Abstract

We present a design of a 193nm superlens imaging structure to enable the printing of 20nm features. Optical image simulations indicate that the 20nm resolution is feasible for both the periodic grating feature and the two-slit feature. Nominal depth-of-focus (DoF) position for both features is identified through the image contrast calculations. Simulations show that the two features have a common nominal dose at the nominal DoF to resolve 20nm critical dimension when a suitable dielectric material is placed between mask and superlens layer. A DoF of ~8nm is shown to be obtainable for the 20nm half-pitch grating feature while the respective DoF for the two-slit feature is less than 8nm which potentially can be enhanced by employing existing lithographic resolution enhancement techniques.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [CrossRef] [PubMed]
  3. Z. Liu, N. Fang, T. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83(25), 5184 (2003).
    [CrossRef]
  4. W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
    [CrossRef]
  5. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [CrossRef] [PubMed]
  6. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
    [CrossRef]
  7. D. O. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-6-2127 .
    [CrossRef] [PubMed]
  8. Z. Shi, V. Kochergin, and F. Wang, “193nm Superlens imaging structure for 20nm lithography node,” Opt. Express 17(14), 11309–11314 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-14-11309 .
    [CrossRef] [PubMed]
  9. M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elatomeric stamp,” Nat. Mater. 5(1), 33–38 (2005).
    [CrossRef]
  10. A. K.-K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE Publications, 2001).
  11. F. Wang and W. A. Stanton, “Reducing imaging defects in high-resolution photolithography,” J. Vac. Sci. Technol. B 26(1), L19 (2008).
    [CrossRef]
  12. D. Davazoglou, G. Pallis, V. Psycharis, M. Gioti, and S. Logothetidis, “Structure and optical properties of tungsten thin films deposited by pyrolysis of W(CO)6 at various temperatures,” J. Appl. Phys. 77(11), 6070 (1995).
    [CrossRef]
  13. H. J. Levinson, Principle of Optical Lithography (SPIE Press, 2005).
  14. E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, 1991).
  15. J. Zhou, N. Lafferty, B. W. Smith, and J. H. Burnett, “Immersion lithography with numerical apertures above 2.0 using high index optical materials,” Proc. SPIE 6520, 65204T (2007).
    [CrossRef]
  16. A. Lebib, Y. Chen, F. Carcenac, E. Cambril, L. Manin, L. Couraud, and H. Launois, “Tri-layer systems for nanoimprint lithography with an improved process latitude,” Microelectron. Eng. 53(1-4), 175–178 (2000).
    [CrossRef]
  17. S. Burns, M. Burkhardt, D. Goldfarb, N. Lustig, D. Pfeiffer, M. J. Brodsky, A. Clancy, and D. Medeiros, “Trilayer development for 193nm immersion lithography,” J. Photopolym. Sci. Technol. 20(5), 679–686 (2007).
    [CrossRef]

2009 (1)

2008 (1)

F. Wang and W. A. Stanton, “Reducing imaging defects in high-resolution photolithography,” J. Vac. Sci. Technol. B 26(1), L19 (2008).
[CrossRef]

2007 (2)

J. Zhou, N. Lafferty, B. W. Smith, and J. H. Burnett, “Immersion lithography with numerical apertures above 2.0 using high index optical materials,” Proc. SPIE 6520, 65204T (2007).
[CrossRef]

S. Burns, M. Burkhardt, D. Goldfarb, N. Lustig, D. Pfeiffer, M. J. Brodsky, A. Clancy, and D. Medeiros, “Trilayer development for 193nm immersion lithography,” J. Photopolym. Sci. Technol. 20(5), 679–686 (2007).
[CrossRef]

2005 (5)

D. O. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13(6), 2127–2134 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-6-2127 .
[CrossRef] [PubMed]

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elatomeric stamp,” Nat. Mater. 5(1), 33–38 (2005).
[CrossRef]

2003 (1)

Z. Liu, N. Fang, T. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83(25), 5184 (2003).
[CrossRef]

2000 (3)

A. Lebib, Y. Chen, F. Carcenac, E. Cambril, L. Manin, L. Couraud, and H. Launois, “Tri-layer systems for nanoimprint lithography with an improved process latitude,” Microelectron. Eng. 53(1-4), 175–178 (2000).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

1995 (1)

D. Davazoglou, G. Pallis, V. Psycharis, M. Gioti, and S. Logothetidis, “Structure and optical properties of tungsten thin films deposited by pyrolysis of W(CO)6 at various temperatures,” J. Appl. Phys. 77(11), 6070 (1995).
[CrossRef]

Adesida, I.

