Abstract

Optical transmission through multi-layered systems of corrugated metallic thin films is investigated by rigorous electromagnetic simulations based on an exact Green tensor method. Compared to a single metal slab of equivalent thickness and volume, it was found that the multi-layered system can significantly impede the field decay, often leading to transmission greater than that expected from the Fabry-Perot resonance-like behavior exhibited by subwavelength slits in a single slab. Extraordinary optical transmission is also observable for systems of layers whose combined thicknesses are much greater than the skin depth of the metal. Structures consisting of up to five layers with a net thickness of 500 nm for the metal films were considered in our study. These findings demonstrate that an appreciable fraction of the optical power that is incident on the thin metal films can be transmitted over distances greater than their skin depth using plasmonic resonances.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
    [CrossRef]
  2. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plamsons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
    [CrossRef]
  3. D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhance transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
    [CrossRef]
  4. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritions and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
    [CrossRef] [PubMed]
  5. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra and E. R. Eliel, "Plasmon-assisted two-slit transmission: Young’s experiment revisited," Phys. Rev. Lett. 94, 053901 (2005).
    [CrossRef] [PubMed]
  6. P. Lalanne and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nature Phys. 2, 551-556 (2006).
    [CrossRef]
  7. H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452, 728-731 (2008).
    [CrossRef] [PubMed]
  8. Y. Ye and J. Zhang, "Enhanced light transmission through cascaded metal films perforated with periodic hole arrays," Opt. Lett. 30, 1521-1523 (2005).
    [CrossRef] [PubMed]
  9. B. Bai, L. Li, and L. Zeng, "Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes," Opt. Lett. 30, 2360-2362 (2005).
    [CrossRef] [PubMed]
  10. H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry E, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, "Optical transmission through double-layer metallic subwavelength slit arrays," Opt. Lett. 31, 516-518 (2006).
    [CrossRef] [PubMed]
  11. C. Cheng, J. Chen, Q. Wu, F. Ren, J. Xu, Y. Fan, and H. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91, 111111 (2007).
    [CrossRef]
  12. R. M. Bakker, V. P. Drachev, H. K. Yuan, and V. M. Shalaev, "Enhanced transmission in near-field imaging of layered plasmonic structures," Opt. Express 12, 3701-3706 (2004).
    [CrossRef] [PubMed]
  13. Z. Marcet, J. W. Paster, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and H. B. Chan (2008) "Controlling the phase delay of light transmitted through double-layer metallic subwavelength slit arrays," Opt. Lett. 33, 1410-1412 (2008).
    [CrossRef] [PubMed]
  14. S. Astilean, P. Lalanne, and M. Palamaru "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000).
    [CrossRef]
  15. Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen," Phys. Rev. Lett. 86, 5601-5603 (2001).
    [CrossRef] [PubMed]
  16. F. Yang and J. R. Sambles, "Resonant transmission of microwaves through a narrow metallic slit," Phys. Rev. Lett. 89, 063901 (2002).
    [CrossRef] [PubMed]
  17. C. H. Gan and G. Gbur, "Strategies for employing surface plasmons in a near field transmission optical readout system," Appl. Phys. Lett. 91, 131109 (2007).
    [CrossRef]
  18. C. H. Gan and G. Gbur, "Strategies for employing surface plasmons in near-field optical readout systems," Opt. Exp. 14, 2385-2397 (2006).
    [CrossRef]
  19. G. Gbur, H. F. Schouten and T. D. Visser, "Achieving superresolution in near-field optical data readout systems using surface plasmons," Appl. Phys. Lett. 87, 191109 (2005).
    [CrossRef]
  20. A. Degiron and T. W. Ebbesen, "Analysis of the transmission process through single apertures surrounded by periodic corrugations," Opt. Express 12, 3694-3700 (2004).
    [CrossRef] [PubMed]
  21. H.J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2001).
    [CrossRef]
  22. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, "Transparent, metallodielectric, one-dimensional, photonic band-gap structures," J. Appl. Phys. 72, 2377-2383 (1998).
    [CrossRef]
  23. M. J. Bloemer and M. Scalora, "Transmissive properties of Ag/MgF2 photonic band gaps," Appl. Phys. Lett. 83, 1676-1678 (1998).
    [CrossRef]
  24. S. Feng, J. M. Elson, and P. L. Overfelt, "Optical properties of multilayer metal-dielectric nanofilms with allevanescent modes," Opt. Express 13, 4113-4124 (2005).
    [CrossRef] [PubMed]
  25. F. García-Vidal, H. J. Lezec, T.W. Ebbesen, and L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
    [CrossRef] [PubMed]
  26. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  27. J. W. Goodman (2005) Introduction to Fourier Optics, Roberts & Company, Englewood, 3rd edition.
  28. P. B. Johnson, and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  29. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114- 1117 (2001).
    [CrossRef] [PubMed]
  30. N , Bonod, S. Enoch, L. Li, E. Popov, M. Neviére, "Resonant optical transmission through thin metallic films with and without holes," Opt. Express 11, 482-490 (2003).
    [CrossRef] [PubMed]
  31. S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B 67, 035424 (2003).
    [CrossRef]
  32. A. Giannattasio, I. R. Hooper, and W. L. Barnes, "Transmission of light through thin silver films via surface plasmon polaritons," Opt. Express 12, 5881-5886 (2004).
    [CrossRef] [PubMed]
  33. T. D. Visser, H. Blok, and D. Lenstra, "Theory of polarization-dependent amplification in a slab waveguide with anisotropic gain and losses," IEEE J. Quantum Electron. 35, 240-249 (1999).
    [CrossRef]
  34. E. Palik (1985) Handbook of Optical Constants of Solids, Academic Press, New York.
  35. N. N. Rao(2004) Elements of Engineering Electromagnetics, Prentice Hall, New Jersey, 6th edition.
  36. D. K. Cheng (1994) Fundamentals of Engineering Electromagnetics, Addison-Wesley, Massachusetts.

