Abstract

While plasmonic metamaterials find numerous applications in the field of nanophotonic devices, a device may work as a normal or plasmonic device, depending on whether it operates at the resonance mode. In this paper, the extraordinary light transmission through coaxial polygonal aperture arrays, including circle, hexagon, square, and triangle geometries, is studied using FDTD simulation. Circular, hexagonal and squared aperture arrays have similar high transmission rate, while triangular aperture array has considerably lower transmission rate. It is found that the transmission peaks reflect the resonance modes propagating along the direction of neighboring apertures. We hence rearrange the apertures from square lattice to triangle lattice to obtain a uniform resonance mode along the neighboring apertures. This leads to enhanced light transmission. The study gains understanding of new properties of the metamaterials based on plasmonic resonance.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
    [CrossRef] [PubMed]
  2. I. I. Smolyaninov, “Two-dimensional plasmonic metamaterials,” Appl. Phys., A Mater. Sci. Process. 87(2), 227–234 (2007).
    [CrossRef]
  3. I. Smolyaninov, “Nanophotonic devices based on plasmonic metamaterials,” J. Mod. Opt. 55(19), 3187–3192 (2008).
    [CrossRef]
  4. J. Wang and W. Zhou, “Subwavelength beaming using depth-tuned annular nanostructures,” J. Mod. Opt. 56(7), 919–926 (2009).
    [CrossRef]
  5. J. Wang, W. Zhou, and A. K. Asundi, “Effect of polarization on symmetry of focal spot of a plasmonic lens,” Opt. Express 17(10), 8137–8143 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-10-8137 .
    [CrossRef] [PubMed]
  6. I. Ahmed, C. E. Png, E. P. Li, and R. Vahldieck, “Electromagnetic wave propagation in a Ag nanoparticle-based plasmonic power divider,” Opt. Express 17(1), 337–345 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-1-337 .
    [CrossRef] [PubMed]
  7. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  8. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  9. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
    [CrossRef]
  10. J. A. Porto, F. J. Garcia-Vidal, and P. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
    [CrossRef]
  11. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
    [CrossRef] [PubMed]
  12. F. I. Baida and D. V. Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
    [CrossRef]
  13. F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays,” Phys. Rev. B 67(15), 155314 (2003).
    [CrossRef]
  14. F. I. Baida, A. Belkhir, D. V. Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
    [CrossRef]
  15. Y. Poujet, J. Salvi, and F. I. Baida, “90% Extraordinary optical transmission in the visible range through annular aperture metallic arrays,” Opt. Lett. 32(20), 2942–2944 (2007).
    [CrossRef] [PubMed]
  16. A. Taflove, and S. C. Hagness, Computational electrodynamics: the finite difference time-domain method (Artech House, Boston, 2005).
  17. F. D. T. D. Solutions, from Lumerical Solutions Inc., http://www.lumerical.com .
  18. D. R. Lide, ed., CRC handbook of chemistry and physics (89th Edition, CRC Press/Taylor and Francis, Boca Raton, FL, Internet Version 2009).

2009 (3)

2008 (1)

I. Smolyaninov, “Nanophotonic devices based on plasmonic metamaterials,” J. Mod. Opt. 55(19), 3187–3192 (2008).
[CrossRef]

2007 (4)

Y. Poujet, J. Salvi, and F. I. Baida, “90% Extraordinary optical transmission in the visible range through annular aperture metallic arrays,” Opt. Lett. 32(20), 2942–2944 (2007).
[CrossRef] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, “Two-dimensional plasmonic metamaterials,” Appl. Phys., A Mater. Sci. Process. 87(2), 227–234 (2007).
[CrossRef]

2006 (1)

F. I. Baida, A. Belkhir, D. V. Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

2003 (1)

F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays,” Phys. Rev. B 67(15), 155314 (2003).
[CrossRef]

2002 (1)

F. I. Baida and D. V. Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
[CrossRef]

2001 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

1999 (1)

J. A. Porto, F. J. Garcia-Vidal, and P. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Ahmed, I.

Asundi, A. K.

Baida, F. I.

Y. Poujet, J. Salvi, and F. I. Baida, “90% Extraordinary optical transmission in the visible range through annular aperture metallic arrays,” Opt. Lett. 32(20), 2942–2944 (2007).
[CrossRef] [PubMed]

F. I. Baida, A. Belkhir, D. V. Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays,” Phys. Rev. B 67(15), 155314 (2003).
[CrossRef]

F. I. Baida and D. V. Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
[CrossRef]

Belkhir, A.

F. I. Baida, A. Belkhir, D. V. Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

Davis, C. C.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Garcia-Vidal, F. J.

J. A. Porto, F. J. Garcia-Vidal, and P. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Hung, Y. J.

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Labeke, D. V.

F. I. Baida, A. Belkhir, D. V. Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

F. I. Baida and D. V. Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
[CrossRef]

Lamrous, O.

F. I. Baida, A. Belkhir, D. V. Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, E. P.

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Pendry, P. B.

