Abstract

Novel all-dielectric beam shaping elements were developed based on guided mode resonance (GMR) filters. This was achieved by spatially varying the duty cycle of a hexagonal-cell GMR filter, to locally detune from the resonant condition, which resulted in modified wavelength dependent reflection and transmission profiles, across the device aperture. This paper presents the design, fabrication, and characterization of the device and compares simulations to experimental results.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Morin, “Graded reflectivity mirror unstablelaser resonators,” Opt. Quantum Electron. 29(8), 819–866 (1997).
    [CrossRef]
  2. A. Parent and P. Lavigne, “Variable reflectivity unstable resonators for coherent laser radar emitters,” Appl. Opt. 28(5), 901–903 (1989).
    [CrossRef] [PubMed]
  3. D. Ling, J. Chen, and J. Li, “Gaussian-reflectivity mirror resonator for a high-power transverse-flow CO2 laser,” Appl. Opt. 45(13), 3158–3162 (2006).
    [CrossRef] [PubMed]
  4. A. Mossakowska-Wyszyńska, P. Witoński, and P. Szczepański, “Relaxation oscillations in a laser with a Gaussian mirror,” Appl. Opt. 41(9), 1668–1676 (2002).
    [CrossRef] [PubMed]
  5. S. Makki and J. Leger, “Mode shaping of a graded-reflectivity-mirror unstable resonator with an intra-cavity phase element,” IEEE J. Quantum Electron. 37(1), 80–86 (2001).
    [CrossRef]
  6. J. Banerji, S. Deb, R. M. Jenkins, and A. R. Davies, “Quasi-Gaussian output from dual case I waveguide resonators with mirrors of step-index reflectivity profiles,” Appl. Opt. 48(3), 539–544 (2009).
    [CrossRef] [PubMed]
  7. Y. O. Yilmaz, A. Mehta, W. S. Mohammed, and E. G. Johnson, “Fiber-optic beam shaper based on multimode interference,” Opt. Lett. 32(21), 3170–3172 (2007).
    [CrossRef] [PubMed]
  8. M. Keselbrener and S. Ruschin, “Frequency-dependent graded reflectivity mirror: characterization and laser implementation,” Appl. Opt. 38(30), 6317–6324 (1999).
    [CrossRef]
  9. G. Duplain, P. G. Verly, J. A. Dobrowolski, A. Waldorf, and S. Bussiere, “Graded-reflectance mirrors for beam quality control in laser resonators,” Appl. Opt. 32(7), 1145–1153 (1993).
    [CrossRef] [PubMed]
  10. G. Lv, C. Wei, D. Li, J. Huang, and K. Yi, “Techniques for fabrication of large-size graded reflectivity mirrors,” Opt. Eng. 47(12), 123401 (2008).
    [CrossRef]
  11. J. F. Lepage, R. Massudi, G. Anctil, S. Gilbert, M. Piché, and N. McCarthy, “Apodizing holographic gratings for the modal control of semiconductor lasers,” Appl. Opt. 36(21), 4993–4998 (1997).
    [CrossRef] [PubMed]
  12. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [CrossRef] [PubMed]
  13. Y. Ding and R. Magnusson, “Resonant leaky-mode spectral-band engineering and device applications,” Opt. Express 12(23), 5661–5674 (2004).
    [CrossRef] [PubMed]
  14. A. A. Mehta, R. C. Rumpf, Z. A. Roth, and E. G. Johnson, “Guided Mode Resonance Filter as a Spectrally Selective Feedback Element in a Double-Cladding Optical Fiber Laser,” IEEE Photon. Technol. Lett. 19(24), 2030–2032 (2007).
    [CrossRef]
  15. D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
    [CrossRef]
  16. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995).
    [CrossRef]
  17. P. Srinivasan, Z. A. Roth, M. K. Poutous, and E. G. Johnson, ““Novel method for the fabrication of spatially variant structures,” Journal of Micro/Nanolithography,” MEMS and MOEMS 8, 013010–013018 (2009).
    [CrossRef]
  18. M. K. Poutous, Z. Roth, K. Buhl, A. Pung, R. C. Rumpf, and E. G. Johnson, “Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics II, (SPIE, San Jose, CA, USA, 2009), pp. 72050Y–72059.
  19. J. Sung, H. Hockel, and E. G. Johnson, “Analog micro-optics fabrication by use of a two-dimensional binary phase-grating mask,” Opt. Lett. 30(2), 150–152 (2005).
    [CrossRef] [PubMed]

2009 (2)

J. Banerji, S. Deb, R. M. Jenkins, and A. R. Davies, “Quasi-Gaussian output from dual case I waveguide resonators with mirrors of step-index reflectivity profiles,” Appl. Opt. 48(3), 539–544 (2009).
[CrossRef] [PubMed]

