:Glass laser eigenstates for radio-frequency photonics applications", IEEE Photon. Technol. Lett. 13, 367 (2001).
    [CrossRef]
  23. P. Berger, J. Bourderionnet, F. Bretenaker, D. Dolfi, M. Alouini, "Influence of slow light effect in semiconductor amplifiers on the dynamic range of microwave-photonics links," Slow and Fast Light 2009, OSA conference proceed., in press.
  24. D.-H. Jeon, H.-D. Jung, S.-K. Han, "Mitigation of Dispersion-Induced Effects Using SOA in Analog Optical Transmission," IEEE Photon. Technol. Lett. 14, 1166-1168 (2002).
    [CrossRef]
  25. C. Zmudzinski, E. Twyford, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, J. Brock, "Microwave optical splitter/amplifier integrated chip (MOSAIC) using semiconductor optical amplifiers", Photonics and Radio Frequency, Proc. SPIE 2844, 163 (1996)

2009

J. Yao, "Microwave Photonics," J. Lightwave Technol. 27,314-335 (2009).
[CrossRef]

S. O´ Ó Dúill, R. F. O Dowd, G. Eisenstein, "On the Role of High-Order Coherent Population Oscillations in Slow and Fast Light Propagation Using Semiconductor Optical Amplifiers," IEEE J. Sel. Top. Quantum Electron. 15, 578-584 (2009).
[CrossRef]

2008

2006

2005

2003

2002

D.-H. Jeon, H.-D. Jung, S.-K. Han, "Mitigation of Dispersion-Induced Effects Using SOA in Analog Optical Transmission," IEEE Photon. Technol. Lett. 14, 1166-1168 (2002).
[CrossRef]

2001

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, et P. Thony, "Offset phase locking of Er:Yb:Glass laser eigenstates for radio-frequency photonics applications", IEEE Photon. Technol. Lett. 13, 367 (2001).
[CrossRef]

1998

A. Sharaiha, "Harmonic and Intermodulation Distortion Analysis by Perturbation and Harmonic Balance Method for In-Line Photodetection in a Semiconductor Optical Amplifier," IEEE Photon. Technol. Lett. 10, 421-423 (1998).
[CrossRef]

1996

C. Zmudzinski, E. Twyford, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, J. Brock, "Microwave optical splitter/amplifier integrated chip (MOSAIC) using semiconductor optical amplifiers", Photonics and Radio Frequency, Proc. SPIE 2844, 163 (1996)

D. Dolfi, P. Joffre, J. Antoine, J-P. Huignard, D. Philippet, and P. Granger, "Experimental demonstration of a phased-array antenna optically controlled with phase and time delays," Appl. Opt. 35,5293-5300 (1996).
[CrossRef] [PubMed]

1990

T. Mukai, and T. Saitoh, "Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-m traveling-wave semiconductor laser amplifier," IEEE Quantum Electron. 26, 865-875 (1990).
[CrossRef]

1988

Agrawal, G. P.

Alouini, M.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, et P. Thony, "Offset phase locking of Er:Yb:Glass laser eigenstates for radio-frequency photonics applications", IEEE Photon. Technol. Lett. 13, 367 (2001).
[CrossRef]

P. Berger, J. Bourderionnet, F. Bretenaker, D. Dolfi, M. Alouini, "Influence of slow light effect in semiconductor amplifiers on the dynamic range of microwave-photonics links," Slow and Fast Light 2009, OSA conference proceed., in press.

P. Berger, J. Bourderionnet, F. Bretenaker, D. Dolfi, M. Alouini, "Dynamic saturation in semiconductor optical amplifiers: accurate model, role of carrier density, and slow light," to be published

Alvarez, F.

C. Zmudzinski, E. Twyford, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, J. Brock, "Microwave optical splitter/amplifier integrated chip (MOSAIC) using semiconductor optical amplifiers", Photonics and Radio Frequency, Proc. SPIE 2844, 163 (1996)

Antoine, J.

Benazet, B.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, et P. Thony, "Offset phase locking of Er:Yb:Glass laser eigenstates for radio-frequency photonics applications", IEEE Photon. Technol. Lett. 13, 367 (2001).
[CrossRef]

Berger, P.

