Abstract

The damage effect of the combined irradiation of 1ω and 3ω in multilayer films was investigated. The experiments were held in both the Laser Induced Damage Threshold (LIDT) mode and the damage probability mode. Moreover, the effect of the laser pre-conditioning was also discussed. It was found that with two wavelengths illumination simultaneously, the number of the sensitive defects still govern the damage probability of the samples, and the energy absorption of the defects to pulse laser is a basic process in causing damage. Additionally, correlative theory models were built to explain the experimental results.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47(3), 113–152 (2002).
    [CrossRef]
  2. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
    [CrossRef] [PubMed]
  3. C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
    [CrossRef] [PubMed]
  4. H. Kouta, “Wavelength Dependence of Repetitive-Pulse Laser-Induced Damage Threshold in β-BaB(2)O(4).,” Appl. Opt. 38(3), 545–547 (1999).
    [CrossRef]
  5. C. J. Stolz, S. Hafeman, and T. V. Pistor, “Light intensification modeling of coating inclusions irradiated at 351 and 1053 nm,” Appl. Opt. 47(13), C162–C166 (2008).
    [CrossRef] [PubMed]
  6. P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, 
“Understanding and predicting the damage performance of KDxH2−xPO4 crystals under simultaneous exposure to 532 and 355-nm pulses,” Appl. Phys. Lett. 89(18), 181922–181923 (2006).
    [CrossRef]
  7. P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, “The energy coupling efficiency of multi-wavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals,” J. Appl. Phys. 103(8), 083122–083128 (2008).
    [CrossRef]
  8. S. Reyné, M. Loiseau, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Towards a better understanding of multi-wavelength effects on KDP crystals,” Proc. SPIE 7361, 73610 (2009).
    [CrossRef]
  9. L. Lamaignère, S. Reyne, M. Loiseau, J. C. Poncetta, and H. Bercegol, “Effect of wavelengths combination on initiation and growth of laser-induced surface damage in SiO2,” Proc. SPIE 6720, 67200 (2007).
    [CrossRef]
  10. A. N. Mary and E. D. Eugene, “Laser damage growth in fused silica with simultaneous 351nm and 1053nm irradiation,” Proc. SPIE 7132, 71321 (2008).
  11. C. J. Stolz, L. M. Sheehan, S. M. Maricle, and S. Schwartz, “A study of laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 3578, 144–153 (1998).
    [CrossRef]
  12. C. J. Stolz, L. M. Sheehan, K. Gunten, R. P. Bevis, and D. J. Smith, “The advantages of evaporation of Hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
    [CrossRef]
  13. P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, “Multiwavelength investigation of laser-damage performance in potassium dihydrogen phosphate after laser annealing,” Opt. Lett. 30(3), 221–223 (2005).
    [CrossRef] [PubMed]
  14. C. Y. Wei, J. D. Shao, H. B. He, K. Yi, and Z. X. Fan, “Mechanism initiated by nanoabsorber for UV nanosecond-pulse-driven damage of dielectric coatings,” Opt. Express 16(5), 3376–3382 (2008).
    [CrossRef] [PubMed]
  15. H. Krol, L. Gallais, C. Grezesbesset, J. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1–3), 184–189 (2005).
    [CrossRef]
  16. J. O. Porteus and S. C. Seitel, “Absolute onset of optical surface damage using distributed defect ensembles,” Appl. Opt. 23(21), 3796–3805 (1984).
    [CrossRef] [PubMed]
  17. D. Milam, R. A. Bradbury, and M. Bass, “Laser damage threshold for dielectric coating as determined by inclusions,” Appl. Phys. Lett. 23(12), 654–657 (1973).
    [CrossRef]
  18. G. Duchateau and A. Dyan, “Coupling statistics and heat transfer to study laser-induced crystal damage by nanosecond pulses,” Opt. Express 15(8), 4557–4576 (2007).
    [CrossRef] [PubMed]
  19. M. R. Lange and J. K. McIver, “Laser damage threshold predictions based on the effects of thermal and optical properties employing a spherical impurity model,” Proc. SPIE 688, 454 (1985).
  20. M. R. Lange and J. K. McIver, “Anomalous absorption in optical coatings,” Proc. SPIE 746, 515 (1987).
  21. H. A. Macleod, Thin Film Optical Filters, third edition, 2001
  22. L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nano-defect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104(5), 053120 (2008).
    [CrossRef]
  23. J. Y. Natoli, L. Gallais, B. Bertussi, A. During, M. Commandré, J. L. Rullier, F. Bonneau, and P. Combis, “Localized pulsed laser interaction with submicronic gold particles embedded in silica: a method for investigating laser damage initiation,” Opt. Express 11(7), 824–829 (2003).
    [CrossRef] [PubMed]
  24. J. Dijon, G. Ravel, and B. André, “Thermomechanical model of mirror laser damage at 1.06pm. Part 2: flat bottom pits formation,” Proc. SPIE 3578, 398–407 (1998).
    [CrossRef]
  25. M. D. Feit, A. M. Rubenchik, and J. B. Trenholme, “Simple model of laser damage initiation and conditioning in frequency conversion crystals,” Proc. SPIE 5991, 59910 (2005).
    [CrossRef]
  26. M. D. Feit and A. M. Rubenchik, “Implication of nanoabsorber initiators for damage probability curves, pulse length scaling and laser conditioning,” Proc. SPIE 5273, 74–82 (2004).
    [CrossRef]
  27. Z. L. Xia, Z. X. Fan, and J. D. Shao, “A New theory for evaluating the number density of inclusions in films,” Appl. Surf. Sci. 252(23), 8235–8238 (2006).
    [CrossRef]
  28. L. Gallais, J. Y. Natoli, and C. Amra, “Statistical study of single and multiple pulse laser-induced damage in glasses,” Opt. Express 25, 1465–1474 (2002).
  29. M. Zhou, J. D. Shao, Z. X. Fan, G. H. Hu, and Y. G. Shan, “Damage performance of thin-film beam splitter for third harmonic separation under simultaneous exposure to 1ω and 3ω pulses,” Opt. Commun. 282(15), 3132–3135 (2009).
    [CrossRef]
  30. J. Capoulade, L. Gallais, J. Y. Natoli, and M. Commandré, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt. 47(29), 5272–5280 (2008).
    [CrossRef] [PubMed]