P. Srinivasan, Z. A. Roth, M. K. Poutous, and E. G. Johnson, ““Novel method for the fabrication of spatially variant structures,” Journal of Micro/Nanolithography,” MEMS and MOEMS 8, 013010–013018 (2009).
[CrossRef]

2008 (1)

G. Lv, C. Wei, D. Li, J. Huang, and K. Yi, “Techniques for fabrication of large-size graded reflectivity mirrors,” Opt. Eng. 47(12), 123401 (2008).
[CrossRef]

2007 (2)

A. A. Mehta, R. C. Rumpf, Z. A. Roth, and E. G. Johnson, “Guided Mode Resonance Filter as a Spectrally Selective Feedback Element in a Double-Cladding Optical Fiber Laser,” IEEE Photon. Technol. Lett. 19(24), 2030–2032 (2007).
[CrossRef]

Y. O. Yilmaz, A. Mehta, W. S. Mohammed, and E. G. Johnson, “Fiber-optic beam shaper based on multimode interference,” Opt. Lett. 32(21), 3170–3172 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

2004 (1)

2002 (1)

2001 (1)

S. Makki and J. Leger, “Mode shaping of a graded-reflectivity-mirror unstable resonator with an intra-cavity phase element,” IEEE J. Quantum Electron. 37(1), 80–86 (2001).
[CrossRef]

1999 (1)

1997 (3)

M. Morin, “Graded reflectivity mirror unstablelaser resonators,” Opt. Quantum Electron. 29(8), 819–866 (1997).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

J. F. Lepage, R. Massudi, G. Anctil, S. Gilbert, M. Piché, and N. McCarthy, “Apodizing holographic gratings for the modal control of semiconductor lasers,” Appl. Opt. 36(21), 4993–4998 (1997).
[CrossRef] [PubMed]

1995 (1)

1993 (2)

1989 (1)

Anctil, G.

Banerji, J.

Bussiere, S.

Chen, J.

Davies, A. R.

Deb, S.

Ding, Y.

Dobrowolski, J. A.

Duplain, G.

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

Gaylord, T. K.

Gilbert, S.

Grann, E. B.

Hockel, H.

Huang, J.

G. Lv, C. Wei, D. Li, J. Huang, and K. Yi, “Techniques for fabrication of large-size graded reflectivity mirrors,” Opt. Eng. 47(12), 123401 (2008).
[CrossRef]

Jenkins, R. M.

Johnson, E. G.

P. Srinivasan, Z. A. Roth, M. K. Poutous, and E. G. Johnson, ““Novel method for the fabrication of spatially variant structures,” Journal of Micro/Nanolithography,” MEMS and MOEMS 8, 013010–013018 (2009).
[CrossRef]

A. A. Mehta, R. C. Rumpf, Z. A. Roth, and E. G. Johnson, “Guided Mode Resonance Filter as a Spectrally Selective Feedback Element in a Double-Cladding Optical Fiber Laser,” IEEE Photon. Technol. Lett. 19(24), 2030–2032 (2007).
[CrossRef]

Y. O. Yilmaz, A. Mehta, W. S. Mohammed, and E. G. Johnson, “Fiber-optic beam shaper based on multimode interference,” Opt. Lett. 32(21), 3170–3172 (2007).
[CrossRef] [PubMed]

J. Sung, H. Hockel, and E. G. Johnson, “Analog micro-optics fabrication by use of a two-dimensional binary phase-grating mask,” Opt. Lett. 30(2), 150–152 (2005).
[CrossRef] [PubMed]

Keselbrener, M.

Lavigne, P.

Leger, J.

S. Makki and J. Leger, “Mode shaping of a graded-reflectivity-mirror unstable resonator with an intra-cavity phase element,” IEEE J. Quantum Electron. 37(1), 80–86 (2001).
[CrossRef]

Lepage, J. F.

Li, D.

G. Lv, C. Wei, D. Li, J. Huang, and K. Yi, “Techniques for fabrication of large-size graded reflectivity mirrors,” Opt. Eng. 47(12), 123401 (2008).
[CrossRef]

Li, J.

Ling, D.

Lv, G.

G. Lv, C. Wei, D. Li, J. Huang, and K. Yi, “Techniques for fabrication of large-size graded reflectivity mirrors,” Opt. Eng. 47(12), 123401 (2008).
[CrossRef]

Magnusson, R.

Makki, S.

S. Makki and J. Leger, “Mode shaping of a graded-reflectivity-mirror unstable resonator with an intra-cavity phase element,” IEEE J. Quantum Electron. 37(1), 80–86 (2001).
[CrossRef]

Massudi, R.

McCarthy, N.

Mehta, A.

Mehta, A. A.