P. Berger, J. Bourderionnet, F. Bretenaker, D. Dolfi, M. Alouini, "Influence of slow light effect in semiconductor amplifiers on the dynamic range of microwave-photonics links," Slow and Fast Light 2009, OSA conference proceed., in press.

P. Berger, J. Bourderionnet, F. Bretenaker, D. Dolfi, M. Alouini, "Dynamic saturation in semiconductor optical amplifiers: accurate model, role of carrier density, and slow light," to be published

Bourderionnet, J.

P. Berger, J. Bourderionnet, F. Bretenaker, D. Dolfi, M. Alouini, "Dynamic saturation in semiconductor optical amplifiers: accurate model, role of carrier density, and slow light," to be published

P. Berger, J. Bourderionnet, F. Bretenaker, D. Dolfi, M. Alouini, "Influence of slow light effect in semiconductor amplifiers on the dynamic range of microwave-photonics links," Slow and Fast Light 2009, OSA conference proceed., in press.

Boyd, R. W.

Bretenaker, F.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, et P. Thony, "Offset phase locking of Er:Yb:Glass laser eigenstates for radio-frequency photonics applications", IEEE Photon. Technol. Lett. 13, 367 (2001).
[CrossRef]

P. Berger, J. Bourderionnet, F. Bretenaker, D. Dolfi, M. Alouini, "Influence of slow light effect in semiconductor amplifiers on the dynamic range of microwave-photonics links," Slow and Fast Light 2009, OSA conference proceed., in press.

P. Berger, J. Bourderionnet, F. Bretenaker, D. Dolfi, M. Alouini, "Dynamic saturation in semiconductor optical amplifiers: accurate model, role of carrier density, and slow light," to be published

Brock, J.

C. Zmudzinski, E. Twyford, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, J. Brock, "Microwave optical splitter/amplifier integrated chip (MOSAIC) using semiconductor optical amplifiers", Photonics and Radio Frequency, Proc. SPIE 2844, 163 (1996)

Brunel, M.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, et P. Thony, "Offset phase locking of Er:Yb:Glass laser eigenstates for radio-frequency photonics applications", IEEE Photon. Technol. Lett. 13, 367 (2001).
[CrossRef]

Capmany, J.

J. Capmany, B. Ortega, and D. Pastor, "A Tutorial on Microwave Photonic Filters," J. Lightwave Technol. 24, 201-229 (2006).
[CrossRef]

W. Xue, S. Sales, J. Capmany, J. Mørk, "Experimental Demonstration of 360? Tunable RF Phase Shift Using Slow and Fast Light Effects", Slow and Fast Light 2009, OSA conference proceed., paper SMB6.

Chang-Hasnain, C. J.

Chen, Y.

Choi, W. Y.

J. H. Seo, Y. K. Seo, and W. Y. Choi, "Spurious-Free Dynamic Range Characteristics of the Photonic Up- Converter Based on a Semiconductor Optical Amplifier," IEEE Photon. Technol. Lett. 15, 1591-1593 (2003).
[CrossRef]

Chuang, S. L.

C. J. Chang-Hasnain and S. L. Chuang, "Slow and Fast Light in Semiconductor Quantum-Well and Quantum-Dot Devices," J. Lightwave Technol. 24, 4642-4654 (2006).
[CrossRef]

H. Su, P. Kondratko, and S. L. Chuang, "Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers," Opt. Express 14, 4801-4807 (2006).
[CrossRef]

Di Bin, P.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, et P. Thony, "Offset phase locking of Er:Yb:Glass laser eigenstates for radio-frequency photonics applications", IEEE Photon. Technol. Lett. 13, 367 (2001).
[CrossRef]

Dolfi, D.

D. Dolfi, P. Joffre, J. Antoine, J-P. Huignard, D. Philippet, and P. Granger, "Experimental demonstration of a phased-array antenna optically controlled with phase and time delays," Appl. Opt. 35,5293-5300 (1996).
[CrossRef] [PubMed]

P. Berger, J. Bourderionnet, F. Bretenaker, D. Dolfi, M. Alouini, "Influence of slow light effect in semiconductor amplifiers on the dynamic range of microwave-photonics links," Slow and Fast Light 2009, OSA conference proceed., in press.