2009 (2)

S. Reyné, M. Loiseau, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Towards a better understanding of multi-wavelength effects on KDP crystals,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

M. Zhou, J. D. Shao, Z. X. Fan, G. H. Hu, and Y. G. Shan, “Damage performance of thin-film beam splitter for third harmonic separation under simultaneous exposure to 1ω and 3ω pulses,” Opt. Commun. 282(15), 3132–3135 (2009).
[CrossRef]

2008 (6)

C. J. Stolz, S. Hafeman, and T. V. Pistor, “Light intensification modeling of coating inclusions irradiated at 351 and 1053 nm,” Appl. Opt. 47(13), C162–C166 (2008).
[CrossRef] [PubMed]

C. Y. Wei, J. D. Shao, H. B. He, K. Yi, and Z. X. Fan, “Mechanism initiated by nanoabsorber for UV nanosecond-pulse-driven damage of dielectric coatings,” Opt. Express 16(5), 3376–3382 (2008).
[CrossRef] [PubMed]

J. Capoulade, L. Gallais, J. Y. Natoli, and M. Commandré, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt. 47(29), 5272–5280 (2008).
[CrossRef] [PubMed]

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, “The energy coupling efficiency of multi-wavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals,” J. Appl. Phys. 103(8), 083122–083128 (2008).
[CrossRef]

A. N. Mary and E. D. Eugene, “Laser damage growth in fused silica with simultaneous 351nm and 1053nm irradiation,” Proc. SPIE 7132, 71321 (2008).

L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nano-defect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104(5), 053120 (2008).
[CrossRef]

2007 (2)

L. Lamaignère, S. Reyne, M. Loiseau, J. C. Poncetta, and H. Bercegol, “Effect of wavelengths combination on initiation and growth of laser-induced surface damage in SiO2,” Proc. SPIE 6720, 67200 (2007).
[CrossRef]

G. Duchateau and A. Dyan, “Coupling statistics and heat transfer to study laser-induced crystal damage by nanosecond pulses,” Opt. Express 15(8), 4557–4576 (2007).
[CrossRef] [PubMed]

2006 (2)

Z. L. Xia, Z. X. Fan, and J. D. Shao, “A New theory for evaluating the number density of inclusions in films,” Appl. Surf. Sci. 252(23), 8235–8238 (2006).
[CrossRef]

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, 
“Understanding and predicting the damage performance of KDxH2−xPO4 crystals under simultaneous exposure to 532 and 355-nm pulses,” Appl. Phys. Lett. 89(18), 181922–181923 (2006).
[CrossRef]

2005 (3)

