Abstract

Metamaterial (MM) absorber is a novel device to provide near-unity absorption to electromagnetic wave, which is especially important in the terahertz (THz) band. However, the principal physics of MM absorber is still far from being understood. In this work, a transmission line (TL) model for MM absorber was proposed, and with this model the S-parameters, energy consumption, and the power loss density of the absorber were calculated. By this TL model, the asymmetric phenomenon of THz absorption in MM absorber is unambiguously demonstrated, and it clarifies that strong absorption of this absorber under studied is mainly related to the LC resonance of the split-ring-resonator structure. The distribution of power loss density in the absorber indicates that the electromagnetic wave is firstly concentrated into some specific locations of the absorber and then be strongly consumed. This feature as electromagnetic wave trapper renders MM absorber a potential energy converter. Based on TL model, some design strategies to widen the absorption band were also proposed for the purposes to extend its application areas.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
    [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
    [CrossRef] [PubMed]
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
    [CrossRef] [PubMed]
  4. N. Fang, H. Lee, and C. Sun, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537(2005).
    [CrossRef] [PubMed]
  5. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782(2006).
    [CrossRef] [PubMed]
  6. D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980(2006).
    [CrossRef] [PubMed]
  7. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect Metamaterial Absorber," Phys. Rev. Lett. 100, 207402 (2008).
    [CrossRef] [PubMed]
  8. S. Zhang, L. Yin, and N. Fang, "Focusing ultrasound with an acoustic metamaterial network," Phys. Rev. Lett. 102, 194301 (2009).
    [CrossRef] [PubMed]
  9. A. K. Iyera and G. V. Eleftheriades, "A three-dimensional isotropic transmission-line metamaterial topology for free-space excitation," Appl. Phys. Lett. 92, 261106 (2008).
    [CrossRef]
  10. F. Elek and G. V. Eleftheriades, "A two-dimensional uniplanar transmission-line metamaterial with a negative index of refraction," New J. Phys. 7, 163 (2005).
    [CrossRef]
  11. C. Caloz and T. Itoh. Electromagnetic Metamaterial: Transmission Line Theory and Microwave Applications (John Wiley & Sons, 2005).
    [CrossRef]
  12. H. Tao, N. I. Landy, C. M. Bingham, X. zhang, R. D. Averitt and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express 16, 7181-7188 (2008).
    [CrossRef]
  13. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B 78, 241103 (2008).
    [CrossRef]
  14. Y. Avitzour, Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Phys. Rev. B 79, 045131 (2009).
    [CrossRef]
  15. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Phys. Rev. B 79, 125104 (2009).
    [CrossRef]
  16. Y. X Li, Y. S. Xie, H. W. Zhang, Y. L. Liu, Q. Y. Wen, W. W. Lin, "The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modeling," J Phys. D: Appl. Phys. 42,095408 (2009).
    [CrossRef]
  17. A. K. Azad, A. J. Taylor, E. Smirnova, J. F. O'Hara, " Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators," Appl. Phys. Lett. 92, 011119 (2008).
    [CrossRef]
  18. L. Fu, H. Schweizer, H. Guo, N. Liu, H. Giessen, " Synthesis of transmission line models for metamaterial slabs at optical frequencies," Phys. Rev. B 78, 115110 (2008).
    [CrossRef]
  19. F. Bilotti, L. Nucci, and L. Vegni, "An SRR based microwave absorber," Microwave Opt. Technol. Lett. 48, 2171-2175 (2006).
    [CrossRef]
  20. M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou and C. M. Soukoulis, " Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7, S12-S22 (2005).
    [CrossRef]
  21. W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B 75, 041102 (2007).
    [CrossRef]
  22. J. Han, A. Lakhtakia, and C. W. Qiu, "Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tenability," Opt. Express 16, 14390-14396 (2008).
    [CrossRef] [PubMed]

2009 (4)

S. Zhang, L. Yin, and N. Fang, "Focusing ultrasound with an acoustic metamaterial network," Phys. Rev. Lett. 102, 194301 (2009).
[CrossRef] [PubMed]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Phys. Rev. B 79, 045131 (2009).
[CrossRef]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Phys. Rev. B 79, 125104 (2009).
[CrossRef]

Y. X Li, Y. S. Xie, H. W. Zhang, Y. L. Liu, Q. Y. Wen, W. W. Lin, "The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modeling," J Phys. D: Appl. Phys. 42,095408 (2009).
[CrossRef]

2008 (7)

A. K. Azad, A. J. Taylor, E. Smirnova, J. F. O'Hara, " Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators," Appl. Phys. Lett. 92, 011119 (2008).
[CrossRef]

L. Fu, H. Schweizer, H. Guo, N. Liu, H. Giessen, " Synthesis of transmission line models for metamaterial slabs at optical frequencies," Phys. Rev. B 78, 115110 (2008).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B 78, 241103 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. zhang, R. D. Averitt and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express 16, 7181-7188 (2008).
[CrossRef]

J. Han, A. Lakhtakia, and C. W. Qiu, "Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tenability," Opt. Express 16, 14390-14396 (2008).
[CrossRef] [PubMed]