P. Berger, J. Bourderionnet, F. Bretenaker, D. Dolfi, M. Alouini, "Dynamic saturation in semiconductor optical amplifiers: accurate model, role of carrier density, and slow light," to be published

Gaeta, A. L.

Gauthier, D. J.

Gehring, G. M.

González Herráez, M.

Granger, P.

Han, S.-K.

D.-H. Jeon, H.-D. Jung, S.-K. Han, "Mitigation of Dispersion-Induced Effects Using SOA in Analog Optical Transmission," IEEE Photon. Technol. Lett. 14, 1166-1168 (2002).
[CrossRef]

Herrera, J.

Huignard, J-P.

Jeon, D.-H.

D.-H. Jeon, H.-D. Jung, S.-K. Han, "Mitigation of Dispersion-Induced Effects Using SOA in Analog Optical Transmission," IEEE Photon. Technol. Lett. 14, 1166-1168 (2002).
[CrossRef]

Joffre, P.

Johnson, R.

C. Zmudzinski, E. Twyford, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, J. Brock, "Microwave optical splitter/amplifier integrated chip (MOSAIC) using semiconductor optical amplifiers", Photonics and Radio Frequency, Proc. SPIE 2844, 163 (1996)

Jung, H.-D.

D.-H. Jeon, H.-D. Jung, S.-K. Han, "Mitigation of Dispersion-Induced Effects Using SOA in Analog Optical Transmission," IEEE Photon. Technol. Lett. 14, 1166-1168 (2002).
[CrossRef]

Kjær, R.

Kondratko, P.

H. Su, P. Kondratko, and S. L. Chuang, "Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers," Opt. Express 14, 4801-4807 (2006).
[CrossRef]

Le Floch, A.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, et P. Thony, "Offset phase locking of Er:Yb:Glass laser eigenstates for radio-frequency photonics applications", IEEE Photon. Technol. Lett. 13, 367 (2001).
[CrossRef]

Lembo, L.

C. Zmudzinski, E. Twyford, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, J. Brock, "Microwave optical splitter/amplifier integrated chip (MOSAIC) using semiconductor optical amplifiers", Photonics and Radio Frequency, Proc. SPIE 2844, 163 (1996)

Marti, J.

Mørk, J.

Mukai, T.

T. Mukai, and T. Saitoh, "Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-m traveling-wave semiconductor laser amplifier," IEEE Quantum Electron. 26, 865-875 (1990).
[CrossRef]

Nichols, D.

C. Zmudzinski, E. Twyford, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, J. Brock, "Microwave optical splitter/amplifier integrated chip (MOSAIC) using semiconductor optical amplifiers", Photonics and Radio Frequency, Proc. SPIE 2844, 163 (1996)

Ó Dúill, S.

S. O´ Ó Dúill, R. F. O Dowd, G. Eisenstein, "On the Role of High-Order Coherent Population Oscillations in Slow and Fast Light Propagation Using Semiconductor Optical Amplifiers," IEEE J. Sel. Top. Quantum Electron. 15, 578-584 (2009).
[CrossRef]

Ohman, F.

Ortega, B.

Pastor, D.

Philippet, D.

Ramos, F.

Saitoh, T.

T. Mukai, and T. Saitoh, "Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-m traveling-wave semiconductor laser amplifier," IEEE Quantum Electron. 26, 865-875 (1990).
[CrossRef]

Sales, S.

W. Xue, S. Sales, J. Capmany, J. Mørk, "Experimental Demonstration of 360? Tunable RF Phase Shift Using Slow and Fast Light Effects", Slow and Fast Light 2009, OSA conference proceed., paper SMB6.

Seo, J. H.

J. H. Seo, Y. K. Seo, and W. Y. Choi, "Spurious-Free Dynamic Range Characteristics of the Photonic Up- Converter Based on a Semiconductor Optical Amplifier," IEEE Photon. Technol. Lett. 15, 1591-1593 (2003).
[CrossRef]

Seo, Y. K.

