Abstract

We report on the first realization of photonic crystal structures in 600-nm thick ion-sliced, single-crystalline lithium niobate thin films bonded on a lithium niobate substrate using adhesive polymer benzocyclobutene (BCB). Focused ion beam (FIB) milling is used for fast prototyping of photonic crystal structures with regular cylindrical holes. Unwanted redeposition effects leading to conically shaped holes in lithium niobate are minimized due to the soft BCB layer underneath. A high refractive index contrast of 0.65 between the lithium niobate thin film and the BCB underlayer enables strong light confinement in the vertical direction. For TE polarized light a triangular photonic crystal lattice of air holes with a diameter of 240 nm and a separation of 500 nm has a photonic bandgap in the wavelength range from 1390 to 1500 nm. Experimentally measured transmission spectra show a spectral power dip for the ΓK direction of the reciprocal lattice with an extinction ratio of up to 15 dB. This is in good agreement with numerical simulations based on the three-dimensional plane wave expansion (PWE) and the finite-difference time-domain (FDTD) method.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, (Princeton University Press, 2nd Edition, 2008).
  2. Y. Akahane, T. Asano, B. S. Song, S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
    [CrossRef] [PubMed]
  3. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
    [CrossRef] [PubMed]
  4. F. Lacour, N. Courjal, M. -P. Bernal, A. Sabac, C. Bainier, M. Spajer, "Nanostructuring lithium niobate substrates by focused ion beam milling," Opt. Mater. 27, 1421-1425 (2005).
    [CrossRef]
  5. M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, "Experimental and theoretical characterization of a lithium niobate photonic crystal," Appl. Phys. Lett. 87, 241101 (2005).
    [CrossRef]
  6. M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, R. Salut, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons," Appl. Phys. Lett. 89, 241110 (2006).
    [CrossRef]
  7. J. Amet, F. I. Baida, G. W. Burr, M.-P. Bernal, "The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching," Photon. Nanostruct. Fundam. Appl. 6, 47-59 (2008).
    [CrossRef]
  8. S. Diziain, J. Amet, F. I. Baida, and M.-P. Bernal, "Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double passive and active demultiplexer applications," Appl. Phys. Lett. 93, 261103 (2008).
    [CrossRef]
  9. C.-H. Hou, M.-P. Bernal, C.-C. Chen, R. Salut, C. Sada, N. Argiolas, M. Bazzan, M. V. Ciampollilo, "Purcell effect observation in erbium doped lithium niobate photonic crystal structures," Opt. Commun. 281, 4151-4154 (2008).
    [CrossRef]
  10. G. W. Burr, S. Diziain, M.-P. Bernal, "The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals," Opt. Express 16, 6302-6316 (2008).
    [CrossRef] [PubMed]
  11. S. Diziain, S. Harada, R. Salut, P. Muralt, M.-P. Bernal, "Strong improvement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab," Appl. Phys. Lett. 95, 101103 (2009).
    [CrossRef]
  12. P. Rabiei and P. Gunter, "Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing," Appl. Phys. Lett. 85, 4603-4605 (2004).
    [CrossRef]
  13. G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, P. Gunter, "Ion-sliced lithium niobate thin films for active photonic devices," Opt. Mater. 31, 1054-1058 (2009).
    [CrossRef]
  14. P. Rabiei and W. H. Steier, "Lithium niobate ridge waveguides and modulators fabricated using smart guide," Appl. Phys. Lett. 86, 161115 (2005).
    [CrossRef]
  15. A. Guarino, G. Poberaj, D. Rezzonico, R Degl’Innocenti, P. Gunter, "Electro-optically tunable microring resonators in lithium niobate," Nat. Photonics 1, 407-410 (2007).
    [CrossRef]
  16. M. Koechlin, G. Poberaj, P. Gunter, "High-resolution laser lithography system based on two-dimensional acousto-optic deflection," Rev. Sci. Instrum. 80, 085105 (2009).
    [CrossRef] [PubMed]
  17. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001).
    [CrossRef] [PubMed]
  18. S.G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
    [CrossRef]
  19. T. Weng and G. Y. Guo, "Band structures of honeycomb photonic crystal slabs," J. Appl. Phys. 99, 093102 (2006).
    [CrossRef]
  20. J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Computat. Phys. 114, 185-200 (1994).
    [CrossRef]
  21. S. D. Gedney, "An Anisotropic Perfectly Matched Layer-Absorbing Medium for the Truncation of FDTD Lattices," IEEE Trans. Antennas Propag. 44, 1630-1639 (1996).
    [CrossRef]

