Abstract

We propose and demonstrate phase-sensitive amplification based on cascaded second harmonic generation and difference frequency generation within a periodically poled lithium niobate waveguide. Excellent agreement between our numerical simulations and proof-of-principle experiments using a 3-cm waveguide device operating at wavelengths around 1550 nm is obtained. Our experiments confirm the validity and practicality of the approach and illustrate the broad gain bandwidths achievable. Additional simulation results show that the maximum gain/attenuation factor increases quadratically with input pump power, reaching a value of ± 19.0dB at input pump powers of 33 dBm for a 3 cm-long waveguide. Increased gains/reduced powers for a fixed gain could be achieved using longer crystals.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D Part. Fields 26(8), 1817–1839 (1982).
    [CrossRef]
  2. J. A. Levenson, I. Abram, T. Rivera, and P. Grangier, “Reduction of quantum-noise in optical parametric amplification,” J. Opt. Soc. Am. B 10(11), 2233–2238 (1993).
    [CrossRef]
  3. Z. Y. Ou, S. F. Pereira, and H. J. Kimble, “Quantum noise reduction in optical amplification,” Phys. Rev. Lett. 70(21), 3239–3242 (1993).
    [CrossRef] [PubMed]
  4. K. Croussore, I. Kim, Y. Han, C. Kim, G. Li, and S. Radic, “Demonstration of phase-regeneration of DPSK signals based on phase-sensitive amplification,” Opt. Express 13(11), 3945–3950 (2005).
    [CrossRef] [PubMed]
  5. K. Croussore and G. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
    [CrossRef]
  6. R.-D. Li, P. Kumar, and W. L. Kath, “Dispersion compensation with phase-sensitive optical amplifiers,” J. Lightwave Technol. 12(3), 541–549 (1994).
    [CrossRef]
  7. W. Imajuku and A. Takada, “Reduction of fiber-nonlinearity-enhanced amplifier noise by means of phase-sensitive amplifiers,” Opt. Lett. 22(1), 31–33 (1997).
    [CrossRef] [PubMed]
  8. D. J. Lovering, J. A. Levenson, P. Vidakovic, J. Webjörn, and P. St. J. Russell, “Noiseless optical amplification in quasi-phase-matched bulk lithium niobate,” Opt. Lett. 21(18), 1439–1441 (1996).
    [CrossRef] [PubMed]
  9. T. Tajima, Y. Etou, and T. Hirano, “Parametric amplification in a periodically poled lithium niobate waveguide at telecommunication wavelength,” in Proceedings of International Quantum Electronics Conference (Toshi Center Hotel Tokyo, 2005), pp. 1131–1132.
  10. Y. Eto, T. Tajima, Y. Zhang, and T. Hirano, “Observation of squeezed light at 1.535 microm using a pulsed homodyne detector,” Opt. Lett. 32(12), 1698–1700 (2007).
    [CrossRef] [PubMed]
  11. Y. Eto, T. Tajima, Y. Zhang, and T. Hirano, “Observation of quadrature squeezing in a χ2 nonlinear waveguide using a temporally shaped local oscillator pulse,” Opt. Express 16(14), 10650–16657 (2008).
    [CrossRef] [PubMed]
  12. H. P. Yuen and J. H. Shapiro, “Generation and detection of two-photon coherent states in degenerate four-wave mixing,” Opt. Lett. 4(10), 334–336 (1979).
    [CrossRef] [PubMed]
  13. P. Kumar and J. H. Shapiro, “Squeezed-state generation via forward degenerate four-wave mixing,” Phys. Rev. A 30(3), 1568–1571 (1984).
    [CrossRef]
  14. C. J. McKinstrie and S. Radic, “Phase-sensitive amplification in a fiber,” Opt. Express 12(20), 4973–4979 (2004).
    [CrossRef] [PubMed]
  15. R. Tang, J. Lasri, P. S. Devgan, V. Grigoryan, P. Kumar, and M. Vasilyev, “Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input,” Opt. Express 13(26), 10483–10493 (2005).
    [CrossRef] [PubMed]
  16. R. Tang, P. S. Devgan, V. S. Grigoryan, P. Kumar, and M. Vasilyev, “In-line phase-sensitive amplification of multi-channel CW signals based on frequency nondegenerate four-wave-mixing in fiber,” Opt. Express 16(12), 9046–9053 (2008).
    [CrossRef] [PubMed]
  17. C. Lundström, J. Kakande, P. A. Andrekson, P. Petropoulos, F. Parmigiani, and D. J. Richardson, “Experimental comparison of gain and saturation characteristics of a parametric amplifier in phase-sensitive and phase-insensitive mode,” presented at the European Conference on Optical Communication, Austria Center Vienna, Vienna, 20–24 Sept. 2009.
  18. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
    [CrossRef]
  19. K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
    [CrossRef]
  20. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
    [CrossRef]
  21. J. Wang, J. Sun, X. Zhang, and D. Huang, “All-optical tunable wavelength conversion with extinction ratio enhancement using periodically poled lithium niobate waveguides,” J. Lightwave Technol. 26(17), 3137–3148 (2008).
    [CrossRef]
  22. J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
    [CrossRef]
  23. J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
    [CrossRef]
  24. H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, “Wavelength conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device,” Opt. Quantum Electron. 33(7/10), 953–961 (2001).
    [CrossRef]
  25. Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
    [CrossRef]
  26. K. Gallo and G. Assanto, “Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16(5), 741–753 (1999).
    [CrossRef]
  27. C. Liberale, I. Cristiani, L. Razzari, and V. Degiorgio, “Numerical study of cascaded wavelength conversion in quadratic media,” J. Opt. A 4, 457–462 (2002).
    [CrossRef]
  28. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B 14(9), 2268–2294 (1997).
    [CrossRef]
  29. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
    [CrossRef]
  30. S.-K. Choi, M. Vasilyev, and P. Kumar, “Noiseless optical amplification of images,” Phys. Rev. Lett. 83(10), 1938–1941 (1999).
    [CrossRef]