2008 (2)

2007 (2)

C. Cheng, J. Chen, Q. Wu, F. Ren, J. Xu, Y. Fan, and H. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91, 111111 (2007).
[CrossRef]

C. H. Gan and G. Gbur, "Strategies for employing surface plasmons in a near field transmission optical readout system," Appl. Phys. Lett. 91, 131109 (2007).
[CrossRef]

2006 (3)

C. H. Gan and G. Gbur, "Strategies for employing surface plasmons in near-field optical readout systems," Opt. Exp. 14, 2385-2397 (2006).
[CrossRef]

P. Lalanne and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nature Phys. 2, 551-556 (2006).
[CrossRef]

H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry E, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, "Optical transmission through double-layer metallic subwavelength slit arrays," Opt. Lett. 31, 516-518 (2006).
[CrossRef] [PubMed]

2005 (5)

S. Feng, J. M. Elson, and P. L. Overfelt, "Optical properties of multilayer metal-dielectric nanofilms with allevanescent modes," Opt. Express 13, 4113-4124 (2005).
[CrossRef] [PubMed]

Y. Ye and J. Zhang, "Enhanced light transmission through cascaded metal films perforated with periodic hole arrays," Opt. Lett. 30, 1521-1523 (2005).
[CrossRef] [PubMed]

B. Bai, L. Li, and L. Zeng, "Experimental verification of enhanced transmission through two-dimensionally corrugated metallic films without holes," Opt. Lett. 30, 2360-2362 (2005).
[CrossRef] [PubMed]

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra and E. R. Eliel, "Plasmon-assisted two-slit transmission: Young’s experiment revisited," Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

G. Gbur, H. F. Schouten and T. D. Visser, "Achieving superresolution in near-field optical data readout systems using surface plasmons," Appl. Phys. Lett. 87, 191109 (2005).
[CrossRef]

2004 (4)

2003 (4)

S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B 67, 035424 (2003).
[CrossRef]