H. Krol, L. Gallais, C. Grezesbesset, J. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1–3), 184–189 (2005).
[CrossRef]

M. D. Feit, A. M. Rubenchik, and J. B. Trenholme, “Simple model of laser damage initiation and conditioning in frequency conversion crystals,” Proc. SPIE 5991, 59910 (2005).
[CrossRef]

P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, “Multiwavelength investigation of laser-damage performance in potassium dihydrogen phosphate after laser annealing,” Opt. Lett. 30(3), 221–223 (2005).
[CrossRef] [PubMed]

2004 (2)

M. D. Feit and A. M. Rubenchik, “Implication of nanoabsorber initiators for damage probability curves, pulse length scaling and laser conditioning,” Proc. SPIE 5273, 74–82 (2004).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

2003 (2)

2002 (2)

L. Gallais, J. Y. Natoli, and C. Amra, “Statistical study of single and multiple pulse laser-induced damage in glasses,” Opt. Express 25, 1465–1474 (2002).

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47(3), 113–152 (2002).
[CrossRef]

1999 (2)

C. J. Stolz, L. M. Sheehan, K. Gunten, R. P. Bevis, and D. J. Smith, “The advantages of evaporation of Hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
[CrossRef]

H. Kouta, “Wavelength Dependence of Repetitive-Pulse Laser-Induced Damage Threshold in β-BaB(2)O(4).,” Appl. Opt. 38(3), 545–547 (1999).
[CrossRef]

1998 (2)

C. J. Stolz, L. M. Sheehan, S. M. Maricle, and S. Schwartz, “A study of laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 3578, 144–153 (1998).
[CrossRef]

J. Dijon, G. Ravel, and B. André, “Thermomechanical model of mirror laser damage at 1.06pm. Part 2: flat bottom pits formation,” Proc. SPIE 3578, 398–407 (1998).
[CrossRef]

1987 (1)

M. R. Lange and J. K. McIver, “Anomalous absorption in optical coatings,” Proc. SPIE 746, 515 (1987).

1985 (1)

M. R. Lange and J. K. McIver, “Laser damage threshold predictions based on the effects of thermal and optical properties employing a spherical impurity model,” Proc. SPIE 688, 454 (1985).

1984 (1)

1973 (1)

D. Milam, R. A. Bradbury, and M. Bass, “Laser damage threshold for dielectric coating as determined by inclusions,” Appl. Phys. Lett. 23(12), 654–657 (1973).
[CrossRef]

Amra, C.

L. Gallais, J. Y. Natoli, and C. Amra, “Statistical study of single and multiple pulse laser-induced damage in glasses,” Opt. Express 25, 1465–1474 (2002).

André, B.

J. Dijon, G. Ravel, and B. André, “Thermomechanical model of mirror laser damage at 1.06pm. Part 2: flat bottom pits formation,” Proc. SPIE 3578, 398–407 (1998).
[CrossRef]

Bass, M.

D. Milam, R. A. Bradbury, and M. Bass, “Laser damage threshold for dielectric coating as determined by inclusions,” Appl. Phys. Lett. 23(12), 654–657 (1973).
[CrossRef]

Bercegol, H.

L. Lamaignère, S. Reyne, M. Loiseau, J. C. Poncetta, and H. Bercegol, “Effect of wavelengths combination on initiation and growth of laser-induced surface damage in SiO2,” Proc. SPIE 6720, 67200 (2007).
[CrossRef]

Bertussi, B.

Bevis, R. P.

C. J. Stolz, L. M. Sheehan, K. Gunten, R. P. Bevis, and D. J. Smith, “The advantages of evaporation of Hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
[CrossRef]

Bonneau, F.

Bradbury, R. A.

D. Milam, R. A. Bradbury, and M. Bass, “Laser damage threshold for dielectric coating as determined by inclusions,” Appl. Phys. Lett. 23(12), 654–657 (1973).
[CrossRef]

Burnham, A. K.

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47(3), 113–152 (2002).
[CrossRef]

Capoulade, J.

L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nano-defect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104(5), 053120 (2008).
[CrossRef]

J. Capoulade, L. Gallais, J. Y. Natoli, and M. Commandré, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt. 47(29), 5272–5280 (2008).
[CrossRef] [PubMed]

Carr, C. W.

P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, “Multiwavelength investigation of laser-damage performance in potassium dihydrogen phosphate after laser annealing,” Opt. Lett. 30(3), 221–223 (2005).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[CrossRef] [PubMed]

Combis, P.

Commandré, M.