A. K. Iyera and G. V. Eleftheriades, "A three-dimensional isotropic transmission-line metamaterial topology for free-space excitation," Appl. Phys. Lett. 92, 261106 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect Metamaterial Absorber," Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

2007 (1)

W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B 75, 041102 (2007).
[CrossRef]

2006 (3)

F. Bilotti, L. Nucci, and L. Vegni, "An SRR based microwave absorber," Microwave Opt. Technol. Lett. 48, 2171-2175 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782(2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980(2006).
[CrossRef] [PubMed]

2005 (3)

N. Fang, H. Lee, and C. Sun, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537(2005).
[CrossRef] [PubMed]

F. Elek and G. V. Eleftheriades, "A two-dimensional uniplanar transmission-line metamaterial with a negative index of refraction," New J. Phys. 7, 163 (2005).
[CrossRef]

M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou and C. M. Soukoulis, " Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7, S12-S22 (2005).
[CrossRef]

2002 (1)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Aronsson, M. T.

W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B 75, 041102 (2007).
[CrossRef]

Averitt, R. D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B 78, 241103 (2008).
[CrossRef]

W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B 75, 041102 (2007).
[CrossRef]

Avitzour, Y.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Phys. Rev. B 79, 045131 (2009).
[CrossRef]

Azad, A. K.

A. K. Azad, A. J. Taylor, E. Smirnova, J. F. O'Hara, " Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators," Appl. Phys. Lett. 92, 011119 (2008).
[CrossRef]

Bilotti, F.

F. Bilotti, L. Nucci, and L. Vegni, "An SRR based microwave absorber," Microwave Opt. Technol. Lett. 48, 2171-2175 (2006).
[CrossRef]

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Phys. Rev. B 79, 125104 (2009).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B 78, 241103 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. zhang, R. D. Averitt and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express 16, 7181-7188 (2008).
[CrossRef]

Cummer, S. A.

D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980(2006).
[CrossRef] [PubMed]

Economou, E. N.

M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou and C. M. Soukoulis, " Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7, S12-S22 (2005).
[CrossRef]

Eleftheriades, G. V.

A. K. Iyera and G. V. Eleftheriades, "A three-dimensional isotropic transmission-line metamaterial topology for free-space excitation," Appl. Phys. Lett. 92, 261106 (2008).
[CrossRef]

F. Elek and G. V. Eleftheriades, "A two-dimensional uniplanar transmission-line metamaterial with a negative index of refraction," New J. Phys. 7, 163 (2005).
[CrossRef]

Elek, F.

F. Elek and G. V. Eleftheriades, "A two-dimensional uniplanar transmission-line metamaterial with a negative index of refraction," New J. Phys. 7, 163 (2005).
[CrossRef]

Fan, K.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Fang, N.

S. Zhang, L. Yin, and N. Fang, "Focusing ultrasound with an acoustic metamaterial network," Phys. Rev. Lett. 102, 194301 (2009).
[CrossRef] [PubMed]

N. Fang, H. Lee, and C. Sun, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537(2005).
[CrossRef] [PubMed]

Fu, L.

L. Fu, H. Schweizer, H. Guo, N. Liu, H. Giessen, " Synthesis of transmission line models for metamaterial slabs at optical frequencies," Phys. Rev. B 78, 115110 (2008).
[CrossRef]

Giessen, H.

L. Fu, H. Schweizer, H. Guo, N. Liu, H. Giessen, " Synthesis of transmission line models for metamaterial slabs at optical frequencies," Phys. Rev. B 78, 115110 (2008).
[CrossRef]

Gundogdu, T. F.

M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou and C. M. Soukoulis, " Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7, S12-S22 (2005).
[CrossRef]

Guo, H.

L. Fu, H. Schweizer, H. Guo, N. Liu, H. Giessen, " Synthesis of transmission line models for metamaterial slabs at optical frequencies," Phys. Rev. B 78, 115110 (2008).
[CrossRef]

Han, J.

Highstrete, C.

W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B 75, 041102 (2007).
[CrossRef]

Iyera, A. K.

A. K. Iyera and G. V. Eleftheriades, "A three-dimensional isotropic transmission-line metamaterial topology for free-space excitation," Appl. Phys. Lett. 92, 261106 (2008).
[CrossRef]

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Phys. Rev. B 79, 125104 (2009).
[CrossRef]

Justice, J. B.

D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980(2006).
[CrossRef] [PubMed]

Kafesaki, M.

M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou and C. M. Soukoulis, " Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7, S12-S22 (2005).
[CrossRef]

Koschny, Th.

M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou and C. M. Soukoulis, " Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7, S12-S22 (2005).
[CrossRef]

Lakhtakia, A.

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Phys. Rev. B 79, 125104 (2009).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B 78, 241103 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect Metamaterial Absorber," Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. zhang, R. D. Averitt and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express 16, 7181-7188 (2008).
[CrossRef]

Lee, H.