J. H. Seo, Y. K. Seo, and W. Y. Choi, "Spurious-Free Dynamic Range Characteristics of the Photonic Up- Converter Based on a Semiconductor Optical Amplifier," IEEE Photon. Technol. Lett. 15, 1591-1593 (2003).
[CrossRef]

Sharaiha, A.

A. Sharaiha, "Harmonic and Intermodulation Distortion Analysis by Perturbation and Harmonic Balance Method for In-Line Photodetection in a Semiconductor Optical Amplifier," IEEE Photon. Technol. Lett. 10, 421-423 (1998).
[CrossRef]

Shi, Y.

Song, K.

Su, H.

H. Su, P. Kondratko, and S. L. Chuang, "Variable optical delay using population oscillation and four-wave-mixing in semiconductor optical amplifiers," Opt. Express 14, 4801-4807 (2006).
[CrossRef]

Thévenaz, L.

Thony, P.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, et P. Thony, "Offset phase locking of Er:Yb:Glass laser eigenstates for radio-frequency photonics applications", IEEE Photon. Technol. Lett. 13, 367 (2001).
[CrossRef]

Twyford, E.

C. Zmudzinski, E. Twyford, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, J. Brock, "Microwave optical splitter/amplifier integrated chip (MOSAIC) using semiconductor optical amplifiers", Photonics and Radio Frequency, Proc. SPIE 2844, 163 (1996)

Vallet, M.

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, et P. Thony, "Offset phase locking of Er:Yb:Glass laser eigenstates for radio-frequency photonics applications", IEEE Photon. Technol. Lett. 13, 367 (2001).
[CrossRef]

van der Poel, M.

Willner, A. E.

Xue, W.

Y. Chen, W. Xue, F. Ohman, J. Mørk, "Theory of Optical-Filtering Enhanced Slow and Fast Light Effects in Semiconductor Optical Waveguides," J. Lightwave Technol. 26, 3734-3743 (2008).
[CrossRef]

W. Xue, S. Sales, J. Capmany, J. Mørk, "Experimental Demonstration of 360? Tunable RF Phase Shift Using Slow and Fast Light Effects", Slow and Fast Light 2009, OSA conference proceed., paper SMB6.

Yan, L.

Yao, J.

Yvind, K.

Zmudzinski, C.

C. Zmudzinski, E. Twyford, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, J. Brock, "Microwave optical splitter/amplifier integrated chip (MOSAIC) using semiconductor optical amplifiers", Photonics and Radio Frequency, Proc. SPIE 2844, 163 (1996)

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

S. O´ Ó Dúill, R. F. O Dowd, G. Eisenstein, "On the Role of High-Order Coherent Population Oscillations in Slow and Fast Light Propagation Using Semiconductor Optical Amplifiers," IEEE J. Sel. Top. Quantum Electron. 15, 578-584 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

J. H. Seo, Y. K. Seo, and W. Y. Choi, "Spurious-Free Dynamic Range Characteristics of the Photonic Up- Converter Based on a Semiconductor Optical Amplifier," IEEE Photon. Technol. Lett. 15, 1591-1593 (2003).
[CrossRef]

A. Sharaiha, "Harmonic and Intermodulation Distortion Analysis by Perturbation and Harmonic Balance Method for In-Line Photodetection in a Semiconductor Optical Amplifier," IEEE Photon. Technol. Lett. 10, 421-423 (1998).
[CrossRef]

M. Alouini, B. Benazet, M. Vallet, M. Brunel, P. Di Bin, F. Bretenaker, A. Le Floch, et P. Thony, "Offset phase locking of Er:Yb:Glass laser eigenstates for radio-frequency photonics applications", IEEE Photon. Technol. Lett. 13, 367 (2001).
[CrossRef]

D.-H. Jeon, H.-D. Jung, S.-K. Han, "Mitigation of Dispersion-Induced Effects Using SOA in Analog Optical Transmission," IEEE Photon. Technol. Lett. 14, 1166-1168 (2002).
[CrossRef]

IEEE Quantum Electron.