2009

S. Diziain, S. Harada, R. Salut, P. Muralt, M.-P. Bernal, "Strong improvement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab," Appl. Phys. Lett. 95, 101103 (2009).
[CrossRef]

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, P. Gunter, "Ion-sliced lithium niobate thin films for active photonic devices," Opt. Mater. 31, 1054-1058 (2009).
[CrossRef]

M. Koechlin, G. Poberaj, P. Gunter, "High-resolution laser lithography system based on two-dimensional acousto-optic deflection," Rev. Sci. Instrum. 80, 085105 (2009).
[CrossRef] [PubMed]

2008

J. Amet, F. I. Baida, G. W. Burr, M.-P. Bernal, "The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching," Photon. Nanostruct. Fundam. Appl. 6, 47-59 (2008).
[CrossRef]

S. Diziain, J. Amet, F. I. Baida, and M.-P. Bernal, "Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double passive and active demultiplexer applications," Appl. Phys. Lett. 93, 261103 (2008).
[CrossRef]

C.-H. Hou, M.-P. Bernal, C.-C. Chen, R. Salut, C. Sada, N. Argiolas, M. Bazzan, M. V. Ciampollilo, "Purcell effect observation in erbium doped lithium niobate photonic crystal structures," Opt. Commun. 281, 4151-4154 (2008).
[CrossRef]

G. W. Burr, S. Diziain, M.-P. Bernal, "The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals," Opt. Express 16, 6302-6316 (2008).
[CrossRef] [PubMed]

2007

A. Guarino, G. Poberaj, D. Rezzonico, R Degl’Innocenti, P. Gunter, "Electro-optically tunable microring resonators in lithium niobate," Nat. Photonics 1, 407-410 (2007).
[CrossRef]

2006

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, R. Salut, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons," Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

T. Weng and G. Y. Guo, "Band structures of honeycomb photonic crystal slabs," J. Appl. Phys. 99, 093102 (2006).
[CrossRef]

2005

P. Rabiei and W. H. Steier, "Lithium niobate ridge waveguides and modulators fabricated using smart guide," Appl. Phys. Lett. 86, 161115 (2005).
[CrossRef]

F. Lacour, N. Courjal, M. -P. Bernal, A. Sabac, C. Bainier, M. Spajer, "Nanostructuring lithium niobate substrates by focused ion beam milling," Opt. Mater. 27, 1421-1425 (2005).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, "Experimental and theoretical characterization of a lithium niobate photonic crystal," Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

2004

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

P. Rabiei and P. Gunter, "Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing," Appl. Phys. Lett. 85, 4603-4605 (2004).
[CrossRef]

2003

Y. Akahane, T. Asano, B. S. Song, S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

2001

1999

S.G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

1996

S. D. Gedney, "An Anisotropic Perfectly Matched Layer-Absorbing Medium for the Truncation of FDTD Lattices," IEEE Trans. Antennas Propag. 44, 1630-1639 (1996).
[CrossRef]

1994

J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Computat. Phys. 114, 185-200 (1994).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Amet, J.

J. Amet, F. I. Baida, G. W. Burr, M.-P. Bernal, "The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching," Photon. Nanostruct. Fundam. Appl. 6, 47-59 (2008).
[CrossRef]

S. Diziain, J. Amet, F. I. Baida, and M.-P. Bernal, "Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double passive and active demultiplexer applications," Appl. Phys. Lett. 93, 261103 (2008).
[CrossRef]

Argiolas, N.

C.-H. Hou, M.-P. Bernal, C.-C. Chen, R. Salut, C. Sada, N. Argiolas, M. Bazzan, M. V. Ciampollilo, "Purcell effect observation in erbium doped lithium niobate photonic crystal structures," Opt. Commun. 281, 4151-4154 (2008).
[CrossRef]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Baida, F. I.

S. Diziain, J. Amet, F. I. Baida, and M.-P. Bernal, "Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double passive and active demultiplexer applications," Appl. Phys. Lett. 93, 261103 (2008).
[CrossRef]

J. Amet, F. I. Baida, G. W. Burr, M.-P. Bernal, "The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching," Photon. Nanostruct. Fundam. Appl. 6, 47-59 (2008).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, R. Salut, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons," Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, "Experimental and theoretical characterization of a lithium niobate photonic crystal," Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

Bainier, C.