M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elatomeric stamp,” Nat. Mater. 5(1), 33–38 (2005).
[CrossRef]

Ambati, M.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Blaikie, R. J.

Brodsky, M. J.

S. Burns, M. Burkhardt, D. Goldfarb, N. Lustig, D. Pfeiffer, M. J. Brodsky, A. Clancy, and D. Medeiros, “Trilayer development for 193nm immersion lithography,” J. Photopolym. Sci. Technol. 20(5), 679–686 (2007).
[CrossRef]

Burkhardt, M.

S. Burns, M. Burkhardt, D. Goldfarb, N. Lustig, D. Pfeiffer, M. J. Brodsky, A. Clancy, and D. Medeiros, “Trilayer development for 193nm immersion lithography,” J. Photopolym. Sci. Technol. 20(5), 679–686 (2007).
[CrossRef]

Burnett, J. H.

J. Zhou, N. Lafferty, B. W. Smith, and J. H. Burnett, “Immersion lithography with numerical apertures above 2.0 using high index optical materials,” Proc. SPIE 6520, 65204T (2007).
[CrossRef]

Burns, S.

S. Burns, M. Burkhardt, D. Goldfarb, N. Lustig, D. Pfeiffer, M. J. Brodsky, A. Clancy, and D. Medeiros, “Trilayer development for 193nm immersion lithography,” J. Photopolym. Sci. Technol. 20(5), 679–686 (2007).
[CrossRef]

Cai, W.

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[CrossRef]

Cambril, E.

A. Lebib, Y. Chen, F. Carcenac, E. Cambril, L. Manin, L. Couraud, and H. Launois, “Tri-layer systems for nanoimprint lithography with an improved process latitude,” Microelectron. Eng. 53(1-4), 175–178 (2000).
[CrossRef]

Carcenac, F.

A. Lebib, Y. Chen, F. Carcenac, E. Cambril, L. Manin, L. Couraud, and H. Launois, “Tri-layer systems for nanoimprint lithography with an improved process latitude,” Microelectron. Eng. 53(1-4), 175–178 (2000).
[CrossRef]

Chen, Y.

A. Lebib, Y. Chen, F. Carcenac, E. Cambril, L. Manin, L. Couraud, and H. Launois, “Tri-layer systems for nanoimprint lithography with an improved process latitude,” Microelectron. Eng. 53(1-4), 175–178 (2000).
[CrossRef]

Clancy, A.

S. Burns, M. Burkhardt, D. Goldfarb, N. Lustig, D. Pfeiffer, M. J. Brodsky, A. Clancy, and D. Medeiros, “Trilayer development for 193nm immersion lithography,” J. Photopolym. Sci. Technol. 20(5), 679–686 (2007).
[CrossRef]

Couraud, L.

A. Lebib, Y. Chen, F. Carcenac, E. Cambril, L. Manin, L. Couraud, and H. Launois, “Tri-layer systems for nanoimprint lithography with an improved process latitude,” Microelectron. Eng. 53(1-4), 175–178 (2000).
[CrossRef]

Davazoglou, D.

D. Davazoglou, G. Pallis, V. Psycharis, M. Gioti, and S. Logothetidis, “Structure and optical properties of tungsten thin films deposited by pyrolysis of W(CO)6 at various temperatures,” J. Appl. Phys. 77(11), 6070 (1995).
[CrossRef]

Durant, S.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Fang, N.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Z. Liu, N. Fang, T. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83(25), 5184 (2003).
[CrossRef]

Feng, X.

M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elatomeric stamp,” Nat. Mater. 5(1), 33–38 (2005).
[CrossRef]

Genov, D. A.

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[CrossRef]

Gioti, M.

D. Davazoglou, G. Pallis, V. Psycharis, M. Gioti, and S. Logothetidis, “Structure and optical properties of tungsten thin films deposited by pyrolysis of W(CO)6 at various temperatures,” J. Appl. Phys. 77(11), 6070 (1995).
[CrossRef]

Goldfarb, D.

S. Burns, M. Burkhardt, D. Goldfarb, N. Lustig, D. Pfeiffer, M. J. Brodsky, A. Clancy, and D. Medeiros, “Trilayer development for 193nm immersion lithography,” J. Photopolym. Sci. Technol. 20(5), 679–686 (2007).
[CrossRef]

Huang, Y. Y.

