Abstract

The feasibility of implementing 128-QAM in off-the-shelf component-based real-time optical OFDM (OOFDM) transceivers incorporating advanced channel estimation, on-line performance monitoring and live parameter optimisation, is experimentally investigated, for the first time, in intensity-modulation and direct-detection (IMDD) single-mode fibre (SMF) and multi-mode fibre (MMF) transmission systems involving directly modulated DFB lasers. The highest ever spectral efficiency of 5.25bit/s/Hz is demonstrated successfully in the aforementioned simple systems. Experimental investigations show that, it is feasible to transmit 5.25Gb/s 128-QAM-encoded OOFDM real-time signals over 25km MetroCorTM SMFs and 500m 62.5/125μm OM1 MMFs. The impact of key parameters on the transmission performance of the real-time OOFDM transceivers with 128-QAM encoding are explored, based on which optimum signal clipping ratios are identified.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
    [CrossRef]
  2. T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s for upstream transmission by remote modulation of 1 GHz RSOA using adaptively modulated optical OFDM for WDM-PON single fiber architecture,” European Conference on Optical Communication (ECOC), (Brussels, 2008), PD paper Th.3.F.1.
  3. S. C. J. Lee, F. Breyer, S. Randel, R. Gaudino, G. Bosco, A. Bluschke, M. Matthews, P. Rietzsch, R. Steglich, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for maximizing transmission rate in step-index plastic optical fibres,” J. Lightwave Technol. 27(11), 1503–1513 (2009).
    [CrossRef]
  4. D. Qian, J. Hu, P. N. Ji, and T. Wang, “10-Gb/s OFDMA-PON for delivery of heterogeneous services,” Optical Fibre Communication/National Fibre Optic Engineers Conference (OFC/NFOEC), (OSA, 2008), Paper OWH4.
  5. R. P. Giddings, X. Q. Jin, H. H. Kee, X. L. Yang, and J. M. Tang, “First experimental demonstration of real-time optical OFDM transceivers”, European Conference on Optical Communication (ECOC) (Vienna, Austria, 2009), Paper 6.6.1.
  6. R. P. Giddings, X. Q. Jin, H. H. Kee, X. L. Yang, and J. M. Tang, “Real-time implementation of optical OFDM transmitters and receivers for practical end-to-end optical transmission systems,” Electron. Lett. 45(15), 800–802 (2009).
    [CrossRef]
  7. R. P. Giddings, X. Q. Jin, and J. M. Tang, “Experimental demonstration of real-time 3Gb/s optical OFDM transceivers,” Opt. Express 17(19), 16654–16665 (2009).
    [CrossRef] [PubMed]
  8. X. Q. Jin, R. P. Giddings, and J. M. Tang, “Real-time transmission of 3Gb/s 16-QAM encoded optical OFDM signals over 75km SMFs with negative power penalties,” Opt. Express 17(17), 14574–14585 (2009).
    [CrossRef] [PubMed]
  9. Q. Yang, S. Chen, Y. Ma, and W. Shieh, “Real-time reception of multi-gigabit coherent optical OFDM signals,” Opt. Express 17(10), 7985–7992 (2009).
    [CrossRef] [PubMed]
  10. S. Chen, Y. Yang, Y. Ma, and W. Shieh, “Real-time multi-gigabit receiver for coherent optical MIMO-OFDM signals,” J. Lightwave Technol. 27(16), 3699–3704 (2009).
    [CrossRef]
  11. R. P. Giddings, X. Q. Jin, and J. M. Tang, “First experimental demonstration of 6Gb/s real-time optical OFDM transceivers incorporating channel estimation and variable power loading,” Opt. Express 17(22), 19727–19738 (2009).
    [CrossRef] [PubMed]
  12. W. Shieh, R. S. Tucker, W. Chen, X. Yi, and G. Pendock, “Optical performance monitoring in coherent optical OFDM systems,” Opt. Express 15(2), 350–356 (2007).
    [CrossRef] [PubMed]
  13. J. M. Tang and K. A. Shore, “Maximizing the transmission performance of adaptively modulated optical OFDM signals in multimode-fiber links by optimizing analog-to-digital converters,” J. Lightwave Technol. 25(3), 787–798 (2007).
    [CrossRef]
  14. C.-T. Lin, S.-P. Dai, W.-J. Jiang, J. Chen, Y.-M. Lin, P. T. Shih, P.-C. Peng, and S. Chi, “Experimental demonstration of optical colorless direct-detection OFDM signals with 16- and 64-QAM formats beyond 15 Gb/s,” The 34th European Conference on Optical Communication (ECOC), (Sep. 2008), Paper Mo.3.E.1.
  15. B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” J. Lightwave Technol. 26(1), 196–203 (2008).
    [CrossRef]
  16. M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally Efficient Compatible Single-Sideband Modulation for OFDM Transmission With Direct Detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
    [CrossRef]
  17. J. A. P. Morgado and A. V. T. Cartaxo, “Directly modulated laser parameters optimization for metropolitan area networks utilizing negative dispersion fibers,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1315–1324 (2003).
    [CrossRef]
  18. I. Gasulla and J. Capmany, “Modal noise impact in radio over fiber multimode fiber links,” Opt. Express 16(1), 121–126 (2008).
    [CrossRef] [PubMed]