J. Capoulade, L. Gallais, J. Y. Natoli, and M. Commandré, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt. 47(29), 5272–5280 (2008).
[CrossRef] [PubMed]

L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nano-defect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104(5), 053120 (2008).
[CrossRef]

H. Krol, L. Gallais, C. Grezesbesset, J. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1–3), 184–189 (2005).
[CrossRef]

J. Y. Natoli, L. Gallais, B. Bertussi, A. During, M. Commandré, J. L. Rullier, F. Bonneau, and P. Combis, “Localized pulsed laser interaction with submicronic gold particles embedded in silica: a method for investigating laser damage initiation,” Opt. Express 11(7), 824–829 (2003).
[CrossRef] [PubMed]

De Yoreo, J. J.

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47(3), 113–152 (2002).
[CrossRef]

DeMange, P.

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, “The energy coupling efficiency of multi-wavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals,” J. Appl. Phys. 103(8), 083122–083128 (2008).
[CrossRef]

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, 
“Understanding and predicting the damage performance of KDxH2−xPO4 crystals under simultaneous exposure to 532 and 355-nm pulses,” Appl. Phys. Lett. 89(18), 181922–181923 (2006).
[CrossRef]

P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, “Multiwavelength investigation of laser-damage performance in potassium dihydrogen phosphate after laser annealing,” Opt. Lett. 30(3), 221–223 (2005).
[CrossRef] [PubMed]

Demos, S. G.

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, “The energy coupling efficiency of multi-wavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals,” J. Appl. Phys. 103(8), 083122–083128 (2008).
[CrossRef]

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, 
“Understanding and predicting the damage performance of KDxH2−xPO4 crystals under simultaneous exposure to 532 and 355-nm pulses,” Appl. Phys. Lett. 89(18), 181922–181923 (2006).
[CrossRef]

P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, “Multiwavelength investigation of laser-damage performance in potassium dihydrogen phosphate after laser annealing,” Opt. Lett. 30(3), 221–223 (2005).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[CrossRef] [PubMed]

Dijon, J.

J. Dijon, G. Ravel, and B. André, “Thermomechanical model of mirror laser damage at 1.06pm. Part 2: flat bottom pits formation,” Proc. SPIE 3578, 398–407 (1998).
[CrossRef]

Duchateau, G.

S. Reyné, M. Loiseau, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Towards a better understanding of multi-wavelength effects on KDP crystals,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

G. Duchateau and A. Dyan, “Coupling statistics and heat transfer to study laser-induced crystal damage by nanosecond pulses,” Opt. Express 15(8), 4557–4576 (2007).
[CrossRef] [PubMed]

During, A.

Dyan, A.

Eugene, E. D.

A. N. Mary and E. D. Eugene, “Laser damage growth in fused silica with simultaneous 351nm and 1053nm irradiation,” Proc. SPIE 7132, 71321 (2008).

Fan, Z. X.

M. Zhou, J. D. Shao, Z. X. Fan, G. H. Hu, and Y. G. Shan, “Damage performance of thin-film beam splitter for third harmonic separation under simultaneous exposure to 1ω and 3ω pulses,” Opt. Commun. 282(15), 3132–3135 (2009).
[CrossRef]

C. Y. Wei, J. D. Shao, H. B. He, K. Yi, and Z. X. Fan, “Mechanism initiated by nanoabsorber for UV nanosecond-pulse-driven damage of dielectric coatings,” Opt. Express 16(5), 3376–3382 (2008).
[CrossRef] [PubMed]

Z. L. Xia, Z. X. Fan, and J. D. Shao, “A New theory for evaluating the number density of inclusions in films,” Appl. Surf. Sci. 252(23), 8235–8238 (2006).
[CrossRef]

Feit, M. D.

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, “The energy coupling efficiency of multi-wavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals,” J. Appl. Phys. 103(8), 083122–083128 (2008).
[CrossRef]

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, 
“Understanding and predicting the damage performance of KDxH2−xPO4 crystals under simultaneous exposure to 532 and 355-nm pulses,” Appl. Phys. Lett. 89(18), 181922–181923 (2006).
[CrossRef]

M. D. Feit, A. M. Rubenchik, and J. B. Trenholme, “Simple model of laser damage initiation and conditioning in frequency conversion crystals,” Proc. SPIE 5991, 59910 (2005).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

M. D. Feit and A. M. Rubenchik, “Implication of nanoabsorber initiators for damage probability curves, pulse length scaling and laser conditioning,” Proc. SPIE 5273, 74–82 (2004).
[CrossRef]

Gallais, L.