M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elatomeric stamp,” Nat. Mater. 5(1), 33–38 (2005).
[CrossRef]

Kochergin, V.

Kumar, V.

M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elatomeric stamp,” Nat. Mater. 5(1), 33–38 (2005).
[CrossRef]

Lafferty, N.

J. Zhou, N. Lafferty, B. W. Smith, and J. H. Burnett, “Immersion lithography with numerical apertures above 2.0 using high index optical materials,” Proc. SPIE 6520, 65204T (2007).
[CrossRef]

Launois, H.

A. Lebib, Y. Chen, F. Carcenac, E. Cambril, L. Manin, L. Couraud, and H. Launois, “Tri-layer systems for nanoimprint lithography with an improved process latitude,” Microelectron. Eng. 53(1-4), 175–178 (2000).
[CrossRef]

Lebib, A.

A. Lebib, Y. Chen, F. Carcenac, E. Cambril, L. Manin, L. Couraud, and H. Launois, “Tri-layer systems for nanoimprint lithography with an improved process latitude,” Microelectron. Eng. 53(1-4), 175–178 (2000).
[CrossRef]

Lee, H.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Lee, K. J.

M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elatomeric stamp,” Nat. Mater. 5(1), 33–38 (2005).
[CrossRef]

Liu, Z.

Z. Liu, N. Fang, T. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83(25), 5184 (2003).
[CrossRef]

Logothetidis, S.

D. Davazoglou, G. Pallis, V. Psycharis, M. Gioti, and S. Logothetidis, “Structure and optical properties of tungsten thin films deposited by pyrolysis of W(CO)6 at various temperatures,” J. Appl. Phys. 77(11), 6070 (1995).
[CrossRef]

Lustig, N.

S. Burns, M. Burkhardt, D. Goldfarb, N. Lustig, D. Pfeiffer, M. J. Brodsky, A. Clancy, and D. Medeiros, “Trilayer development for 193nm immersion lithography,” J. Photopolym. Sci. Technol. 20(5), 679–686 (2007).
[CrossRef]

Manin, L.

A. Lebib, Y. Chen, F. Carcenac, E. Cambril, L. Manin, L. Couraud, and H. Launois, “Tri-layer systems for nanoimprint lithography with an improved process latitude,” Microelectron. Eng. 53(1-4), 175–178 (2000).
[CrossRef]

Medeiros, D.

S. Burns, M. Burkhardt, D. Goldfarb, N. Lustig, D. Pfeiffer, M. J. Brodsky, A. Clancy, and D. Medeiros, “Trilayer development for 193nm immersion lithography,” J. Photopolym. Sci. Technol. 20(5), 679–686 (2007).
[CrossRef]

Meitl, M. A.

M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elatomeric stamp,” Nat. Mater. 5(1), 33–38 (2005).
[CrossRef]

Melville, D. O.

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Nuzzo, R. G.

M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elatomeric stamp,” Nat. Mater. 5(1), 33–38 (2005).
[CrossRef]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Pallis, G.

D. Davazoglou, G. Pallis, V. Psycharis, M. Gioti, and S. Logothetidis, “Structure and optical properties of tungsten thin films deposited by pyrolysis of W(CO)6 at various temperatures,” J. Appl. Phys. 77(11), 6070 (1995).
[CrossRef]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Pfeiffer, D.

S. Burns, M. Burkhardt, D. Goldfarb, N. Lustig, D. Pfeiffer, M. J. Brodsky, A. Clancy, and D. Medeiros, “Trilayer development for 193nm immersion lithography,” J. Photopolym. Sci. Technol. 20(5), 679–686 (2007).
[CrossRef]

Psycharis, V.

D. Davazoglou, G. Pallis, V. Psycharis, M. Gioti, and S. Logothetidis, “Structure and optical properties of tungsten thin films deposited by pyrolysis of W(CO)6 at various temperatures,” J. Appl. Phys. 77(11), 6070 (1995).
[CrossRef]

Rogers, J. A.

M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elatomeric stamp,” Nat. Mater. 5(1), 33–38 (2005).
[CrossRef]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Shalaev, V. M.

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[CrossRef]

Shi, Z.

Smith, B. W.