T. Mukai, and T. Saitoh, "Detuning characteristics and conversion efficiency of nearly degenerate four-wave mixing in a 1.5-m traveling-wave semiconductor laser amplifier," IEEE Quantum Electron. 26, 865-875 (1990).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Proc. SPIE

C. Zmudzinski, E. Twyford, L. Lembo, R. Johnson, F. Alvarez, D. Nichols, J. Brock, "Microwave optical splitter/amplifier integrated chip (MOSAIC) using semiconductor optical amplifiers", Photonics and Radio Frequency, Proc. SPIE 2844, 163 (1996)

Other

N. Breuil, M. Dispenza, L. Morvan, A.-M. Fiorello, S. Tonda, D. Dolfi, M. Varasi, J. Chazelas, "New optical modulation schemes applied to local oscillator distribution in radar systems," in Proc. of IEEE Microwave Photonics conf. 119-122, (2004).

P. Berger, J. Bourderionnet, F. Bretenaker, D. Dolfi, M. Alouini, "Influence of slow light effect in semiconductor amplifiers on the dynamic range of microwave-photonics links," Slow and Fast Light 2009, OSA conference proceed., in press.

P. Berger, J. Bourderionnet, F. Bretenaker, D. Dolfi, M. Alouini, "Dynamic saturation in semiconductor optical amplifiers: accurate model, role of carrier density, and slow light," to be published

E. Udvary, T. Berceli, T. Marozsak, A. Hilt, "Semiconductor Optical Amplifiers in Analog Optical Links," in Proc. of IEEE Transparent Optical Network Conf., 2003, paper ThC3.

W. Xue, S. Sales, J. Capmany, J. Mørk, "Experimental Demonstration of 360? Tunable RF Phase Shift Using Slow and Fast Light Effects", Slow and Fast Light 2009, OSA conference proceed., paper SMB6.

H. Zmuda, E. N. Toughlian, Photonic Aspects of modern radar, Artech House, 1994.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Third harmonic generation as a function of the RF frequency. Green solid line: common expressions of gk (Eqs. (7) and (8)) are used. Red solid line: use of the rigorous expressions of gk (Eqs. (10) and (11)). The red circles represent experimental measurements. (b) Asymptotic case when Ω→0: Evolution of terms A and B along the SOA, and third harmonic level calculated according to Eq. (19) (red solid line) and Eq. (20) (green solid line).

Fig. 2.
Fig. 2.

Set of significant spectral components of |E|2, N and g, and associated index k in their Fourier decompositions. n is defined such as Ω1=Ω.

Fig. 3.
Fig. 3.

(a) Computed third order intermodulation power IMD3, normalized to m 6, as a function of the modulation frequency, for various injected currents. (b) Corresponding phase of the beat-note at 2Ω21. Dashed lines: case of a perfectly linear modulator (IMDin 3=0). Solid lines: actual Mach-Zehnder modulator (IMDin 3≠0).

Fig. 4.
Fig. 4.

SFDR determination for Ibias =250mA, Pin =10mW, and IMDin 3=J 1(m)J 2(m). In blue: low modulation frequency (≪1/τs ); in red: high modulation frequency (≫1/τs ); in green: frequency around the IMD3 dip (≈1/τs ).

Fig. 5.
Fig. 5.

(SFDR (a) and 3rd order intercept point IP3 (b), as a function of the modulation frequency, for various injected currents, and in the two configurations of a perfectly linear modulation and of a realistic Mach-Zehnder modulator (respectively in dotted and solid lines).