2009

R. P. Giddings, X. Q. Jin, H. H. Kee, X. L. Yang, and J. M. Tang, “Real-time implementation of optical OFDM transmitters and receivers for practical end-to-end optical transmission systems,” Electron. Lett. 45(15), 800–802 (2009).
[CrossRef]

J. Armstrong, “OFDM for optical communications,” J. Lightwave Technol. 27(3), 189–204 (2009).
[CrossRef]

Q. Yang, S. Chen, Y. Ma, and W. Shieh, “Real-time reception of multi-gigabit coherent optical OFDM signals,” Opt. Express 17(10), 7985–7992 (2009).
[CrossRef] [PubMed]

S. C. J. Lee, F. Breyer, S. Randel, R. Gaudino, G. Bosco, A. Bluschke, M. Matthews, P. Rietzsch, R. Steglich, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for maximizing transmission rate in step-index plastic optical fibres,” J. Lightwave Technol. 27(11), 1503–1513 (2009).
[CrossRef]

X. Q. Jin, R. P. Giddings, and J. M. Tang, “Real-time transmission of 3Gb/s 16-QAM encoded optical OFDM signals over 75km SMFs with negative power penalties,” Opt. Express 17(17), 14574–14585 (2009).
[CrossRef] [PubMed]

S. Chen, Y. Yang, Y. Ma, and W. Shieh, “Real-time multi-gigabit receiver for coherent optical MIMO-OFDM signals,” J. Lightwave Technol. 27(16), 3699–3704 (2009).
[CrossRef]

R. P. Giddings, X. Q. Jin, and J. M. Tang, “Experimental demonstration of real-time 3Gb/s optical OFDM transceivers,” Opt. Express 17(19), 16654–16665 (2009).
[CrossRef] [PubMed]

R. P. Giddings, X. Q. Jin, and J. M. Tang, “First experimental demonstration of 6Gb/s real-time optical OFDM transceivers incorporating channel estimation and variable power loading,” Opt. Express 17(22), 19727–19738 (2009).
[CrossRef] [PubMed]

2008

2007

2003

J. A. P. Morgado and A. V. T. Cartaxo, “Directly modulated laser parameters optimization for metropolitan area networks utilizing negative dispersion fibers,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1315–1324 (2003).
[CrossRef]

Armstrong, J.

Bluschke, A.

Bosco, G.

Breyer, F.

S. C. J. Lee, F. Breyer, S. Randel, R. Gaudino, G. Bosco, A. Bluschke, M. Matthews, P. Rietzsch, R. Steglich, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for maximizing transmission rate in step-index plastic optical fibres,” J. Lightwave Technol. 27(11), 1503–1513 (2009).
[CrossRef]

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally Efficient Compatible Single-Sideband Modulation for OFDM Transmission With Direct Detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Bunge, C. A.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally Efficient Compatible Single-Sideband Modulation for OFDM Transmission With Direct Detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Capmany, J.

Cartaxo, A. V. T.

J. A. P. Morgado and A. V. T. Cartaxo, “Directly modulated laser parameters optimization for metropolitan area networks utilizing negative dispersion fibers,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1315–1324 (2003).
[CrossRef]

Chen, S.

Chen, W.

Gasulla, I.

Gaudino, R.

Giddings, R. P.

Jin, X. Q.

Kee, H. H.

R. P. Giddings, X. Q. Jin, H. H. Kee, X. L. Yang, and J. M. Tang, “Real-time implementation of optical OFDM transmitters and receivers for practical end-to-end optical transmission systems,” Electron. Lett. 45(15), 800–802 (2009).
[CrossRef]

Koonen, A. M. J.

Lee, S. C. J.

S. C. J. Lee, F. Breyer, S. Randel, R. Gaudino, G. Bosco, A. Bluschke, M. Matthews, P. Rietzsch, R. Steglich, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for maximizing transmission rate in step-index plastic optical fibres,” J. Lightwave Technol. 27(11), 1503–1513 (2009).
[CrossRef]

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally Efficient Compatible Single-Sideband Modulation for OFDM Transmission With Direct Detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Lowery, A. J.