A. A. Mehta, R. C. Rumpf, Z. A. Roth, and E. G. Johnson, “Guided Mode Resonance Filter as a Spectrally Selective Feedback Element in a Double-Cladding Optical Fiber Laser,” IEEE Photon. Technol. Lett. 19(24), 2030–2032 (2007).
[CrossRef]

Mohammed, W. S.

Moharam, M. G.

Morin, M.

M. Morin, “Graded reflectivity mirror unstablelaser resonators,” Opt. Quantum Electron. 29(8), 819–866 (1997).
[CrossRef]

Mossakowska-Wyszynska, A.

Parent, A.

Piché, M.

Pommet, D. A.

Poutous, M. K.

P. Srinivasan, Z. A. Roth, M. K. Poutous, and E. G. Johnson, ““Novel method for the fabrication of spatially variant structures,” Journal of Micro/Nanolithography,” MEMS and MOEMS 8, 013010–013018 (2009).
[CrossRef]

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

Roth, Z. A.

P. Srinivasan, Z. A. Roth, M. K. Poutous, and E. G. Johnson, ““Novel method for the fabrication of spatially variant structures,” Journal of Micro/Nanolithography,” MEMS and MOEMS 8, 013010–013018 (2009).
[CrossRef]

A. A. Mehta, R. C. Rumpf, Z. A. Roth, and E. G. Johnson, “Guided Mode Resonance Filter as a Spectrally Selective Feedback Element in a Double-Cladding Optical Fiber Laser,” IEEE Photon. Technol. Lett. 19(24), 2030–2032 (2007).
[CrossRef]

Rumpf, R. C.

A. A. Mehta, R. C. Rumpf, Z. A. Roth, and E. G. Johnson, “Guided Mode Resonance Filter as a Spectrally Selective Feedback Element in a Double-Cladding Optical Fiber Laser,” IEEE Photon. Technol. Lett. 19(24), 2030–2032 (2007).
[CrossRef]

Ruschin, S.

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

Srinivasan, P.

P. Srinivasan, Z. A. Roth, M. K. Poutous, and E. G. Johnson, ““Novel method for the fabrication of spatially variant structures,” Journal of Micro/Nanolithography,” MEMS and MOEMS 8, 013010–013018 (2009).
[CrossRef]

Sung, J.

Szczepanski, P.

Verly, P. G.

Waldorf, A.

Wang, S. S.

Wei, C.

G. Lv, C. Wei, D. Li, J. Huang, and K. Yi, “Techniques for fabrication of large-size graded reflectivity mirrors,” Opt. Eng. 47(12), 123401 (2008).
[CrossRef]

Witonski, P.

Yi, K.

G. Lv, C. Wei, D. Li, J. Huang, and K. Yi, “Techniques for fabrication of large-size graded reflectivity mirrors,” Opt. Eng. 47(12), 123401 (2008).
[CrossRef]

Yilmaz, Y. O.

Appl. Opt. (8)

A. Parent and P. Lavigne, “Variable reflectivity unstable resonators for coherent laser radar emitters,” Appl. Opt. 28(5), 901–903 (1989).
[CrossRef] [PubMed]

D. Ling, J. Chen, and J. Li, “Gaussian-reflectivity mirror resonator for a high-power transverse-flow CO2 laser,” Appl. Opt. 45(13), 3158–3162 (2006).
[CrossRef] [PubMed]

A. Mossakowska-Wyszyńska, P. Witoński, and P. Szczepański, “Relaxation oscillations in a laser with a Gaussian mirror,” Appl. Opt. 41(9), 1668–1676 (2002).
[CrossRef] [PubMed]

J. Banerji, S. Deb, R. M. Jenkins, and A. R. Davies, “Quasi-Gaussian output from dual case I waveguide resonators with mirrors of step-index reflectivity profiles,” Appl. Opt. 48(3), 539–544 (2009).
[CrossRef] [PubMed]

M. Keselbrener and S. Ruschin, “Frequency-dependent graded reflectivity mirror: characterization and laser implementation,” Appl. Opt. 38(30), 6317–6324 (1999).
[CrossRef]

G. Duplain, P. G. Verly, J. A. Dobrowolski, A. Waldorf, and S. Bussiere, “Graded-reflectance mirrors for beam quality control in laser resonators,” Appl. Opt. 32(7), 1145–1153 (1993).
[CrossRef] [PubMed]

J. F. Lepage, R. Massudi, G. Anctil, S. Gilbert, M. Piché, and N. McCarthy, “Apodizing holographic gratings for the modal control of semiconductor lasers,” Appl. Opt. 36(21), 4993–4998 (1997).
[CrossRef] [PubMed]

S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (2)

D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structures,” IEEE J. Quantum Electron. 33(11), 2038–2059 (1997).
[CrossRef]

