Abstract

We report near-field optical imaging of bowtie nanoantennas obtained using a UV near-field scanning optical microscope (NSOM). A strong and highly localized UV intensity profile was observed at the antenna gap due to the localized surface plasmon resonance. The relationship of optical field enhancement and antenna size is discussed based on numerical simulations and NSOM experiments.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607 (2005).
    [CrossRef] [PubMed]
  2. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-Dependent Optical Coupling of Single ‘Bowtie’Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
    [CrossRef]
  3. L. Wang and X. F. Xu, "High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging," Appl. Phys. Lett. 90, 261105 (2007).
    [CrossRef]
  4. A. Sundaramurthy, P. James Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas," Nano Lett. 6, 355 (2006).
    [CrossRef] [PubMed]
  5. L. Wang, S. M. Uppuluri, E. X. Jin, X. F. Xu. "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361(2006).
    [CrossRef] [PubMed]
  6. E. X. Jin and X. F. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110 (2006).
    [CrossRef]
  7. L. Wang, E. X. Jin, S. M. Uppuluri, and X. F. Xu, "Contact optical nanolithography using nanoscale C-shaped apertures," Opt. Express 14, 9902-9908 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-21-9902
    [CrossRef] [PubMed]
  8. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
    [CrossRef]
  9. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597 (2002).
    [CrossRef]
  10. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 93120 (2006).
    [CrossRef]
  11. L. Feng, D. V. Orden, M. Abashin, Q. Wang, Y. Chen, V. Lomakin and Y. Fainman, "Nanoscale optical field localization by resonantly focused plasmons," Opt. Express 17, 4824 (2009). http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-6-4824
    [CrossRef] [PubMed]
  12. N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, "Bowtie plasmonic quantum cascade laser antenna," Opt. Express 15, 13272-13281 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-20-13272
    [CrossRef] [PubMed]
  13. A. N. Grigorenko, N. W. Roberts, M. R. Dicknson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nat. Photonics 2, 365 (2008).
    [CrossRef]
  14. S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim and S. Kim, "High-harmonic generation by resonant plasmon field enhancement," Nature 453, 757 (2008).
    [CrossRef] [PubMed]
  15. Y. Kawano and K. Ishibashi, "An on-chip near-field terahertz probe and detector," Nat. Photonics 2, 618 (2008).
    [CrossRef]
  16. A. Polman, "Plasmonics Applied," Science 322, 868 (2008).
    [CrossRef] [PubMed]
  17. Y. Taniyasu, M. Kasu, and T. Makimoto, "An aluminium nitride light-emitting diode with a wavelength of 210 nanometres," Nature 441, 325 (2006).
    [CrossRef] [PubMed]
  18. A. Sandhu, "The future of ultraviolet LEDs," Nat. Photonics 1, 38 (2007).
    [CrossRef]
  19. N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, "Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture," Opt. Express 16, 2584-2589 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2584
    [CrossRef] [PubMed]
  20. Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, "Plasmonic Nearfield Scanning Probe with High Transmission," Nano Lett. 8, 3041 (2008).
    [CrossRef] [PubMed]
  21. W. L. Barnes, A. Dereux and T. W. Ebbesen, "Surface plasmon sub-wavelength optics," Nature 424, 824 (2003)
    [CrossRef] [PubMed]
  22. Q. Gan, L. Zhou, V. Dierolf, and F. J. Bartoli, "Direct mapping of the UV surface plasmons," Opt. Lett. 34, 1324 (2009).
    [CrossRef] [PubMed]
  23. Fullwave simulation with the commercial FDTD solver, Fullwave (Rsoft Inc.), is used to calculate the dispersion relations of the Al structures.
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, FL, 1985), Vol. 1, p. 398.
  25. J. C. Russ, The Image Processing Handbook (CRC Press, FL, 2007), p. 206.
  26. H. Fischer and O. J. F. Martin, "Engineering the optical response of plasmonic nanoantennas," Opt. Express 16, 9144-9154 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-9144
    [CrossRef] [PubMed]

2009 (2)

2008 (7)

N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, "Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture," Opt. Express 16, 2584-2589 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-4-2584
[CrossRef] [PubMed]

H. Fischer and O. J. F. Martin, "Engineering the optical response of plasmonic nanoantennas," Opt. Express 16, 9144-9154 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-9144
[CrossRef] [PubMed]