N , Bonod, S. Enoch, L. Li, E. Popov, M. Neviére, "Resonant optical transmission through thin metallic films with and without holes," Opt. Express 11, 482-490 (2003).
[CrossRef] [PubMed]

F. García-Vidal, H. J. Lezec, T.W. Ebbesen, and L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

2002 (1)

F. Yang and J. R. Sambles, "Resonant transmission of microwaves through a narrow metallic slit," Phys. Rev. Lett. 89, 063901 (2002).
[CrossRef] [PubMed]

2001 (3)

Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen," Phys. Rev. Lett. 86, 5601-5603 (2001).
[CrossRef] [PubMed]

H.J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2001).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114- 1117 (2001).
[CrossRef] [PubMed]

2000 (2)

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhance transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

S. Astilean, P. Lalanne, and M. Palamaru "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000).
[CrossRef]

1999 (1)

T. D. Visser, H. Blok, and D. Lenstra, "Theory of polarization-dependent amplification in a slab waveguide with anisotropic gain and losses," IEEE J. Quantum Electron. 35, 240-249 (1999).
[CrossRef]

1998 (4)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plamsons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, "Transparent, metallodielectric, one-dimensional, photonic band-gap structures," J. Appl. Phys. 72, 2377-2383 (1998).
[CrossRef]

M. J. Bloemer and M. Scalora, "Transmissive properties of Ag/MgF2 photonic band gaps," Appl. Phys. Lett. 83, 1676-1678 (1998).
[CrossRef]

1972 (1)

P. B. Johnson, and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

’t Hooft, G. W.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra and E. R. Eliel, "Plasmon-assisted two-slit transmission: Young’s experiment revisited," Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Alkemade, P. F. A.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra and E. R. Eliel, "Plasmon-assisted two-slit transmission: Young’s experiment revisited," Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Astilean, S.

S. Astilean, P. Lalanne, and M. Palamaru "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000).
[CrossRef]

Bai, B.

Bakker, R. M.

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritions and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

A. Giannattasio, I. R. Hooper, and W. L. Barnes, "Transmission of light through thin silver films via surface plasmon polaritons," Opt. Express 12, 5881-5886 (2004).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Bloemer, M. J.

M. J. Bloemer and M. Scalora, "Transmissive properties of Ag/MgF2 photonic band gaps," Appl. Phys. Lett. 83, 1676-1678 (1998).
[CrossRef]

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, "Transparent, metallodielectric, one-dimensional, photonic band-gap structures," J. Appl. Phys. 72, 2377-2383 (1998).
[CrossRef]

Blok, H.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra and E. R. Eliel, "Plasmon-assisted two-slit transmission: Young’s experiment revisited," Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

T. D. Visser, H. Blok, and D. Lenstra, "Theory of polarization-dependent amplification in a slab waveguide with anisotropic gain and losses," IEEE J. Quantum Electron. 35, 240-249 (1999).
[CrossRef]

Bonod, N

Bowden, C. M.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, "Transparent, metallodielectric, one-dimensional, photonic band-gap structures," J. Appl. Phys. 72, 2377-2383 (1998).
[CrossRef]

Bower, J. E.

Carr, D. W.

Chan, H. B.

Chen, J.

C. Cheng, J. Chen, Q. Wu, F. Ren, J. Xu, Y. Fan, and H. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91, 111111 (2007).
[CrossRef]

Cheng, C.

C. Cheng, J. Chen, Q. Wu, F. Ren, J. Xu, Y. Fan, and H. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91, 111111 (2007).
[CrossRef]

Christy, R. W.

P. B. Johnson, and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Cirelli, R. A.

Darmanyan, S. A.

S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B 67, 035424 (2003).
[CrossRef]

Degiron, A.

A. Degiron and T. W. Ebbesen, "Analysis of the transmission process through single apertures surrounded by periodic corrugations," Opt. Express 12, 3694-3700 (2004).
[CrossRef] [PubMed]

H.J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2001).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritions and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

H.J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2001).
[CrossRef]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritions and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Dowling, J. P.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, "Transparent, metallodielectric, one-dimensional, photonic band-gap structures," J. Appl. Phys. 72, 2377-2383 (1998).
[CrossRef]

Drachev, V. P.