Ma, Y.

Matthews, M.

Morgado, J. A. P.

J. A. P. Morgado and A. V. T. Cartaxo, “Directly modulated laser parameters optimization for metropolitan area networks utilizing negative dispersion fibers,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1315–1324 (2003).
[CrossRef]

Pendock, G.

Petermann, K.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally Efficient Compatible Single-Sideband Modulation for OFDM Transmission With Direct Detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Randel, S.

S. C. J. Lee, F. Breyer, S. Randel, R. Gaudino, G. Bosco, A. Bluschke, M. Matthews, P. Rietzsch, R. Steglich, H. P. A. van den Boom, and A. M. J. Koonen, “Discrete multitone modulation for maximizing transmission rate in step-index plastic optical fibres,” J. Lightwave Technol. 27(11), 1503–1513 (2009).
[CrossRef]

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally Efficient Compatible Single-Sideband Modulation for OFDM Transmission With Direct Detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Rietzsch, P.

Schmidt, B. J. C.

Schuster, M.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally Efficient Compatible Single-Sideband Modulation for OFDM Transmission With Direct Detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Shieh, W.

Shore, K. A.

Spinnler, B.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally Efficient Compatible Single-Sideband Modulation for OFDM Transmission With Direct Detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

Steglich, R.

Tang, J. M.

Tucker, R. S.

van den Boom, H. P. A.

Yang, Q.

Yang, X. L.

R. P. Giddings, X. Q. Jin, H. H. Kee, X. L. Yang, and J. M. Tang, “Real-time implementation of optical OFDM transmitters and receivers for practical end-to-end optical transmission systems,” Electron. Lett. 45(15), 800–802 (2009).
[CrossRef]

Yang, Y.

Yi, X.

Electron. Lett.

R. P. Giddings, X. Q. Jin, H. H. Kee, X. L. Yang, and J. M. Tang, “Real-time implementation of optical OFDM transmitters and receivers for practical end-to-end optical transmission systems,” Electron. Lett. 45(15), 800–802 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. A. P. Morgado and A. V. T. Cartaxo, “Directly modulated laser parameters optimization for metropolitan area networks utilizing negative dispersion fibers,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1315–1324 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, and K. Petermann, “Spectrally Efficient Compatible Single-Sideband Modulation for OFDM Transmission With Direct Detection,” IEEE Photon. Technol. Lett. 20(9), 670–672 (2008).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

T. Duong, N. Genay, P. Chanclou, B. Charbonnier, A. Pizzinat, and R. Brenot, “Experimental demonstration of 10 Gbit/s for upstream transmission by remote modulation of 1 GHz RSOA using adaptively modulated optical OFDM for WDM-PON single fiber architecture,” European Conference on Optical Communication (ECOC), (Brussels, 2008), PD paper Th.3.F.1.

C.-T. Lin, S.-P. Dai, W.-J. Jiang, J. Chen, Y.-M. Lin, P. T. Shih, P.-C. Peng, and S. Chi, “Experimental demonstration of optical colorless direct-detection OFDM signals with 16- and 64-QAM formats beyond 15 Gb/s,” The 34th European Conference on Optical Communication (ECOC), (Sep. 2008), Paper Mo.3.E.1.

D. Qian, J. Hu, P. N. Ji, and T. Wang, “10-Gb/s OFDMA-PON for delivery of heterogeneous services,” Optical Fibre Communication/National Fibre Optic Engineers Conference (OFC/NFOEC), (OSA, 2008), Paper OWH4.

R. P. Giddings, X. Q. Jin, H. H. Kee, X. L. Yang, and J. M. Tang, “First experimental demonstration of real-time optical OFDM transceivers”, European Conference on Optical Communication (ECOC) (Vienna, Austria, 2009), Paper 6.6.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental transmission system setup.

Fig. 2
Fig. 2

Optimization of signal clipping ratio for analogue back-to-back and 25km MetroCorTM SMF transmission. ele: electrical back-to-back.

Fig. 3
Fig. 3

Signal constellations recorded after channel equalization for signal modulation formats and transmission system configurations.

Fig. 4
Fig. 4

BER performance of real-time 5.25Gb/s 128-QAM- (4.5Gb/s 64-QAM)-encoded OOFDM signals over MetroCorTM SMFs of different lengths.

Fig. 5
Fig. 5

System performance characteristics. The normalized system frequency response is measured using real-time 64-QAM-encoded OOFDM signals. The error distribution is measured at BERs of 1.0 × 10−3.

Fig. 6
Fig. 6

BER performance of real-time 5.25Gb/s 128-QAM-encoded OOFDM signals over MMFs of different lengths.

Metrics