A. N. Grigorenko, N. W. Roberts, M. R. Dicknson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nat. Photonics 2, 365 (2008).
[CrossRef]

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim and S. Kim, "High-harmonic generation by resonant plasmon field enhancement," Nature 453, 757 (2008).
[CrossRef] [PubMed]

Y. Kawano and K. Ishibashi, "An on-chip near-field terahertz probe and detector," Nat. Photonics 2, 618 (2008).
[CrossRef]

A. Polman, "Plasmonics Applied," Science 322, 868 (2008).
[CrossRef] [PubMed]

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, "Plasmonic Nearfield Scanning Probe with High Transmission," Nano Lett. 8, 3041 (2008).
[CrossRef] [PubMed]

2007 (3)

N. Yu, E. Cubukcu, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, K. B. Crozier, and F. Capasso, "Bowtie plasmonic quantum cascade laser antenna," Opt. Express 15, 13272-13281 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-20-13272
[CrossRef] [PubMed]

A. Sandhu, "The future of ultraviolet LEDs," Nat. Photonics 1, 38 (2007).
[CrossRef]

L. Wang and X. F. Xu, "High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging," Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

2006 (6)

A. Sundaramurthy, P. James Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas," Nano Lett. 6, 355 (2006).
[CrossRef] [PubMed]

L. Wang, S. M. Uppuluri, E. X. Jin, X. F. Xu. "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361(2006).
[CrossRef] [PubMed]

E. X. Jin and X. F. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

Y. Taniyasu, M. Kasu, and T. Makimoto, "An aluminium nitride light-emitting diode with a wavelength of 210 nanometres," Nature 441, 325 (2006).
[CrossRef] [PubMed]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 93120 (2006).
[CrossRef]

L. Wang, E. X. Jin, S. M. Uppuluri, and X. F. Xu, "Contact optical nanolithography using nanoscale C-shaped apertures," Opt. Express 14, 9902-9908 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-21-9902
[CrossRef] [PubMed]

2005 (1)

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

2004 (1)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-Dependent Optical Coupling of Single ‘Bowtie’Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux and T. W. Ebbesen, "Surface plasmon sub-wavelength optics," Nature 424, 824 (2003)
[CrossRef] [PubMed]

2002 (2)

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
[CrossRef]

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597 (2002).
[CrossRef]

Abashin, M.

Aubard, J.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Aussenegg, F. R.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux and T. W. Ebbesen, "Surface plasmon sub-wavelength optics," Nature 424, 824 (2003)
[CrossRef] [PubMed]

Bartoli, F. J.

Bour, D.

Capasso, F.

Chen, Y.

Conley, N. R.

A. Sundaramurthy, P. James Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas," Nano Lett. 6, 355 (2006).
[CrossRef] [PubMed]

Corzine, S.

Crozier, K. B.

Cubukcu, E.

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597 (2002).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux and T. W. Ebbesen, "Surface plasmon sub-wavelength optics," Nature 424, 824 (2003)
[CrossRef] [PubMed]

Dicknson, M. R.

A. N. Grigorenko, N. W. Roberts, M. R. Dicknson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nat. Photonics 2, 365 (2008).
[CrossRef]

Diehl, L.

Dierolf, V.

Ebbesen, T. W.

W. L. Barnes, A. Dereux and T. W. Ebbesen, "Surface plasmon sub-wavelength optics," Nature 424, 824 (2003)
[CrossRef] [PubMed]

Eisler, H.-J.

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Fainman, Y.

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597 (2002).
[CrossRef]

Felidj, N.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Feng, L.

Fischer, H.

Fromm, D. P.

A. Sundaramurthy, P. James Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas," Nano Lett. 6, 355 (2006).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-Dependent Optical Coupling of Single ‘Bowtie’Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Gan, Q.

Grigorenko, A. N.

A. N. Grigorenko, N. W. Roberts, M. R. Dicknson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nat. Photonics 2, 365 (2008).
[CrossRef]

Hecht, B.

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Höfler, G.

Ishibashi, K.

Y. Kawano and K. Ishibashi, "An on-chip near-field terahertz probe and detector," Nat. Photonics 2, 618 (2008).
[CrossRef]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597 (2002).
[CrossRef]

James Schuck, P.

A. Sundaramurthy, P. James Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas," Nano Lett. 6, 355 (2006).
[CrossRef] [PubMed]

Jin, E. X.