2009 (1)

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[CrossRef]

2008 (4)

2007 (3)

Y. Eto, T. Tajima, Y. Zhang, and T. Hirano, “Observation of squeezed light at 1.535 microm using a pulsed homodyne detector,” Opt. Lett. 32(12), 1698–1700 (2007).
[CrossRef] [PubMed]

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
[CrossRef]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

2006 (1)

2005 (2)

2004 (1)

2002 (1)

C. Liberale, I. Cristiani, L. Razzari, and V. Degiorgio, “Numerical study of cascaded wavelength conversion in quadratic media,” J. Opt. A 4, 457–462 (2002).
[CrossRef]

2001 (1)

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, “Wavelength conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device,” Opt. Quantum Electron. 33(7/10), 953–961 (2001).
[CrossRef]

1999 (3)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

K. Gallo and G. Assanto, “Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16(5), 741–753 (1999).
[CrossRef]

S.-K. Choi, M. Vasilyev, and P. Kumar, “Noiseless optical amplification of images,” Phys. Rev. Lett. 83(10), 1938–1941 (1999).
[CrossRef]

1997 (3)

1996 (1)

1994 (1)

R.-D. Li, P. Kumar, and W. L. Kath, “Dispersion compensation with phase-sensitive optical amplifiers,” J. Lightwave Technol. 12(3), 541–549 (1994).
[CrossRef]

1993 (2)

J. A. Levenson, I. Abram, T. Rivera, and P. Grangier, “Reduction of quantum-noise in optical parametric amplification,” J. Opt. Soc. Am. B 10(11), 2233–2238 (1993).
[CrossRef]

Z. Y. Ou, S. F. Pereira, and H. J. Kimble, “Quantum noise reduction in optical amplification,” Phys. Rev. Lett. 70(21), 3239–3242 (1993).
[CrossRef] [PubMed]

1984 (1)

P. Kumar and J. H. Shapiro, “Squeezed-state generation via forward degenerate four-wave mixing,” Phys. Rev. A 30(3), 1568–1571 (1984).
[CrossRef]

1982 (1)

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D Part. Fields 26(8), 1817–1839 (1982).
[CrossRef]

1979 (1)

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Abram, I.

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Assanto, G.

K. Gallo and G. Assanto, “Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16(5), 741–753 (1999).
[CrossRef]

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Brener, I.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Caves, C. M.

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D Part. Fields 26(8), 1817–1839 (1982).
[CrossRef]

Chaban, E. E.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Choi, S.-K.

S.-K. Choi, M. Vasilyev, and P. Kumar, “Noiseless optical amplification of images,” Phys. Rev. Lett. 83(10), 1938–1941 (1999).
[CrossRef]

Chou, M. H.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Christman, S. B.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Cristiani, I.