F. Lacour, N. Courjal, M. -P. Bernal, A. Sabac, C. Bainier, M. Spajer, "Nanostructuring lithium niobate substrates by focused ion beam milling," Opt. Mater. 27, 1421-1425 (2005).
[CrossRef]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Bazzan, M.

C.-H. Hou, M.-P. Bernal, C.-C. Chen, R. Salut, C. Sada, N. Argiolas, M. Bazzan, M. V. Ciampollilo, "Purcell effect observation in erbium doped lithium niobate photonic crystal structures," Opt. Commun. 281, 4151-4154 (2008).
[CrossRef]

Berenger, J.-P.

J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Computat. Phys. 114, 185-200 (1994).
[CrossRef]

Bernal, M. -P.

F. Lacour, N. Courjal, M. -P. Bernal, A. Sabac, C. Bainier, M. Spajer, "Nanostructuring lithium niobate substrates by focused ion beam milling," Opt. Mater. 27, 1421-1425 (2005).
[CrossRef]

Bernal, M.-P.

S. Diziain, S. Harada, R. Salut, P. Muralt, M.-P. Bernal, "Strong improvement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab," Appl. Phys. Lett. 95, 101103 (2009).
[CrossRef]

G. W. Burr, S. Diziain, M.-P. Bernal, "The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals," Opt. Express 16, 6302-6316 (2008).
[CrossRef] [PubMed]

J. Amet, F. I. Baida, G. W. Burr, M.-P. Bernal, "The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching," Photon. Nanostruct. Fundam. Appl. 6, 47-59 (2008).
[CrossRef]

S. Diziain, J. Amet, F. I. Baida, and M.-P. Bernal, "Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double passive and active demultiplexer applications," Appl. Phys. Lett. 93, 261103 (2008).
[CrossRef]

C.-H. Hou, M.-P. Bernal, C.-C. Chen, R. Salut, C. Sada, N. Argiolas, M. Bazzan, M. V. Ciampollilo, "Purcell effect observation in erbium doped lithium niobate photonic crystal structures," Opt. Commun. 281, 4151-4154 (2008).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, R. Salut, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons," Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, "Experimental and theoretical characterization of a lithium niobate photonic crystal," Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

Burr, G. W.

J. Amet, F. I. Baida, G. W. Burr, M.-P. Bernal, "The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching," Photon. Nanostruct. Fundam. Appl. 6, 47-59 (2008).
[CrossRef]

G. W. Burr, S. Diziain, M.-P. Bernal, "The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals," Opt. Express 16, 6302-6316 (2008).
[CrossRef] [PubMed]

Chen, C.-C.

C.-H. Hou, M.-P. Bernal, C.-C. Chen, R. Salut, C. Sada, N. Argiolas, M. Bazzan, M. V. Ciampollilo, "Purcell effect observation in erbium doped lithium niobate photonic crystal structures," Opt. Commun. 281, 4151-4154 (2008).
[CrossRef]

Ciampollilo, M. V.

C.-H. Hou, M.-P. Bernal, C.-C. Chen, R. Salut, C. Sada, N. Argiolas, M. Bazzan, M. V. Ciampollilo, "Purcell effect observation in erbium doped lithium niobate photonic crystal structures," Opt. Commun. 281, 4151-4154 (2008).
[CrossRef]

Courjal, N.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, R. Salut, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons," Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, "Experimental and theoretical characterization of a lithium niobate photonic crystal," Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

F. Lacour, N. Courjal, M. -P. Bernal, A. Sabac, C. Bainier, M. Spajer, "Nanostructuring lithium niobate substrates by focused ion beam milling," Opt. Mater. 27, 1421-1425 (2005).
[CrossRef]

Diziain, S.

S. Diziain, S. Harada, R. Salut, P. Muralt, M.-P. Bernal, "Strong improvement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab," Appl. Phys. Lett. 95, 101103 (2009).
[CrossRef]

G. W. Burr, S. Diziain, M.-P. Bernal, "The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals," Opt. Express 16, 6302-6316 (2008).
[CrossRef] [PubMed]

S. Diziain, J. Amet, F. I. Baida, and M.-P. Bernal, "Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double passive and active demultiplexer applications," Appl. Phys. Lett. 93, 261103 (2008).
[CrossRef]

Fan, S.

S.G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Gedney, S. D.