E. X. Jin and X. F. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

L. Wang, E. X. Jin, S. M. Uppuluri, and X. F. Xu, "Contact optical nanolithography using nanoscale C-shaped apertures," Opt. Express 14, 9902-9908 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-21-9902
[CrossRef] [PubMed]

L. Wang, S. M. Uppuluri, E. X. Jin, X. F. Xu. "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361(2006).
[CrossRef] [PubMed]

Jin, J.

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim and S. Kim, "High-harmonic generation by resonant plasmon field enhancement," Nature 453, 757 (2008).
[CrossRef] [PubMed]

Kasu, M.

Y. Taniyasu, M. Kasu, and T. Makimoto, "An aluminium nitride light-emitting diode with a wavelength of 210 nanometres," Nature 441, 325 (2006).
[CrossRef] [PubMed]

Kawano, Y.

Y. Kawano and K. Ishibashi, "An on-chip near-field terahertz probe and detector," Nat. Photonics 2, 618 (2008).
[CrossRef]

Kim, S.

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim and S. Kim, "High-harmonic generation by resonant plasmon field enhancement," Nature 453, 757 (2008).
[CrossRef] [PubMed]

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim and S. Kim, "High-harmonic generation by resonant plasmon field enhancement," Nature 453, 757 (2008).
[CrossRef] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim and S. Kim, "High-harmonic generation by resonant plasmon field enhancement," Nature 453, 757 (2008).
[CrossRef] [PubMed]

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim and S. Kim, "High-harmonic generation by resonant plasmon field enhancement," Nature 453, 757 (2008).
[CrossRef] [PubMed]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-Dependent Optical Coupling of Single ‘Bowtie’Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Kino, G. S.

A. Sundaramurthy, P. James Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas," Nano Lett. 6, 355 (2006).
[CrossRef] [PubMed]

Kinzel, E. C.

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597 (2002).
[CrossRef]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597 (2002).
[CrossRef]

Kort, E. A.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 93120 (2006).
[CrossRef]

Krenn, J. R.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Lamprecht, B.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Leitner, A.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Levi, G.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Lomakin, V.

Makimoto, T.

Y. Taniyasu, M. Kasu, and T. Makimoto, "An aluminium nitride light-emitting diode with a wavelength of 210 nanometres," Nature 441, 325 (2006).
[CrossRef] [PubMed]

Martin, O. J. F.

Moerner, W. E.

A. Sundaramurthy, P. James Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas," Nano Lett. 6, 355 (2006).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-Dependent Optical Coupling of Single ‘Bowtie’Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Muhlschlegel, P.

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Murphy-DuBay, N.

Orden, D. V.

Park, I.

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim and S. Kim, "High-harmonic generation by resonant plasmon field enhancement," Nature 453, 757 (2008).
[CrossRef] [PubMed]

Pohl, D. W.

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

Polman, A.

A. Polman, "Plasmonics Applied," Science 322, 868 (2008).
[CrossRef] [PubMed]

Roberts, N. W.

A. N. Grigorenko, N. W. Roberts, M. R. Dicknson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nat. Photonics 2, 365 (2008).
[CrossRef]

Salerno, M.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Sandhu, A.

A. Sandhu, "The future of ultraviolet LEDs," Nat. Photonics 1, 38 (2007).
[CrossRef]

Schider, G.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-Dependent Optical Coupling of Single ‘Bowtie’Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Srituravanich, W.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, "Plasmonic Nearfield Scanning Probe with High Transmission," Nano Lett. 8, 3041 (2008).
[CrossRef] [PubMed]

Sun, C.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, "Plasmonic Nearfield Scanning Probe with High Transmission," Nano Lett. 8, 3041 (2008).
[CrossRef] [PubMed]

Sundaramurthy, A.

A. Sundaramurthy, P. James Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas," Nano Lett. 6, 355 (2006).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-Dependent Optical Coupling of Single ‘Bowtie’Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Taniyasu, Y.

Y. Taniyasu, M. Kasu, and T. Makimoto, "An aluminium nitride light-emitting diode with a wavelength of 210 nanometres," Nature 441, 325 (2006).
[CrossRef] [PubMed]

Uppuluri, S. M.

Uppuluri, S. M. V.

Wang, L.

Wang, Q.