C. Liberale, I. Cristiani, L. Razzari, and V. Degiorgio, “Numerical study of cascaded wavelength conversion in quadratic media,” J. Opt. A 4, 457–462 (2002).
[CrossRef]

Croussore, K.

K. Croussore and G. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
[CrossRef]

K. Croussore, I. Kim, Y. Han, C. Kim, G. Li, and S. Radic, “Demonstration of phase-regeneration of DPSK signals based on phase-sensitive amplification,” Opt. Express 13(11), 3945–3950 (2005).
[CrossRef] [PubMed]

Degiorgio, V.

C. Liberale, I. Cristiani, L. Razzari, and V. Degiorgio, “Numerical study of cascaded wavelength conversion in quadratic media,” J. Opt. A 4, 457–462 (2002).
[CrossRef]

Devgan, P. S.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Eto, Y.

Fejer, M. M.

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[CrossRef]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Fujimura, M.

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, “Wavelength conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device,” Opt. Quantum Electron. 33(7/10), 953–961 (2001).
[CrossRef]

Gaeta, A. L.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Gallo, K.

K. Gallo and G. Assanto, “Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16(5), 741–753 (1999).
[CrossRef]

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
[CrossRef]

Giltrelli, M.

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
[CrossRef]

Grangier, P.

Grigoryan, V.

Grigoryan, V. S.

Han, Y.

Hirano, T.

Huang, D.

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[CrossRef]

J. Wang, J. Sun, X. Zhang, and D. Huang, “All-optical tunable wavelength conversion with extinction ratio enhancement using periodically poled lithium niobate waveguides,” J. Lightwave Technol. 26(17), 3137–3148 (2008).
[CrossRef]

Imajuku, W.

Ishizuki, H.

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, “Wavelength conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device,” Opt. Quantum Electron. 33(7/10), 953–961 (2001).
[CrossRef]

Ito, R.

Kath, W. L.

R.-D. Li, P. Kumar, and W. L. Kath, “Dispersion compensation with phase-sensitive optical amplifiers,” J. Lightwave Technol. 12(3), 541–549 (1994).
[CrossRef]

Kim, C.

Kim, I.

Kimble, H. J.

Z. Y. Ou, S. F. Pereira, and H. J. Kimble, “Quantum noise reduction in optical amplification,” Phys. Rev. Lett. 70(21), 3239–3242 (1993).
[CrossRef] [PubMed]

Kitamoto, A.

Kondo, T.

Kumar, P.

R. Tang, P. S. Devgan, V. S. Grigoryan, P. Kumar, and M. Vasilyev, “In-line phase-sensitive amplification of multi-channel CW signals based on frequency nondegenerate four-wave-mixing in fiber,” Opt. Express 16(12), 9046–9053 (2008).
[CrossRef] [PubMed]

R. Tang, J. Lasri, P. S. Devgan, V. Grigoryan, P. Kumar, and M. Vasilyev, “Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input,” Opt. Express 13(26), 10483–10493 (2005).
[CrossRef] [PubMed]

S.-K. Choi, M. Vasilyev, and P. Kumar, “Noiseless optical amplification of images,” Phys. Rev. Lett. 83(10), 1938–1941 (1999).
[CrossRef]

R.-D. Li, P. Kumar, and W. L. Kath, “Dispersion compensation with phase-sensitive optical amplifiers,” J. Lightwave Technol. 12(3), 541–549 (1994).
[CrossRef]

P. Kumar and J. H. Shapiro, “Squeezed-state generation via forward degenerate four-wave mixing,” Phys. Rev. A 30(3), 1568–1571 (1984).
[CrossRef]

Kumar, S.

Langrock, C.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
[CrossRef]

Lasri, J.

Levenson, J. A.

Li, G.

K. Croussore and G. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
[CrossRef]

K. Croussore, I. Kim, Y. Han, C. Kim, G. Li, and S. Radic, “Demonstration of phase-regeneration of DPSK signals based on phase-sensitive amplification,” Opt. Express 13(11), 3945–3950 (2005).
[CrossRef] [PubMed]

Li, R.-D.

R.-D. Li, P. Kumar, and W. L. Kath, “Dispersion compensation with phase-sensitive optical amplifiers,” J. Lightwave Technol. 12(3), 541–549 (1994).
[CrossRef]

Liberale, C.

C. Liberale, I. Cristiani, L. Razzari, and V. Degiorgio, “Numerical study of cascaded wavelength conversion in quadratic media,” J. Opt. A 4, 457–462 (2002).
[CrossRef]

Lovering, D. J.