Dubois, G.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra and E. R. Eliel, "Plasmon-assisted two-slit transmission: Young’s experiment revisited," Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritions and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

A. Degiron and T. W. Ebbesen, "Analysis of the transmission process through single apertures surrounded by periodic corrugations," Opt. Express 12, 3694-3700 (2004).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

H.J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2001).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114- 1117 (2001).
[CrossRef] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhance transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plamsons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Ebbesen, T.W.

F. García-Vidal, H. J. Lezec, T.W. Ebbesen, and L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

Eliel, E. R.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra and E. R. Eliel, "Plasmon-assisted two-slit transmission: Young’s experiment revisited," Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Elson, J. M.

Enoch, S.

Fan, Y.

C. Cheng, J. Chen, Q. Wu, F. Ren, J. Xu, Y. Fan, and H. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91, 111111 (2007).
[CrossRef]

Feng, S.

Gan, C. H.

C. H. Gan and G. Gbur, "Strategies for employing surface plasmons in a near field transmission optical readout system," Appl. Phys. Lett. 91, 131109 (2007).
[CrossRef]

C. H. Gan and G. Gbur, "Strategies for employing surface plasmons in near-field optical readout systems," Opt. Exp. 14, 2385-2397 (2006).
[CrossRef]

García-Vidal, F.

F. García-Vidal, H. J. Lezec, T.W. Ebbesen, and L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

García-Vidal, F. J.

H.J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2001).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114- 1117 (2001).
[CrossRef] [PubMed]

Gbur, G.

C. H. Gan and G. Gbur, "Strategies for employing surface plasmons in a near field transmission optical readout system," Appl. Phys. Lett. 91, 131109 (2007).
[CrossRef]

C. H. Gan and G. Gbur, "Strategies for employing surface plasmons in near-field optical readout systems," Opt. Exp. 14, 2385-2397 (2006).
[CrossRef]

G. Gbur, H. F. Schouten and T. D. Visser, "Achieving superresolution in near-field optical data readout systems using surface plasmons," Appl. Phys. Lett. 87, 191109 (2005).
[CrossRef]

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra and E. R. Eliel, "Plasmon-assisted two-slit transmission: Young’s experiment revisited," Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plamsons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Giannattasio, A.

Grupp, D. E.

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhance transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plamsons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Hooper, I. R.

Hugonin, J. P.

P. Lalanne and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nature Phys. 2, 551-556 (2006).
[CrossRef]

Johnson, P. B.

P. B. Johnson, and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Klemens, F.

Kuzmin, N.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra and E. R. Eliel, "Plasmon-assisted two-slit transmission: Young’s experiment revisited," Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Lalanne, P.

H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452, 728-731 (2008).
[CrossRef] [PubMed]

P. Lalanne and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nature Phys. 2, 551-556 (2006).
[CrossRef]

S. Astilean, P. Lalanne, and M. Palamaru "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000).
[CrossRef]

Lenstra, D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra and E. R. Eliel, "Plasmon-assisted two-slit transmission: Young’s experiment revisited," Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

T. D. Visser, H. Blok, and D. Lenstra, "Theory of polarization-dependent amplification in a slab waveguide with anisotropic gain and losses," IEEE J. Quantum Electron. 35, 240-249 (1999).
[CrossRef]

Lezec, H. J.

F. García-Vidal, H. J. Lezec, T.W. Ebbesen, and L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114- 1117 (2001).
[CrossRef] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhance transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plamsons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

Lezec, H.J.

H.J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2001).
[CrossRef]

Li, L.

Linke, R. A.

H.J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2001).
[CrossRef]

Liu, H.

H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452, 728-731 (2008).
[CrossRef] [PubMed]

Manka, A. S.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, "Transparent, metallodielectric, one-dimensional, photonic band-gap structures," J. Appl. Phys. 72, 2377-2383 (1998).
[CrossRef]

Mansfield, W. M.