Wang, Y.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, "Plasmonic Nearfield Scanning Probe with High Transmission," Nano Lett. 8, 3041 (2008).
[CrossRef] [PubMed]

Xu, X.

Xu, X. F.

L. Wang and X. F. Xu, "High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging," Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

L. Wang, S. M. Uppuluri, E. X. Jin, X. F. Xu. "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361(2006).
[CrossRef] [PubMed]

E. X. Jin and X. F. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

L. Wang, E. X. Jin, S. M. Uppuluri, and X. F. Xu, "Contact optical nanolithography using nanoscale C-shaped apertures," Opt. Express 14, 9902-9908 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-21-9902
[CrossRef] [PubMed]

Yu, N.

Zhang, X.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, "Plasmonic Nearfield Scanning Probe with High Transmission," Nano Lett. 8, 3041 (2008).
[CrossRef] [PubMed]

Zhang, Y.

A. N. Grigorenko, N. W. Roberts, M. R. Dicknson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nat. Photonics 2, 365 (2008).
[CrossRef]

Zhou, L.

Zhu, J.

Appl. Phys. Lett. (3)

L. Wang and X. F. Xu, "High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging," Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

E. X. Jin and X. F. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 93120 (2006).
[CrossRef]

J. Phys.: Condens. Matter (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597 (2002).
[CrossRef]

Nano Lett. (4)

A. Sundaramurthy, P. James Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, "Toward Nanometer-Scale Optical Photolithography: Utilizing the Near-Field of Bowtie Optical Nanoantennas," Nano Lett. 6, 355 (2006).
[CrossRef] [PubMed]

L. Wang, S. M. Uppuluri, E. X. Jin, X. F. Xu. "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361(2006).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-Dependent Optical Coupling of Single ‘Bowtie’Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, "Plasmonic Nearfield Scanning Probe with High Transmission," Nano Lett. 8, 3041 (2008).
[CrossRef] [PubMed]

Nat. Photonics (3)

A. N. Grigorenko, N. W. Roberts, M. R. Dicknson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nat. Photonics 2, 365 (2008).
[CrossRef]

Y. Kawano and K. Ishibashi, "An on-chip near-field terahertz probe and detector," Nat. Photonics 2, 618 (2008).
[CrossRef]

A. Sandhu, "The future of ultraviolet LEDs," Nat. Photonics 1, 38 (2007).
[CrossRef]

Nature (3)

Y. Taniyasu, M. Kasu, and T. Makimoto, "An aluminium nitride light-emitting diode with a wavelength of 210 nanometres," Nature 441, 325 (2006).
[CrossRef] [PubMed]

S. Kim, J. Jin, Y. Kim, I. Park, Y. Kim and S. Kim, "High-harmonic generation by resonant plasmon field enhancement," Nature 453, 757 (2008).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux and T. W. Ebbesen, "Surface plasmon sub-wavelength optics," Nature 424, 824 (2003)
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (1)

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Science (2)

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607 (2005).
[CrossRef] [PubMed]

A. Polman, "Plasmonics Applied," Science 322, 868 (2008).
[CrossRef] [PubMed]

Other (3)

Fullwave simulation with the commercial FDTD solver, Fullwave (Rsoft Inc.), is used to calculate the dispersion relations of the Al structures.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, FL, 1985), Vol. 1, p. 398.

J. C. Russ, The Image Processing Handbook (CRC Press, FL, 2007), p. 206.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) The SEM image of a bowtie nanoantenna. (b) Illustration of the bow-tie nanoantenna geometry. (c) A sketch of the UV NSOM operating in the collection mode.

Fig. 2.
Fig. 2.

(a) The optical field distribution around the nanoantenna structure measured in the near field. (b) FDTD simulation of the optical field intensity of x-y plane on the surface. (c) Convolved optical intensity distribution from (b). (d) Comparison the intensity cross-section taken from (c) with the experiment data.

Fig. 3.
Fig. 3.

(a) Electric field amplitude vs. length L for the bowtie antenna different a function of tip angle. The field is normalized to the amplitude of incident electric field. (b) Resonance peak position as a function of the order of resonance. Dashed lines are linear least square fit of the data with different tip angle.

Fig. 4.
Fig. 4.

(a) SEM image of a bowtie antenna array. (b) NSOM image of the bowtie antenna array in (a). (c) Comparison of experimental data with computed field amplitude.

Metrics