J. Capoulade, L. Gallais, J. Y. Natoli, and M. Commandré, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt. 47(29), 5272–5280 (2008).
[CrossRef] [PubMed]

L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nano-defect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104(5), 053120 (2008).
[CrossRef]

H. Krol, L. Gallais, C. Grezesbesset, J. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1–3), 184–189 (2005).
[CrossRef]

J. Y. Natoli, L. Gallais, B. Bertussi, A. During, M. Commandré, J. L. Rullier, F. Bonneau, and P. Combis, “Localized pulsed laser interaction with submicronic gold particles embedded in silica: a method for investigating laser damage initiation,” Opt. Express 11(7), 824–829 (2003).
[CrossRef] [PubMed]

L. Gallais, J. Y. Natoli, and C. Amra, “Statistical study of single and multiple pulse laser-induced damage in glasses,” Opt. Express 25, 1465–1474 (2002).

Grezesbesset, C.

H. Krol, L. Gallais, C. Grezesbesset, J. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1–3), 184–189 (2005).
[CrossRef]

Gunten, K.

C. J. Stolz, L. M. Sheehan, K. Gunten, R. P. Bevis, and D. J. Smith, “The advantages of evaporation of Hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
[CrossRef]

Hafeman, S.

He, H. B.

Hu, G. H.

M. Zhou, J. D. Shao, Z. X. Fan, G. H. Hu, and Y. G. Shan, “Damage performance of thin-film beam splitter for third harmonic separation under simultaneous exposure to 1ω and 3ω pulses,” Opt. Commun. 282(15), 3132–3135 (2009).
[CrossRef]

Kouta, H.

Krol, H.

H. Krol, L. Gallais, C. Grezesbesset, J. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1–3), 184–189 (2005).
[CrossRef]

Lamaignère, L.

S. Reyné, M. Loiseau, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Towards a better understanding of multi-wavelength effects on KDP crystals,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

L. Lamaignère, S. Reyne, M. Loiseau, J. C. Poncetta, and H. Bercegol, “Effect of wavelengths combination on initiation and growth of laser-induced surface damage in SiO2,” Proc. SPIE 6720, 67200 (2007).
[CrossRef]

Lange, M. R.

M. R. Lange and J. K. McIver, “Anomalous absorption in optical coatings,” Proc. SPIE 746, 515 (1987).

M. R. Lange and J. K. McIver, “Laser damage threshold predictions based on the effects of thermal and optical properties employing a spherical impurity model,” Proc. SPIE 688, 454 (1985).

Loiseau, M.

S. Reyné, M. Loiseau, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Towards a better understanding of multi-wavelength effects on KDP crystals,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

L. Lamaignère, S. Reyne, M. Loiseau, J. C. Poncetta, and H. Bercegol, “Effect of wavelengths combination on initiation and growth of laser-induced surface damage in SiO2,” Proc. SPIE 6720, 67200 (2007).
[CrossRef]

Maricle, S. M.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, and S. Schwartz, “A study of laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 3578, 144–153 (1998).
[CrossRef]

Mary, A. N.

A. N. Mary and E. D. Eugene, “Laser damage growth in fused silica with simultaneous 351nm and 1053nm irradiation,” Proc. SPIE 7132, 71321 (2008).

McIver, J. K.

M. R. Lange and J. K. McIver, “Anomalous absorption in optical coatings,” Proc. SPIE 746, 515 (1987).

M. R. Lange and J. K. McIver, “Laser damage threshold predictions based on the effects of thermal and optical properties employing a spherical impurity model,” Proc. SPIE 688, 454 (1985).

Milam, D.

D. Milam, R. A. Bradbury, and M. Bass, “Laser damage threshold for dielectric coating as determined by inclusions,” Appl. Phys. Lett. 23(12), 654–657 (1973).
[CrossRef]

Natoli, J.

H. Krol, L. Gallais, C. Grezesbesset, J. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1–3), 184–189 (2005).
[CrossRef]

Natoli, J. Y.