Marcet, Z.

Martín-Moreno, L.

F. García-Vidal, H. J. Lezec, T.W. Ebbesen, and L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

H.J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2001).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114- 1117 (2001).
[CrossRef] [PubMed]

Miner, J. F.

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritions and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

Neviére, M.

Overfelt, P. L.

Pai, C. S.

Palamaru, M.

S. Astilean, P. Lalanne, and M. Palamaru "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000).
[CrossRef]

Paster, J. W.

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114- 1117 (2001).
[CrossRef] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhance transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114- 1117 (2001).
[CrossRef] [PubMed]

Pethel, A. S.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, "Transparent, metallodielectric, one-dimensional, photonic band-gap structures," J. Appl. Phys. 72, 2377-2383 (1998).
[CrossRef]

Popov, E.

Ren, F.

C. Cheng, J. Chen, Q. Wu, F. Ren, J. Xu, Y. Fan, and H. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91, 111111 (2007).
[CrossRef]

Sambles, J. R.

F. Yang and J. R. Sambles, "Resonant transmission of microwaves through a narrow metallic slit," Phys. Rev. Lett. 89, 063901 (2002).
[CrossRef] [PubMed]

Scalora, M.

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, "Transparent, metallodielectric, one-dimensional, photonic band-gap structures," J. Appl. Phys. 72, 2377-2383 (1998).
[CrossRef]

M. J. Bloemer and M. Scalora, "Transmissive properties of Ag/MgF2 photonic band gaps," Appl. Phys. Lett. 83, 1676-1678 (1998).
[CrossRef]

Schouten, H. F.

G. Gbur, H. F. Schouten and T. D. Visser, "Achieving superresolution in near-field optical data readout systems using surface plasmons," Appl. Phys. Lett. 87, 191109 (2005).
[CrossRef]

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra and E. R. Eliel, "Plasmon-assisted two-slit transmission: Young’s experiment revisited," Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Shalaev, V. M.

Takakura, Y.

Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen," Phys. Rev. Lett. 86, 5601-5603 (2001).
[CrossRef] [PubMed]

Tanner, D. B.

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114- 1117 (2001).
[CrossRef] [PubMed]

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhance transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plamsons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Visser, T. D.

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra and E. R. Eliel, "Plasmon-assisted two-slit transmission: Young’s experiment revisited," Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

G. Gbur, H. F. Schouten and T. D. Visser, "Achieving superresolution in near-field optical data readout systems using surface plasmons," Appl. Phys. Lett. 87, 191109 (2005).
[CrossRef]

T. D. Visser, H. Blok, and D. Lenstra, "Theory of polarization-dependent amplification in a slab waveguide with anisotropic gain and losses," IEEE J. Quantum Electron. 35, 240-249 (1999).
[CrossRef]

Wang, H.

C. Cheng, J. Chen, Q. Wu, F. Ren, J. Xu, Y. Fan, and H. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91, 111111 (2007).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

Woo, K.

Wu, Q.

C. Cheng, J. Chen, Q. Wu, F. Ren, J. Xu, Y. Fan, and H. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91, 111111 (2007).
[CrossRef]

Xu, J.

C. Cheng, J. Chen, Q. Wu, F. Ren, J. Xu, Y. Fan, and H. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91, 111111 (2007).
[CrossRef]

Yang, F.

F. Yang and J. R. Sambles, "Resonant transmission of microwaves through a narrow metallic slit," Phys. Rev. Lett. 89, 063901 (2002).
[CrossRef] [PubMed]

Ye, Y.

Yuan, H. K.

Zayats, A. V.

S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B 67, 035424 (2003).
[CrossRef]

Zeng, L.

Zhang, J.