McGeehan, J. E.

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
[CrossRef]

McKinstrie, C. J.

Nishihara, H.

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, “Wavelength conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device,” Opt. Quantum Electron. 33(7/10), 953–961 (2001).
[CrossRef]

Ou, Z. Y.

Z. Y. Ou, S. F. Pereira, and H. J. Kimble, “Quantum noise reduction in optical amplification,” Phys. Rev. Lett. 70(21), 3239–3242 (1993).
[CrossRef] [PubMed]

Pereira, S. F.

Z. Y. Ou, S. F. Pereira, and H. J. Kimble, “Quantum noise reduction in optical amplification,” Phys. Rev. Lett. 70(21), 3239–3242 (1993).
[CrossRef] [PubMed]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Radic, S.

Razzari, L.

C. Liberale, I. Cristiani, L. Razzari, and V. Degiorgio, “Numerical study of cascaded wavelength conversion in quadratic media,” J. Opt. A 4, 457–462 (2002).
[CrossRef]

Rivera, T.

Roussev, R.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Russell, P. St. J.

Shapiro, J. H.

P. Kumar and J. H. Shapiro, “Squeezed-state generation via forward degenerate four-wave mixing,” Phys. Rev. A 30(3), 1568–1571 (1984).
[CrossRef]

H. P. Yuen and J. H. Shapiro, “Generation and detection of two-photon coherent states in degenerate four-wave mixing,” Opt. Lett. 4(10), 334–336 (1979).
[CrossRef] [PubMed]

Sharping, J. E.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Shirane, M.

Shoji, I.

Stegeman, G. I.

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
[CrossRef]

Suhara, T.

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, “Wavelength conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device,” Opt. Quantum Electron. 33(7/10), 953–961 (2001).
[CrossRef]

Sun, J.

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[CrossRef]

J. Wang, J. Sun, X. Zhang, and D. Huang, “All-optical tunable wavelength conversion with extinction ratio enhancement using periodically poled lithium niobate waveguides,” J. Lightwave Technol. 26(17), 3137–3148 (2008).
[CrossRef]

Tajima, T.

Takada, A.

Tang, R.

Vasilyev, M.

Vidakovic, P.

Wang, J.

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[CrossRef]

J. Wang, J. Sun, X. Zhang, and D. Huang, “All-optical tunable wavelength conversion with extinction ratio enhancement using periodically poled lithium niobate waveguides,” J. Lightwave Technol. 26(17), 3137–3148 (2008).
[CrossRef]

Wang, Y.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Webjörn, J.

Willner, A. E.

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
[CrossRef]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24(7), 2579–2592 (2006).
[CrossRef]

Yan, L.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Yu, C.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

Yuen, H. P.

Zhang, X.

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[CrossRef]

J. Wang, J. Sun, X. Zhang, and D. Huang, “All-optical tunable wavelength conversion with extinction ratio enhancement using periodically poled lithium niobate waveguides,” J. Lightwave Technol. 26(17), 3137–3148 (2008).
[CrossRef]

Zhang, Y.

Appl. Phys. Lett. (1)

K. Gallo, G. Assanto, and G. I. Stegeman, “Efficient wavelength shifting over the erbium amplifier bandwidth via cascaded second order processes in lithium niobate waveguides,” Appl. Phys. Lett. 71(8), 1020–1022 (1997).
[CrossRef]

Electron. Lett. (1)

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43(7), 409–410 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45(2), 195–205 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Croussore and G. Li, “Phase and amplitude regeneration of differential phase-shift keyed signals using phase-sensitive amplification,” IEEE J. Sel. Top. Quantum Electron. 14(3), 648–658 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photon. Technol. Lett. 19(11), 861–863 (2007).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. A (1)

C. Liberale, I. Cristiani, L. Razzari, and V. Degiorgio, “Numerical study of cascaded wavelength conversion in quadratic media,” J. Opt. A 4, 457–462 (2002).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Express (5)

Opt. Lett. (4)

Opt. Quantum Electron. (1)

H. Ishizuki, T. Suhara, M. Fujimura, and H. Nishihara, “Wavelength conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device,” Opt. Quantum Electron. 33(7/10), 953–961 (2001).
[CrossRef]

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127(6), 1918–1939 (1962).
[CrossRef]

Phys. Rev. A (1)