J. Zhou, N. Lafferty, B. W. Smith, and J. H. Burnett, “Immersion lithography with numerical apertures above 2.0 using high index optical materials,” Proc. SPIE 6520, 65204T (2007).
[CrossRef]

Smith, D. R.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Srituravanich, W.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Stanton, W. A.

F. Wang and W. A. Stanton, “Reducing imaging defects in high-resolution photolithography,” J. Vac. Sci. Technol. B 26(1), L19 (2008).
[CrossRef]

Sun, C.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Wang, F.

Xiong, Y.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Yen, T.

Z. Liu, N. Fang, T. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83(25), 5184 (2003).
[CrossRef]

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Z. Liu, N. Fang, T. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83(25), 5184 (2003).
[CrossRef]

Zhou, J.

J. Zhou, N. Lafferty, B. W. Smith, and J. H. Burnett, “Immersion lithography with numerical apertures above 2.0 using high index optical materials,” Proc. SPIE 6520, 65204T (2007).
[CrossRef]

Zhu, Z.

M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elatomeric stamp,” Nat. Mater. 5(1), 33–38 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

Z. Liu, N. Fang, T. Yen, and X. Zhang, “Rapid growth of evanescent wave by a silver superlens,” Appl. Phys. Lett. 83(25), 5184 (2003).
[CrossRef]

J. Appl. Phys. (1)

D. Davazoglou, G. Pallis, V. Psycharis, M. Gioti, and S. Logothetidis, “Structure and optical properties of tungsten thin films deposited by pyrolysis of W(CO)6 at various temperatures,” J. Appl. Phys. 77(11), 6070 (1995).
[CrossRef]

J. Photopolym. Sci. Technol. (1)

S. Burns, M. Burkhardt, D. Goldfarb, N. Lustig, D. Pfeiffer, M. J. Brodsky, A. Clancy, and D. Medeiros, “Trilayer development for 193nm immersion lithography,” J. Photopolym. Sci. Technol. 20(5), 679–686 (2007).
[CrossRef]

J. Vac. Sci. Technol. B (1)

F. Wang and W. A. Stanton, “Reducing imaging defects in high-resolution photolithography,” J. Vac. Sci. Technol. B 26(1), L19 (2008).
[CrossRef]

Microelectron. Eng. (1)

A. Lebib, Y. Chen, F. Carcenac, E. Cambril, L. Manin, L. Couraud, and H. Launois, “Tri-layer systems for nanoimprint lithography with an improved process latitude,” Microelectron. Eng. 53(1-4), 175–178 (2000).
[CrossRef]

N. J. Phys. (1)

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, “Realization of optical superlens imaging below the diffraction limit,” N. J. Phys. 7, 255 (2005).
[CrossRef]

Nat. Mater. (1)

M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, “Transfer printing by kinetic control of adhesion to an elatomeric stamp,” Nat. Mater. 5(1), 33–38 (2005).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (1)

W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based on metal-dielectric composites,” Phys. Rev. B 72(19), 193101 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. Zhou, N. Lafferty, B. W. Smith, and J. H. Burnett, “Immersion lithography with numerical apertures above 2.0 using high index optical materials,” Proc. SPIE 6520, 65204T (2007).
[CrossRef]

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[CrossRef] [PubMed]

Other (3)

A. K.-K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE Publications, 2001).

H. J. Levinson, Principle of Optical Lithography (SPIE Press, 2005).

E. D. Palik, Handbook of Optical Constants of Solids II (Academic Press, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

The proposed 193nm superlens structure consists of silica substrate layer, W mask layer, dielectric material layer, Al superlens layer, and photo resist layer.

Fig. 2
Fig. 2

Normalized power distribution simulations at different positions behind the superlens layer. (a), (c) and (e) are for the 1:1 periodic feature and (b), (d) and (f) are for the two-slit feature. (a) and (b) have an index of 1.96 for the dielectric material. (c) and (d) have an index of 2.02 for the dielectric material. (e) and (f) have an index of 2.14 for the dielectric material.

Fig. 3
Fig. 3

(a), (c) and (e) are the calculated image contrast under different index value of the dielectric material. (a) Index value is 1.96. (c) Index value is 2.02. (e) Index value is 2.14. (b), (d) and (f) are CD through focus calculations under different index value of the dielectric material. (b) Index value is 1.96. (d) Index value is 2.02. (f) Index value is 2.14.

Tables (1)

Tables Icon

Table 1 CD-Through-Focus Calculation Results for Periodic Feature and Two-slit Feature

Metrics