Appl. Phys. Lett. (5)

D. E. Grupp, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Crucial role of metal surface in enhance transmission through subwavelength apertures," Appl. Phys. Lett. 77, 1569-1571 (2000).
[CrossRef]

C. H. Gan and G. Gbur, "Strategies for employing surface plasmons in a near field transmission optical readout system," Appl. Phys. Lett. 91, 131109 (2007).
[CrossRef]

G. Gbur, H. F. Schouten and T. D. Visser, "Achieving superresolution in near-field optical data readout systems using surface plasmons," Appl. Phys. Lett. 87, 191109 (2005).
[CrossRef]

M. J. Bloemer and M. Scalora, "Transmissive properties of Ag/MgF2 photonic band gaps," Appl. Phys. Lett. 83, 1676-1678 (1998).
[CrossRef]

C. Cheng, J. Chen, Q. Wu, F. Ren, J. Xu, Y. Fan, and H. Wang, "Controllable electromagnetic transmission based on dual-metallic grating structures composed of subwavelength slits," Appl. Phys. Lett. 91, 111111 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. D. Visser, H. Blok, and D. Lenstra, "Theory of polarization-dependent amplification in a slab waveguide with anisotropic gain and losses," IEEE J. Quantum Electron. 35, 240-249 (1999).
[CrossRef]

J. Appl. Phys. (1)

M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, "Transparent, metallodielectric, one-dimensional, photonic band-gap structures," J. Appl. Phys. 72, 2377-2383 (1998).
[CrossRef]

Nature (3)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998).
[CrossRef]

H. Liu and P. Lalanne, "Microscopic theory of the extraordinary optical transmission," Nature 452, 728-731 (2008).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Nature Phys. (1)

P. Lalanne and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nature Phys. 2, 551-556 (2006).
[CrossRef]

Opt. Commun. (1)

S. Astilean, P. Lalanne, and M. Palamaru "Light transmission through metallic channels much smaller than the wavelength," Opt. Commun. 175, 265-273 (2000).
[CrossRef]

Opt. Exp. (1)

C. H. Gan and G. Gbur, "Strategies for employing surface plasmons in near-field optical readout systems," Opt. Exp. 14, 2385-2397 (2006).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. B (3)

P. B. Johnson, and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plamsons enhance optical transmission through subwavelength holes," Phys. Rev. B 58, 6779-6782 (1998).
[CrossRef]

S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: An analytical study," Phys. Rev. B 67, 035424 (2003).
[CrossRef]

Phys. Rev. Lett. (6)

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface plasmon polaritions and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film," Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra and E. R. Eliel, "Plasmon-assisted two-slit transmission: Young’s experiment revisited," Phys. Rev. Lett. 94, 053901 (2005).
[CrossRef] [PubMed]

Y. Takakura, "Optical resonance in a narrow slit in a thick metallic screen," Phys. Rev. Lett. 86, 5601-5603 (2001).
[CrossRef] [PubMed]

F. Yang and J. R. Sambles, "Resonant transmission of microwaves through a narrow metallic slit," Phys. Rev. Lett. 89, 063901 (2002).
[CrossRef] [PubMed]

F. García-Vidal, H. J. Lezec, T.W. Ebbesen, and L. Martín-Moreno, "Multiple paths to enhance optical transmission through a single subwavelength slit," Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114- 1117 (2001).
[CrossRef] [PubMed]

Science (1)

H.J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martín-Moreno, F. J. García-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2001).
[CrossRef]

Other (4)

J. W. Goodman (2005) Introduction to Fourier Optics, Roberts & Company, Englewood, 3rd edition.

E. Palik (1985) Handbook of Optical Constants of Solids, Academic Press, New York.

N. N. Rao(2004) Elements of Engineering Electromagnetics, Prentice Hall, New Jersey, 6th edition.

D. K. Cheng (1994) Fundamentals of Engineering Electromagnetics, Addison-Wesley, Massachusetts.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Geometry for the multi-layered structure with two layers for (a) plasmon pits on both sides of the metal films, and (b) plasmon pits only on the illuminated side of the metal films. More layers of identical metal films may be cascaded. The geometry shown in (c) is that of a single slab with equivalent thickness and volume as a n-layered system (n=1,2,3,…) of either structure (a) or (b).