S. Reyné, M. Loiseau, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Towards a better understanding of multi-wavelength effects on KDP crystals,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

J. Capoulade, L. Gallais, J. Y. Natoli, and M. Commandré, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt. 47(29), 5272–5280 (2008).
[CrossRef] [PubMed]

L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nano-defect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104(5), 053120 (2008).
[CrossRef]

J. Y. Natoli, L. Gallais, B. Bertussi, A. During, M. Commandré, J. L. Rullier, F. Bonneau, and P. Combis, “Localized pulsed laser interaction with submicronic gold particles embedded in silica: a method for investigating laser damage initiation,” Opt. Express 11(7), 824–829 (2003).
[CrossRef] [PubMed]

L. Gallais, J. Y. Natoli, and C. Amra, “Statistical study of single and multiple pulse laser-induced damage in glasses,” Opt. Express 25, 1465–1474 (2002).

Negres, R. A.

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, “The energy coupling efficiency of multi-wavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals,” J. Appl. Phys. 103(8), 083122–083128 (2008).
[CrossRef]

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, 
“Understanding and predicting the damage performance of KDxH2−xPO4 crystals under simultaneous exposure to 532 and 355-nm pulses,” Appl. Phys. Lett. 89(18), 181922–181923 (2006).
[CrossRef]

P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, “Multiwavelength investigation of laser-damage performance in potassium dihydrogen phosphate after laser annealing,” Opt. Lett. 30(3), 221–223 (2005).
[CrossRef] [PubMed]

Pistor, T. V.

Poncetta, J. C.

L. Lamaignère, S. Reyne, M. Loiseau, J. C. Poncetta, and H. Bercegol, “Effect of wavelengths combination on initiation and growth of laser-induced surface damage in SiO2,” Proc. SPIE 6720, 67200 (2007).
[CrossRef]

Porteus, J. O.

Radousky, H. B.

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, “The energy coupling efficiency of multi-wavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals,” J. Appl. Phys. 103(8), 083122–083128 (2008).
[CrossRef]

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, 
“Understanding and predicting the damage performance of KDxH2−xPO4 crystals under simultaneous exposure to 532 and 355-nm pulses,” Appl. Phys. Lett. 89(18), 181922–181923 (2006).
[CrossRef]

P. DeMange, C. W. Carr, R. A. Negres, H. B. Radousky, and S. G. Demos, “Multiwavelength investigation of laser-damage performance in potassium dihydrogen phosphate after laser annealing,” Opt. Lett. 30(3), 221–223 (2005).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[CrossRef] [PubMed]

Ravel, G.

J. Dijon, G. Ravel, and B. André, “Thermomechanical model of mirror laser damage at 1.06pm. Part 2: flat bottom pits formation,” Proc. SPIE 3578, 398–407 (1998).
[CrossRef]

Reyne, S.

L. Lamaignère, S. Reyne, M. Loiseau, J. C. Poncetta, and H. Bercegol, “Effect of wavelengths combination on initiation and growth of laser-induced surface damage in SiO2,” Proc. SPIE 6720, 67200 (2007).
[CrossRef]

Reyné, S.

S. Reyné, M. Loiseau, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Towards a better understanding of multi-wavelength effects on KDP crystals,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

Rubenchik, A. M.

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, “The energy coupling efficiency of multi-wavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals,” J. Appl. Phys. 103(8), 083122–083128 (2008).
[CrossRef]

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, 
“Understanding and predicting the damage performance of KDxH2−xPO4 crystals under simultaneous exposure to 532 and 355-nm pulses,” Appl. Phys. Lett. 89(18), 181922–181923 (2006).
[CrossRef]

M. D. Feit, A. M. Rubenchik, and J. B. Trenholme, “Simple model of laser damage initiation and conditioning in frequency conversion crystals,” Proc. SPIE 5991, 59910 (2005).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

M. D. Feit and A. M. Rubenchik, “Implication of nanoabsorber initiators for damage probability curves, pulse length scaling and laser conditioning,” Proc. SPIE 5273, 74–82 (2004).
[CrossRef]

Rullier, J. L.

Schwartz, S.

C. J. Stolz, L. M. Sheehan, S. M. Maricle, and S. Schwartz, “A study of laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 3578, 144–153 (1998).
[CrossRef]

Seitel, S. C.

Shan, Y. G.

M. Zhou, J. D. Shao, Z. X. Fan, G. H. Hu, and Y. G. Shan, “Damage performance of thin-film beam splitter for third harmonic separation under simultaneous exposure to 1ω and 3ω pulses,” Opt. Commun. 282(15), 3132–3135 (2009).
[CrossRef]

Shao, J. D.