S. D. Gedney, "An Anisotropic Perfectly Matched Layer-Absorbing Medium for the Truncation of FDTD Lattices," IEEE Trans. Antennas Propag. 44, 1630-1639 (1996).
[CrossRef]

Guarino, A.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, P. Gunter, "Ion-sliced lithium niobate thin films for active photonic devices," Opt. Mater. 31, 1054-1058 (2009).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R Degl’Innocenti, P. Gunter, "Electro-optically tunable microring resonators in lithium niobate," Nat. Photonics 1, 407-410 (2007).
[CrossRef]

Gunter, P.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, P. Gunter, "Ion-sliced lithium niobate thin films for active photonic devices," Opt. Mater. 31, 1054-1058 (2009).
[CrossRef]

M. Koechlin, G. Poberaj, P. Gunter, "High-resolution laser lithography system based on two-dimensional acousto-optic deflection," Rev. Sci. Instrum. 80, 085105 (2009).
[CrossRef] [PubMed]

P. Rabiei and P. Gunter, "Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing," Appl. Phys. Lett. 85, 4603-4605 (2004).
[CrossRef]

Guo, G. Y.

T. Weng and G. Y. Guo, "Band structures of honeycomb photonic crystal slabs," J. Appl. Phys. 99, 093102 (2006).
[CrossRef]

Hajfler, J.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, P. Gunter, "Ion-sliced lithium niobate thin films for active photonic devices," Opt. Mater. 31, 1054-1058 (2009).
[CrossRef]

Harada, S.

S. Diziain, S. Harada, R. Salut, P. Muralt, M.-P. Bernal, "Strong improvement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab," Appl. Phys. Lett. 95, 101103 (2009).
[CrossRef]

Hou, C.-H.

C.-H. Hou, M.-P. Bernal, C.-C. Chen, R. Salut, C. Sada, N. Argiolas, M. Bazzan, M. V. Ciampollilo, "Purcell effect observation in erbium doped lithium niobate photonic crystal structures," Opt. Commun. 281, 4151-4154 (2008).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001).
[CrossRef] [PubMed]

S.G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Johnson, S. G.

Johnson, S.G.

S.G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Koechlin, M.

M. Koechlin, G. Poberaj, P. Gunter, "High-resolution laser lithography system based on two-dimensional acousto-optic deflection," Rev. Sci. Instrum. 80, 085105 (2009).
[CrossRef] [PubMed]

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, P. Gunter, "Ion-sliced lithium niobate thin films for active photonic devices," Opt. Mater. 31, 1054-1058 (2009).
[CrossRef]

Lacour, F.

F. Lacour, N. Courjal, M. -P. Bernal, A. Sabac, C. Bainier, M. Spajer, "Nanostructuring lithium niobate substrates by focused ion beam milling," Opt. Mater. 27, 1421-1425 (2005).
[CrossRef]

Lipson, M.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Muralt, P.

S. Diziain, S. Harada, R. Salut, P. Muralt, M.-P. Bernal, "Strong improvement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab," Appl. Phys. Lett. 95, 101103 (2009).
[CrossRef]

Noda, S.

Y. Akahane, T. Asano, B. S. Song, S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Poberaj, G.

M. Koechlin, G. Poberaj, P. Gunter, "High-resolution laser lithography system based on two-dimensional acousto-optic deflection," Rev. Sci. Instrum. 80, 085105 (2009).
[CrossRef] [PubMed]

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, P. Gunter, "Ion-sliced lithium niobate thin films for active photonic devices," Opt. Mater. 31, 1054-1058 (2009).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R Degl’Innocenti, P. Gunter, "Electro-optically tunable microring resonators in lithium niobate," Nat. Photonics 1, 407-410 (2007).
[CrossRef]

Rabiei, P.

P. Rabiei and W. H. Steier, "Lithium niobate ridge waveguides and modulators fabricated using smart guide," Appl. Phys. Lett. 86, 161115 (2005).
[CrossRef]

P. Rabiei and P. Gunter, "Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing," Appl. Phys. Lett. 85, 4603-4605 (2004).
[CrossRef]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R Degl’Innocenti, P. Gunter, "Electro-optically tunable microring resonators in lithium niobate," Nat. Photonics 1, 407-410 (2007).
[CrossRef]

Roussey, M.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, R. Salut, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons," Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, "Experimental and theoretical characterization of a lithium niobate photonic crystal," Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

Sabac, A.