P. Kumar and J. H. Shapiro, “Squeezed-state generation via forward degenerate four-wave mixing,” Phys. Rev. A 30(3), 1568–1571 (1984).
[CrossRef]

Phys. Rev. D Part. Fields (1)

C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev. D Part. Fields 26(8), 1817–1839 (1982).
[CrossRef]

Phys. Rev. Lett. (2)

Z. Y. Ou, S. F. Pereira, and H. J. Kimble, “Quantum noise reduction in optical amplification,” Phys. Rev. Lett. 70(21), 3239–3242 (1993).
[CrossRef] [PubMed]

S.-K. Choi, M. Vasilyev, and P. Kumar, “Noiseless optical amplification of images,” Phys. Rev. Lett. 83(10), 1938–1941 (1999).
[CrossRef]

Other (2)

T. Tajima, Y. Etou, and T. Hirano, “Parametric amplification in a periodically poled lithium niobate waveguide at telecommunication wavelength,” in Proceedings of International Quantum Electronics Conference (Toshi Center Hotel Tokyo, 2005), pp. 1131–1132.

C. Lundström, J. Kakande, P. A. Andrekson, P. Petropoulos, F. Parmigiani, and D. J. Richardson, “Experimental comparison of gain and saturation characteristics of a parametric amplifier in phase-sensitive and phase-insensitive mode,” presented at the European Conference on Optical Communication, Austria Center Vienna, Vienna, 20–24 Sept. 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the cSHG/DFG process in a PPLN waveguide. The relative phases among the input waves need to be initially locked.

Fig. 2
Fig. 2

(a) Calculated signal gain plotted as a function of the initial relative pump phase for a crystal length of 30 mm and 50 mm at an input pump power of 33 dBm, and (b) Variation of maximum, minimum PSA gain and PIA gain as a function of the input pump power for a crystal length of 30 mm.

Fig. 3
Fig. 3

(a) Maximum signal gain as a function of crystal length for an input pump power of 33 dBm, and (b) Calculated maximum PSA gain plotted as a function of the signal wavelength at an input pump power of 33 dBm.

Fig. 4
Fig. 4

Schematic for the proposed frequency non-degenerate PSA based on the cSHG/DFG process in the PPLN waveguide.

Fig. 5
Fig. 5

(a) Measured output spectra of three interacting waves showing amplification and deamplification, and (b) the measured and calculated phase-sensitive gain plotted as a function of initial pump phase for PIA and PSA operation.

Fig. 6
Fig. 6

Variation of the maximum and minimum points of the phase-sensitive signal gain for several signal wavelengths.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

dEp(z)dz=αp2Ep(z)+iκppωpESH(z)Ep*(z)eiΔkppz,
dESH(z)dz=αSH2ESH(z)+iκppωpEp2(z)eiΔkppz+2iκsiωpEs(z)Ei(z)eiΔksiz,
dEs(z)dz=αs2Es(z)+iκsiωsESH(z)Ei*(z)eiΔksiz,
dEi(z)dz=αi2Ei(z)+iκsiωiESH(z)Es*(z)eiΔksiz,
κpp=deff2μ0cnp2nSHAeff,
κsi=deff2μ0cnsninSHAeff,
Δkpp=kSH2kp2πΛ,
Δksi=ks+kikSH+2πΛ,
Ej(z)Aj(z)eiϕj(z),
dAp(z)dz=αp2Ap(z)κppωpASH(z)Ap(z)sinθ(z),
dASH(z)dz=αSH2ASH(z)+κppωpAp2(z)sinθ(z)2κsiωpAs(z)Ai(z)sinψ(z),
dAs(z)dz=αs2As(z)+κsiωsASH(z)Ai(z)sinψ(z),
dAi(z)dz=αi2Ai(z)+κsiωiASH(z)As(z)sinψ(z),
dθ(z)dz=(κppωpAp2(z)ASH(z)2κppωpASH(z))cosθ(z)          +2κsiωpAs(z)Ai(z)ASH(z)cosψ(z)+Δkpp,
dψ(z)dz=(κsiωsASH(z)Ai(z)As(z)+κsiωiASH(z)As(z)Ai(z)2κsiωpAs(z)Ai(z)ASH(z))cosψ(z)          κppωpAp2(z)ASH(z)cosθ(z)+Δksi,
θ(z)ϕSH(z)2ϕp(z)+Δkppz,
ψ(z)ϕs(z)+ϕi(z)ϕSH(z)+Δksiz.
G[As(L)]2[As(0)]2,

Metrics