Tables (1)

Tables Icon

Table 1. List of studied SOA parameters

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

d N ( z , t ) d t = I q V N ( z , t ) τ s ( z ) g ( z , t ) E ( z , t ) 2 ω ,
d ( E ( z , t ) 2 ) d z = ( γ i + Γ g ( z , t ) ) E ( z , t ) 2
E ( z , t ) 2 = Σ k = + M k ( z ) e ik Ω t ,
N ( z , t ) = N ̅ ( z ) + Σ k = + k 0 N k ( z ) e ik Ω t ,
g ( z , t ) = g ̅ ( z ) + a ( z ) Σ k = + N k ( z ) e ik Ω t k 0
gk = g ̅ M k I s 1 + M 0 I s + jk Ω τ s ,
g ̅ = h ̅ ω ( I q V N ̅ τ s ) M 0 .
g 2 = g ̅ M 2 I S 1 + M 0 I S + 2 j Ω τ S + ( M 1 I S ) 2 ( 1 + M 0 I S + j Ω τ S ) ( 1 + M 0 I S + 2 j Ω τ S ) ,
g 3 = g ̅ ( M 3 I s 1 + M 0 I s + 3 j Ω τ s + M 1 M 2 I s 2 ( 1 + M 0 I s + j Ω τ s ) ( 1 + M 0 I s + 3 j Ω τ s )
+ M 1 M 2 I s 2 ( 1 + M 0 I s + 2 j Ω τ s ) ( 1 + M 0 I s + 3 j Ω τ s )
( M 1 I s ) 3 ( 1 + M 0 I s + j Ω τ s ) ( 1 + M 0 I s + 2 j Ω τ s ) ( 1 + M 0 I s + 3 j Ω τ s ) ) .
g ̅ = α + β τ s N ̅ ,
1 τ s = A + B N ̅ + C N ̅ 2 ,
g ̅ = h ̅ ω ( I q V N ̅ τ s ) δ 0,0 ,
g k = g ̅ δ k , 0 δ 0,0 .
{ M 0 , in = P in M 1 , in = P in × J 1 ( m ) M 2 , in = 0 M 3 , in = P in × J 3 ( m ) M k , in = M k , in ,
H 3 = 2 R η ph 2 M 3 , out × S 2
d M 3 d z = γ i M 3 + g ̅ I s M 0 + I s [ M 3 2 M 1 M 2 M 0 + I s + M 1 3 ( M 0 + I s ) 2 A ] ,
d M 3 d z = γ i M 3 + g ̅ I s M 0 + I s [ M 3 2 M 1 M 2 I s B ] .
E ( z , t ) 2 = k = + M k ( z ) e i k δ Ω t ,
N ( z , t ) = N ̅ ( z ) + k = + k 0 N k ( z ) e i k δ Ω t ,
g ( z , t ) = g ̅ ( z ) + k = + k 0 g k ( z ) e i k δ Ω t ,
( 0 0 h ̅ ω ( I q V N ̅ τ s ) 0 0 ) = ( D 2 , 2 D 2 , 1 D 2 , 0 0 0 D 1 , 2 D 1 , 1 D 1,0 D 1,1 0 D 0 , 2 D 0 , 1 D 0,0 D 0,1 D 0,2 0 D 1 , 1 D 1,0 D 1,1 D 1,2 0 0 D 2,0 D 2,1 D 2,2 ) × ( g block , 2 g block , 1 g block , 0 g block , 1 g block , 2 ) ,
d d z ( M block , 2 M block , 1 M block , 0 M block , 1 M block , 2 ) = ( H 2 , 2 H 2 , 1 H 2 , 0 0 0 H 1 , 2 H 1 , 1 H 1,0 H 1,1 0 H 0 , 2 H 0 , 1 H 0,0 H 0,1 H 0,2 0 H 1 , 1 H 1,0 H 1,1 H 1,2 0 0 H 2,0 H 2,1 H 2,2 ) × ( M block , 2 M block , 1 M block , 0 M block , 1 M block , 2 ) ,
IMD 3 = 2 R η ph 2 M 2 Ω 2 Ω 1 out × S 2 .
I opt , in = I 0 [ 1 + cos ( m ( cos ( Ω 1 t ) + cos ( Ω 2 t ) ) + ϕ ) ] ,
M block , 0 = 0 0 1 0 0 ; M block , 1 = J 1 ( m ) J 2 ( m ) J 0 ( m ) J 1 ( m ) J 0 ( m ) J 1 ( m ) J 1 ( m ) J 2 ( m ) ; M block , 2 = 0 0 0 ; M block , j = M block , j .
SFDR = ( I P 3 P noise ) 2 3 ,

Metrics