F. Lacour, N. Courjal, M. -P. Bernal, A. Sabac, C. Bainier, M. Spajer, "Nanostructuring lithium niobate substrates by focused ion beam milling," Opt. Mater. 27, 1421-1425 (2005).
[CrossRef]

Sada, C.

C.-H. Hou, M.-P. Bernal, C.-C. Chen, R. Salut, C. Sada, N. Argiolas, M. Bazzan, M. V. Ciampollilo, "Purcell effect observation in erbium doped lithium niobate photonic crystal structures," Opt. Commun. 281, 4151-4154 (2008).
[CrossRef]

Salut, R.

S. Diziain, S. Harada, R. Salut, P. Muralt, M.-P. Bernal, "Strong improvement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab," Appl. Phys. Lett. 95, 101103 (2009).
[CrossRef]

C.-H. Hou, M.-P. Bernal, C.-C. Chen, R. Salut, C. Sada, N. Argiolas, M. Bazzan, M. V. Ciampollilo, "Purcell effect observation in erbium doped lithium niobate photonic crystal structures," Opt. Commun. 281, 4151-4154 (2008).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, R. Salut, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons," Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

Spajer, M.

F. Lacour, N. Courjal, M. -P. Bernal, A. Sabac, C. Bainier, M. Spajer, "Nanostructuring lithium niobate substrates by focused ion beam milling," Opt. Mater. 27, 1421-1425 (2005).
[CrossRef]

Steier, W. H.

P. Rabiei and W. H. Steier, "Lithium niobate ridge waveguides and modulators fabricated using smart guide," Appl. Phys. Lett. 86, 161115 (2005).
[CrossRef]

Sulser, F.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, P. Gunter, "Ion-sliced lithium niobate thin films for active photonic devices," Opt. Mater. 31, 1054-1058 (2009).
[CrossRef]

Van Labeke, D.

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, R. Salut, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons," Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

Villeneuve, P. R.

S.G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Weng, T.

T. Weng and G. Y. Guo, "Band structures of honeycomb photonic crystal slabs," J. Appl. Phys. 99, 093102 (2006).
[CrossRef]

Appl. Phys. Lett.

M. Roussey, M.-P. Bernal, N. Courjal, and F. I. Baida, "Experimental and theoretical characterization of a lithium niobate photonic crystal," Appl. Phys. Lett. 87, 241101 (2005).
[CrossRef]

M. Roussey, M.-P. Bernal, N. Courjal, D. Van Labeke, F. I. Baida, R. Salut, "Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons," Appl. Phys. Lett. 89, 241110 (2006).
[CrossRef]

S. Diziain, J. Amet, F. I. Baida, and M.-P. Bernal, "Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double passive and active demultiplexer applications," Appl. Phys. Lett. 93, 261103 (2008).
[CrossRef]

S. Diziain, S. Harada, R. Salut, P. Muralt, M.-P. Bernal, "Strong improvement in the photonic stop-band edge sharpness of a lithium niobate photonic crystal slab," Appl. Phys. Lett. 95, 101103 (2009).
[CrossRef]

P. Rabiei and P. Gunter, "Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing," Appl. Phys. Lett. 85, 4603-4605 (2004).
[CrossRef]

P. Rabiei and W. H. Steier, "Lithium niobate ridge waveguides and modulators fabricated using smart guide," Appl. Phys. Lett. 86, 161115 (2005).
[CrossRef]

IEEE Trans. Antennas Propag.

S. D. Gedney, "An Anisotropic Perfectly Matched Layer-Absorbing Medium for the Truncation of FDTD Lattices," IEEE Trans. Antennas Propag. 44, 1630-1639 (1996).
[CrossRef]

J. Appl. Phys.

T. Weng and G. Y. Guo, "Band structures of honeycomb photonic crystal slabs," J. Appl. Phys. 99, 093102 (2006).
[CrossRef]

J. Computat. Phys.

J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Computat. Phys. 114, 185-200 (1994).
[CrossRef]

Nat. Photonics

A. Guarino, G. Poberaj, D. Rezzonico, R Degl’Innocenti, P. Gunter, "Electro-optically tunable microring resonators in lithium niobate," Nat. Photonics 1, 407-410 (2007).
[CrossRef]