M. Zhou, J. D. Shao, Z. X. Fan, G. H. Hu, and Y. G. Shan, “Damage performance of thin-film beam splitter for third harmonic separation under simultaneous exposure to 1ω and 3ω pulses,” Opt. Commun. 282(15), 3132–3135 (2009).
[CrossRef]

C. Y. Wei, J. D. Shao, H. B. He, K. Yi, and Z. X. Fan, “Mechanism initiated by nanoabsorber for UV nanosecond-pulse-driven damage of dielectric coatings,” Opt. Express 16(5), 3376–3382 (2008).
[CrossRef] [PubMed]

Z. L. Xia, Z. X. Fan, and J. D. Shao, “A New theory for evaluating the number density of inclusions in films,” Appl. Surf. Sci. 252(23), 8235–8238 (2006).
[CrossRef]

Sheehan, L. M.

C. J. Stolz, L. M. Sheehan, K. Gunten, R. P. Bevis, and D. J. Smith, “The advantages of evaporation of Hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
[CrossRef]

C. J. Stolz, L. M. Sheehan, S. M. Maricle, and S. Schwartz, “A study of laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 3578, 144–153 (1998).
[CrossRef]

Smith, D. J.

C. J. Stolz, L. M. Sheehan, K. Gunten, R. P. Bevis, and D. J. Smith, “The advantages of evaporation of Hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
[CrossRef]

Stolz, C. J.

C. J. Stolz, S. Hafeman, and T. V. Pistor, “Light intensification modeling of coating inclusions irradiated at 351 and 1053 nm,” Appl. Opt. 47(13), C162–C166 (2008).
[CrossRef] [PubMed]

C. J. Stolz, L. M. Sheehan, K. Gunten, R. P. Bevis, and D. J. Smith, “The advantages of evaporation of Hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
[CrossRef]

C. J. Stolz, L. M. Sheehan, S. M. Maricle, and S. Schwartz, “A study of laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 3578, 144–153 (1998).
[CrossRef]

Trenholme, J. B.

M. D. Feit, A. M. Rubenchik, and J. B. Trenholme, “Simple model of laser damage initiation and conditioning in frequency conversion crystals,” Proc. SPIE 5991, 59910 (2005).
[CrossRef]

Wei, C. Y.

Whitman, P. K.

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47(3), 113–152 (2002).
[CrossRef]

Xia, Z. L.

Z. L. Xia, Z. X. Fan, and J. D. Shao, “A New theory for evaluating the number density of inclusions in films,” Appl. Surf. Sci. 252(23), 8235–8238 (2006).
[CrossRef]

Yi, K.

Zhou, M.

M. Zhou, J. D. Shao, Z. X. Fan, G. H. Hu, and Y. G. Shan, “Damage performance of thin-film beam splitter for third harmonic separation under simultaneous exposure to 1ω and 3ω pulses,” Opt. Commun. 282(15), 3132–3135 (2009).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, 
“Understanding and predicting the damage performance of KDxH2−xPO4 crystals under simultaneous exposure to 532 and 355-nm pulses,” Appl. Phys. Lett. 89(18), 181922–181923 (2006).
[CrossRef]

D. Milam, R. A. Bradbury, and M. Bass, “Laser damage threshold for dielectric coating as determined by inclusions,” Appl. Phys. Lett. 23(12), 654–657 (1973).
[CrossRef]

Appl. Surf. Sci. (1)

Z. L. Xia, Z. X. Fan, and J. D. Shao, “A New theory for evaluating the number density of inclusions in films,” Appl. Surf. Sci. 252(23), 8235–8238 (2006).
[CrossRef]

Int. Mater. Rev. (1)

J. J. De Yoreo, A. K. Burnham, and P. K. Whitman, “Developing KH2PO4 and KD2PO4 crystals for the world’s most powerful laser,” Int. Mater. Rev. 47(3), 113–152 (2002).
[CrossRef]

J. Appl. Phys. (2)

L. Gallais, J. Capoulade, J. Y. Natoli, and M. Commandré, “Investigation of nano-defect properties in optical coatings by coupling measured and simulated laser damage statistics,” J. Appl. Phys. 104(5), 053120 (2008).
[CrossRef]

P. DeMange, R. A. Negres, A. M. Rubenchik, H. B. Radousky, M. D. Feit, and S. G. Demos, “The energy coupling efficiency of multi-wavelength laser pulses to damage initiating defects in deuterated KH2PO4 nonlinear crystals,” J. Appl. Phys. 103(8), 083122–083128 (2008).
[CrossRef]

Opt. Commun. (2)

H. Krol, L. Gallais, C. Grezesbesset, J. Natoli, and M. Commandré, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1–3), 184–189 (2005).
[CrossRef]