S. Makki and J. Leger, “Mode shaping of a graded-reflectivity-mirror unstable resonator with an intra-cavity phase element,” IEEE J. Quantum Electron. 37(1), 80–86 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. A. Mehta, R. C. Rumpf, Z. A. Roth, and E. G. Johnson, “Guided Mode Resonance Filter as a Spectrally Selective Feedback Element in a Double-Cladding Optical Fiber Laser,” IEEE Photon. Technol. Lett. 19(24), 2030–2032 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

MEMS and MOEMS (1)

P. Srinivasan, Z. A. Roth, M. K. Poutous, and E. G. Johnson, ““Novel method for the fabrication of spatially variant structures,” Journal of Micro/Nanolithography,” MEMS and MOEMS 8, 013010–013018 (2009).
[CrossRef]

Opt. Eng. (1)

G. Lv, C. Wei, D. Li, J. Huang, and K. Yi, “Techniques for fabrication of large-size graded reflectivity mirrors,” Opt. Eng. 47(12), 123401 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

M. Morin, “Graded reflectivity mirror unstablelaser resonators,” Opt. Quantum Electron. 29(8), 819–866 (1997).
[CrossRef]

Other (1)

M. K. Poutous, Z. Roth, K. Buhl, A. Pung, R. C. Rumpf, and E. G. Johnson, “Correlation of fabrication tolerances with the performance of guided-mode-resonance micro-optical components,” in Advanced Fabrication Technologies for Micro/Nano Optics and Photonics II, (SPIE, San Jose, CA, USA, 2009), pp. 72050Y–72059.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

A space variant GMR filter for beam shaping. Different wavelengths incident on the filter will generate different transmitted and reflected beam profiles.

Fig. 2
Fig. 2

(a) Schematic of a Guided Mode Resonance Filter (b) Spectral Reflection as a function of hole diameter in the grating region (the side bar indicates the reflection scale in fraction percent.)

Fig. 3
Fig. 3

(a) The simulated spectral reflection from the guided mode resonance filters with for different hole diameters. (b) The simulated reflection as a function of feature size for different illumination wavelengths. The spectral reflection from the element was expected to have a wider combined linewidth due to the multiple duty cycles illuminated by the beam

Fig. 4
Fig. 4

Simulated transmission profiles for an incident Gaussian beam when the radial increase in feature size from the center of the grating layer of the GMR device has: (a) a linear dependence and, (b) a quadratic dependence. Simulated reflection profiles when the radial increase in feature size from the center of the grating layer of the GMR device has: (c) a linear dependence and, (d) a quadratic dependence.

Fig. 5
Fig. 5

(a) Schematic of the aerial image intensity (U(x,y)) at the wafer plane of a lithographic stepper tool from a hexagonal grating unit-cell, that was used to create the initial latent image (b) Schematic of the the aerial image intensity from a phase only mask that was subsequently overlaid (A(X2,Y2)). In the aerial intensity images, the lighter regions represent higher exposure intensity (c) Schematic of a grating with space variant duty cycle that was obtained as a result. The local duty cycle is a function of the local dose. The duty cycle at the center of the unit space variant grating cell is the largest and decreases radially in concentric circles across the element.

Fig. 6
Fig. 6

(a) SEM image of the fabricated hexagonal cell GMR structure, with a constant duty cycle. (b) Corresponding measured spectral reflection from the device.

Fig. 7
Fig. 7

(a) Duty cycle variation as a function of spatial location from the center of the GMR grating. (b) Spectral measurement of the GMR filter with duty cycle variation

Fig. 8
Fig. 8

(a) Schematic of the optical setup for reflected beam profile measurement. The output of the tunable laser coupled to a fiber with a pigtailed collimator was incident upon the GMR based space variant reflector. The reflected beam was directed to a CCD camera by a beam splitter. (b) Schematic of the test setup for transmitted beam characterization. The space variant GMR was placed close to the collimated output from the tunable laser to minimize beam diffraction. Transmitted beam profiles were imaged onto a CCD camera.

Fig. 9
Fig. 9

(a) Measured profiles of the Gaussian beam and beam reflected from the space variant GMR mirror when illuminated at the resonant wavelength. The reflected beam profile was significantly modified due to the propagation. (b) Simulated profiles of the Gaussian beam and the reflected beam at resonance from the space variant GMR mirror after propagation to the detector plane.

Fig. 10
Fig. 10

Experimentally measured transmission profiles. (a) Input Gaussian beam, (b) Quasi-flat top profile below resonance (c) Central null in transmission at resonance and (d) Reduced diameter Gaussian beam is obtained above the measured spectral resonance

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L(d(X,Y))=(U(x,y)comb(x,y;X,Y))+A(Xn,Ym)

Metrics