Fig. 2.
Fig. 2.

Optical transmission T as a function of γ for a single layer of the structures depicted in Fig. 1a (solid line) and Fig. 1b (dashed line).

Fig. 3.
Fig. 3.

Field distribution plots depicting the impedance to exponential decay of the fields with the multi-layered structure in Fig. 1a as opposed to a single metal slab with equivalent thickness and volume for number of layers n=3 and 5. EOT for the multi-layered structures is clearly observable from the values of the associated optical transmission T.

Fig. 4.
Fig. 4.

Field distribution plots for (a) tungsten multi-layered structure with TM-polarized light, and (b) silver multi-layered structure with TE-polarized light, for number of layers n=4.

Fig. 5.
Fig. 5.

Illustrating the shift in the magnitude and phase of the Fabry-Perot resosnance transmission when subwavelength slits in a metal plate is replaced long, narrow pits, such as those shown in Fig. 1c. The red, green, and blue lines represent transmission for a pair of slits, pits with 20 nm barrier, and pits with 20 nm barrier, respectively. In all cases, the slits or pits are separated by 2γ=160 nm.

Fig. 6.
Fig. 6.

Comparison of the transmission T as a function of z, for (a) the multi-layered geometry in Fig. 1a, and (b) the multi-layered geometry in Fig. 1b. The superscript † is used to refer to the equivalent single slab structure. Data for the multi-layered and equivalent single slab structures are indicated with empty diamonds and boxes respectively. The number in [] indicates the number of layers in the multi-layered structure. The ‘x’ indicates the extrapolated value of the “effective skin depth” δ. It is to be noted that δ is defined as the thickness at which the transmitted intensity has dropped to 36.79 % of the value for which n=1.

Tables (5)

Tables Icon

Table 1. Optical transmission T for multi-layered structures (up to n=5 layers) of Fig. 1a, as compared to a single metal slab with equivalent thickness. The transmission T is evaluated at zT (nm), where zT is the total thickness of the structure. The superscripts § and † denote the multi-layered structure and the single slab, respectively. For compact presentation, e -m is used as short form for ×10-m .

Tables Icon

Table 2. Optical transmission T for misaligned multi-layered structures of Fig. 1a for n=3, compared to an aligned structure with γ=80 nm (see Fig. 3). The transmission T is evaluated at zT =340 nm. The superscripts §, (m,1), and (m,2) denote the perfectly aligned case and two cases that are slightly misaligned.

Tables Icon

Table 3. Optical transmission T for multi-layered structures (up to n=5 layers) of Fig. 1b, as compared to a single metal slab with equivalent thickness. The superscripts ‡ and † denote the multi-layered structure and the single slab, respectively. For compact presentation, e-m is used as short form for ×10-m .

Tables Icon

Table 4. Comparison of the optical transmission T with three plasmon pits instead of two in each of the silver layers for the multi-layered structures of Fig. 1a, and Fig. 1b. The superscripts § and ‡, denote the multi-layered structure of Fig. 1a, and the multi-layered structure of Fig. 1b, respectively. An additional numeric superscript 3 is used to denote structures with three plasmon pits on each silver layer.

Tables Icon

Table 5. Simulations of the optical transmission T with slits in place of the plasmon pits of the multi-layered structures in Fig. 1. The superscripts § and ‡, denote the multi-layered structure of Fig. 1a, and the multi-layered structure of Fig. 1b, respectively. The additional superscript ‘slit’ is used to denote the structures with slits. These values should be compared with their counterparts of Table 1 (T §) and Table 3 (T ).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T=+SzdxY0+E(inc)(x,z)2dx,
Ei(x,z)=Ei(inc)(x,z)iωDΔε(x,z)GijE(x,z;x,z)Ej(x',z')dxdz
ZT={nt+(n1)gfor multi-layered systems in Fig. 1(a) and (b);ntfor equivalent single slab in Fig. 1(c),
S=12Re[E×H*],

Metrics