M. Zhou, J. D. Shao, Z. X. Fan, G. H. Hu, and Y. G. Shan, “Damage performance of thin-film beam splitter for third harmonic separation under simultaneous exposure to 1ω and 3ω pulses,” Opt. Commun. 282(15), 3132–3135 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92(8), 087401 (2004).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91(12), 127402 (2003).
[CrossRef] [PubMed]

Proc. SPIE (10)

J. Dijon, G. Ravel, and B. André, “Thermomechanical model of mirror laser damage at 1.06pm. Part 2: flat bottom pits formation,” Proc. SPIE 3578, 398–407 (1998).
[CrossRef]

M. D. Feit, A. M. Rubenchik, and J. B. Trenholme, “Simple model of laser damage initiation and conditioning in frequency conversion crystals,” Proc. SPIE 5991, 59910 (2005).
[CrossRef]

M. D. Feit and A. M. Rubenchik, “Implication of nanoabsorber initiators for damage probability curves, pulse length scaling and laser conditioning,” Proc. SPIE 5273, 74–82 (2004).
[CrossRef]

S. Reyné, M. Loiseau, G. Duchateau, J. Y. Natoli, and L. Lamaignère, “Towards a better understanding of multi-wavelength effects on KDP crystals,” Proc. SPIE 7361, 73610 (2009).
[CrossRef]

L. Lamaignère, S. Reyne, M. Loiseau, J. C. Poncetta, and H. Bercegol, “Effect of wavelengths combination on initiation and growth of laser-induced surface damage in SiO2,” Proc. SPIE 6720, 67200 (2007).
[CrossRef]

A. N. Mary and E. D. Eugene, “Laser damage growth in fused silica with simultaneous 351nm and 1053nm irradiation,” Proc. SPIE 7132, 71321 (2008).

C. J. Stolz, L. M. Sheehan, S. M. Maricle, and S. Schwartz, “A study of laser conditioning methods of hafnia silica multilayer mirrors,” Proc. SPIE 3578, 144–153 (1998).
[CrossRef]

C. J. Stolz, L. M. Sheehan, K. Gunten, R. P. Bevis, and D. J. Smith, “The advantages of evaporation of Hafnium in a reactive environment to manufacture high damage threshold multilayer coatings by electron-beam deposition,” Proc. SPIE 3738, 318–324 (1999).
[CrossRef]

M. R. Lange and J. K. McIver, “Laser damage threshold predictions based on the effects of thermal and optical properties employing a spherical impurity model,” Proc. SPIE 688, 454 (1985).

M. R. Lange and J. K. McIver, “Anomalous absorption in optical coatings,” Proc. SPIE 746, 515 (1987).

Other (1)

H. A. Macleod, Thin Film Optical Filters, third edition, 2001

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The laser damage test setup for two wavelengths combined irradiation

Fig. 2
Fig. 2

The LIDT of the samples which were tested by 3ω only, 3ω with 1ω and 3ω with 1ω after 1ω pre-condition.

Fig. 3
Fig. 3

The dependence of damage probability of samples on different fluence combined of 1ω and 3ω

Fig. 4
Fig. 4

The surface morphology of samples which were irradiated by different fluence combined of 1ω and 3ω

Fig. 5
Fig. 5

The temperature rise as a function of the distance from the center of defect, where k = 3.1, k = 2.58, a = 150 nm, D p = 9.9 × 10−6 m2/s, D f = 6.8 × 10−7 m2/s, C p = 18.4 W/m·k, C f = 1.67 W/m·k, τ = 12ns, τ = 8ns [22]

Fig. 6
Fig. 6

Numerical analysis for the irradiations of 3ω only, 3ω with 1ω, and 3ω with 1ω after 1ω pre-condition, respectively, where T 0 = 9.0J/cm2, ΔT = 3.0J/cm2, μ = 380μm

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

R1ω=Φ3ωΦ3ω+1ωΦ1ω
σi=(1R)16π2a2kiλi0π2sinφ(cosφ)3dφ
1DpTpt=1r2r(r2Tpt)+QCp,     0r<a,t>0
1DfTft=1r2r(r2Tft),       r>a,t>0
Tp=Tf=0,                   t=0
Tp=Tf,CpTpr=CfTfr,         r=a
P(F)=1exp(N(F))
Ni(F)=0Fgi(T)S(F)dT
i=1ω,3ω
gi(T)=2diΔT2πexp(12(TT0ΔT/2)2)
0gi(T)dT=di

Metrics