J. A. Porto, F. J. Garcia-Vidal, and P. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Png, C. E.

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and P. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

Poujet, Y.

Salvi, J.

Smolyaninov, I.

I. Smolyaninov, “Nanophotonic devices based on plasmonic metamaterials,” J. Mod. Opt. 55(19), 3187–3192 (2008).
[CrossRef]

Smolyaninov, I. I.

I. I. Smolyaninov, “Two-dimensional plasmonic metamaterials,” Appl. Phys., A Mater. Sci. Process. 87(2), 227–234 (2007).
[CrossRef]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Vahldieck, R.

Van Labeke, D.

F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays,” Phys. Rev. B 67(15), 155314 (2003).
[CrossRef]

Wang, J.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Zhou, W.

Appl. Phys., A Mater. Sci. Process. (1)

I. I. Smolyaninov, “Two-dimensional plasmonic metamaterials,” Appl. Phys., A Mater. Sci. Process. 87(2), 227–234 (2007).
[CrossRef]

J. Mod. Opt. (2)

I. Smolyaninov, “Nanophotonic devices based on plasmonic metamaterials,” J. Mod. Opt. 55(19), 3187–3192 (2008).
[CrossRef]

J. Wang and W. Zhou, “Subwavelength beaming using depth-tuned annular nanostructures,” J. Mod. Opt. 56(7), 919–926 (2009).
[CrossRef]

Nature (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Commun. (1)

F. I. Baida and D. V. Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209(1-3), 17–22 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (3)

F. I. Baida and D. Van Labeke, “Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays,” Phys. Rev. B 67(15), 155314 (2003).
[CrossRef]

F. I. Baida, A. Belkhir, D. V. Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Phys. Rev. Lett. (2)

J. A. Porto, F. J. Garcia-Vidal, and P. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83(14), 2845–2848 (1999).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Science (1)

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315(5819), 1699–1701 (2007).
[CrossRef] [PubMed]

Other (3)

A. Taflove, and S. C. Hagness, Computational electrodynamics: the finite difference time-domain method (Artech House, Boston, 2005).

F. D. T. D. Solutions, from Lumerical Solutions Inc., http://www.lumerical.com .

D. R. Lide, ed., CRC handbook of chemistry and physics (89th Edition, CRC Press/Taylor and Francis, Boca Raton, FL, Internet Version 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Concentric coaxial apertures of various geometries in Ag film of 200 nm in thickness. (a) Circular aperture formed by two concentric circles with outer and inner radii Ro = 125 nm and Ri = 75 nm (slit width w 1 = 50 nm). (b) Hexagon, (c) square, and (d) triangle apertures inscribed in the two circles with width w 2 = 43nm, w 3 = 35 nm, and w 4 = 25 nm respectively.

Fig. 2
Fig. 2

Schematic of a 11 × 11 periodic array of (a) circle, (b) hexagon, (c) square, and (d) triangle with the period Λ = 400 nm and incident with a p-polarized plane wave with its electric field component in the x-direction. The geometric parameters are shown in Fig. 1.

Fig. 3
Fig. 3

Plot of transmission as a function of wavelength showing peaks for the four aperture arrays shown in Fig. 2. The shoulder at wavelength λ = 440 nm shows enhanced transmission due to the excitation of SPPs at the array period.

Fig. 4
Fig. 4

(a) Schematic of a 2 × 2 segment in a polygonal aperture array, showing a square lattice. SPPs propagate from aperture P1 towards its neighboring apertures P2, P3, and P4 in the horizontal and diagonal directions, represented by the different modes k1,sp and k2,sp . (b) Schematic of a segment in a rearranged polygonal aperture array, showing a triangle lattice. In that case, a uniform plasmonic mode is observed along the horizontal and 60° directions.

Fig. 5
Fig. 5

At the resonance wavelength λ1, total-electric-field intensity, |E|2, through a 2 × 2 segment of (a) squared and (b) triangular apertures, showing that the resonance mode propagates along the two diagonal directions. The dash lines show location of the apertures.

Fig. 6
Fig. 6

At the resonance wavelength λ2, total-electric-field intensity, |E|2, through a squared aperture segment shows the mixed resonance modes along the horizontal and two diagonal directions.

Fig. 7
Fig. 7

Area-normalized transmission, showing almost equal transmission rate for the light transmitted through circular, hexagon, and square aperture arrays. Lowest transmission rate is observed for triangle aperture array.

Fig. 8
Fig. 8

Transmission through hexagon and triangular aperture arrays with incidence of a linearly-polarized plane wave having electric field component in the 30°-direction with respect to the x-direction. The transmission for circular aperture array is shown as a reference.

Fig. 9
Fig. 9

When the polygonal apertures are arranged in triangle lattice, enhanced transmission is obtained. For circular, hexagonal, and squared aperture arrays, the same plasmonic mode is observed at 569.5 nm, but two broad shoulder peaks are observed at 623.5 and 658.2 nm for triangular aperture array. As in Fig. 8, transmission for circular aperture array arranged in square lattice is shown as a reference.

Metrics