Nature

Y. Akahane, T. Asano, B. S. Song, S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Opt. Commun.

C.-H. Hou, M.-P. Bernal, C.-C. Chen, R. Salut, C. Sada, N. Argiolas, M. Bazzan, M. V. Ciampollilo, "Purcell effect observation in erbium doped lithium niobate photonic crystal structures," Opt. Commun. 281, 4151-4154 (2008).
[CrossRef]

Opt. Express

Opt. Mater.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, P. Gunter, "Ion-sliced lithium niobate thin films for active photonic devices," Opt. Mater. 31, 1054-1058 (2009).
[CrossRef]

F. Lacour, N. Courjal, M. -P. Bernal, A. Sabac, C. Bainier, M. Spajer, "Nanostructuring lithium niobate substrates by focused ion beam milling," Opt. Mater. 27, 1421-1425 (2005).
[CrossRef]

Photon. Nanostruct. Fundam. Appl.

J. Amet, F. I. Baida, G. W. Burr, M.-P. Bernal, "The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching," Photon. Nanostruct. Fundam. Appl. 6, 47-59 (2008).
[CrossRef]

Phys. Rev. B

S.G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999).
[CrossRef]

Rev. Sci. Instrum.

M. Koechlin, G. Poberaj, P. Gunter, "High-resolution laser lithography system based on two-dimensional acousto-optic deflection," Rev. Sci. Instrum. 80, 085105 (2009).
[CrossRef] [PubMed]

Other

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, (Princeton University Press, 2nd Edition, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Fabrication steps and configuration of a LiNbO3 thin film. 1. He+ implantation, 2. Bonding, 3. Heating process, 4. Lift off

Fig. 2.
Fig. 2.

(a) Scanning electron micrograph of triangular lattice of holes in a z-cut, 600-nm thick LiNbO3 film milled by focused ion beam (FIB). The lattice constant is 500 nm and the holes have a diameter of 240 nm. (b) FIB milled cross section showing holes with a regular cylindric shape in the LiNbO3 thin film. The holes with a depth of 1µm penetrate into the BCB underlayer.

Fig. 3.
Fig. 3.

Cross section of FIB milled holes in a bulk LiNbO3 crystal. The milling parameters were the same as in case of the thin film shown in Fig. 2. A pronounced conical shape of holes is due to unwanted redeposition effects.

Fig. 4.
Fig. 4.

Scanning electron micrograph of a ridge optical waveguide with enlarged tapered region containing a PBG structure. The triangular array of 15×36 air holes was structured using the FIB milling. Light is propagating along symmetry direction Γ→K. The inset shows an input facet of the coupling optical waveguide smoothened by FIB milling.

Fig. 5.
Fig. 5.

Optical setup with a white light laser source and a spectrum analyzer for the characterization of photonic crystal bandgaps in fabricated samples.

Fig. 6.
Fig. 6.

Normalized transmission spectra (TE-polarized light) of triangular lattices of air holes (lattice period a=500 nm, hole radius r=120 nm) with 5, 10, and 15 rows. The structure with 15 rows exhibits a broad transmission dip between 1300 and 1550 nm with the maximum extinction of 15 dB at a wavelength of 1470 nm.

Fig. 7.
Fig. 7.

Photonic band diagrams of the symmetric (a) BCB/LiNbO3/BCB and asymmetric (b) air/LiNbO3/BCB photonic crystal slab with a triangular lattice of air holes (r=120 nm, a=500 nm, r/a=0.24). The z-cut LiNbO3 slab has a thickness of 600 nm. The bandgap exists only for even modes and ranges from 1390 nm to 1500 nm as depicted by the green area between the dotted lines in band diagram (a).

Fig. 8.
Fig. 8.

(a) Schematic drawing of the structure for the FDTD simualtions. The injection direction is along the ΓK axis of the photonic crystal. As in the experiment, the crystal-lographic z-axis is perpendicular to the crystal slab plane. The structure is surrounded by APM layers in order to avoid unwanted reflections from the edges of the simulation area. (b) Schematics of the crossection of the photonic crystal simulated by 3D FDTD simulation showing the 1-µm deep air holes in the LiNbO3 and the BCB layer underneath.

Fig. 9.
Fig. 9.

Comparison of the calculated and measured transmission spectra. The black curve shows the calculated normalized transmitted spectrum through a structure as shown in Fig. 8 with lattice constant a=500 nm, radius r=120 nm and 15 rows of holes simulated by the 3D FDTD method. The dotted red curve shows the measured optical transmission for such a structure.

Metrics