N. Fang, H. Lee, and C. Sun, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537(2005).
[CrossRef] [PubMed]

Li, Y. X

Y. X Li, Y. S. Xie, H. W. Zhang, Y. L. Liu, Q. Y. Wen, W. W. Lin, "The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modeling," J Phys. D: Appl. Phys. 42,095408 (2009).
[CrossRef]

Lin, W. W.

Y. X Li, Y. S. Xie, H. W. Zhang, Y. L. Liu, Q. Y. Wen, W. W. Lin, "The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modeling," J Phys. D: Appl. Phys. 42,095408 (2009).
[CrossRef]

Liu, N.

L. Fu, H. Schweizer, H. Guo, N. Liu, H. Giessen, " Synthesis of transmission line models for metamaterial slabs at optical frequencies," Phys. Rev. B 78, 115110 (2008).
[CrossRef]

Liu, Y. L.

Y. X Li, Y. S. Xie, H. W. Zhang, Y. L. Liu, Q. Y. Wen, W. W. Lin, "The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modeling," J Phys. D: Appl. Phys. 42,095408 (2009).
[CrossRef]

Mark Lee, C.

W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B 75, 041102 (2007).
[CrossRef]

Markos, P.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect Metamaterial Absorber," Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980(2006).
[CrossRef] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Nucci, L.

F. Bilotti, L. Nucci, and L. Vegni, "An SRR based microwave absorber," Microwave Opt. Technol. Lett. 48, 2171-2175 (2006).
[CrossRef]

O'Hara, J. F.

A. K. Azad, A. J. Taylor, E. Smirnova, J. F. O'Hara, " Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators," Appl. Phys. Lett. 92, 011119 (2008).
[CrossRef]

Padilla, W. J.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Phys. Rev. B 79, 125104 (2009).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B 78, 241103 (2008).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect Metamaterial Absorber," Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B 75, 041102 (2007).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Penciu, R. S.

M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou and C. M. Soukoulis, " Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7, S12-S22 (2005).
[CrossRef]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782(2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980(2006).
[CrossRef] [PubMed]

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Qiu, C. W.

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect Metamaterial Absorber," Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

Schultz, S.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782(2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980(2006).
[CrossRef] [PubMed]

Schweizer, H.

L. Fu, H. Schweizer, H. Guo, N. Liu, H. Giessen, " Synthesis of transmission line models for metamaterial slabs at optical frequencies," Phys. Rev. B 78, 115110 (2008).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Shrekenhamer, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Shvets, G.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Phys. Rev. B 79, 045131 (2009).
[CrossRef]

Smirnova, E.

A. K. Azad, A. J. Taylor, E. Smirnova, J. F. O'Hara, " Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators," Appl. Phys. Lett. 92, 011119 (2008).
[CrossRef]

Smith, D. R.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Phys. Rev. B 79, 125104 (2009).
[CrossRef]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect Metamaterial Absorber," Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782(2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980(2006).
[CrossRef] [PubMed]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Soukoulis, C. M.

M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou and C. M. Soukoulis, " Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7, S12-S22 (2005).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980(2006).
[CrossRef] [PubMed]

Strikwerda, A. C.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Sun, C.

N. Fang, H. Lee, and C. Sun, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537(2005).
[CrossRef] [PubMed]

Tao, H.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B 78, 241103 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. zhang, R. D. Averitt and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express 16, 7181-7188 (2008).
[CrossRef]

Taylor, A. J.

A. K. Azad, A. J. Taylor, E. Smirnova, J. F. O'Hara, " Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators," Appl. Phys. Lett. 92, 011119 (2008).
[CrossRef]

W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B 75, 041102 (2007).
[CrossRef]

Tyler, T.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Phys. Rev. B 79, 125104 (2009).
[CrossRef]

Urzhumov, Y. A.

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Phys. Rev. B 79, 045131 (2009).
[CrossRef]

Vegni, L.

F. Bilotti, L. Nucci, and L. Vegni, "An SRR based microwave absorber," Microwave Opt. Technol. Lett. 48, 2171-2175 (2006).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Wen, Q. Y.

Y. X Li, Y. S. Xie, H. W. Zhang, Y. L. Liu, Q. Y. Wen, W. W. Lin, "The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modeling," J Phys. D: Appl. Phys. 42,095408 (2009).
[CrossRef]

Xie, Y. S.

Y. X Li, Y. S. Xie, H. W. Zhang, Y. L. Liu, Q. Y. Wen, W. W. Lin, "The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modeling," J Phys. D: Appl. Phys. 42,095408 (2009).
[CrossRef]

Yin, L.

S. Zhang, L. Yin, and N. Fang, "Focusing ultrasound with an acoustic metamaterial network," Phys. Rev. Lett. 102, 194301 (2009).
[CrossRef] [PubMed]

Zhang, H. W.

Y. X Li, Y. S. Xie, H. W. Zhang, Y. L. Liu, Q. Y. Wen, W. W. Lin, "The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modeling," J Phys. D: Appl. Phys. 42,095408 (2009).
[CrossRef]

Zhang, S.

S. Zhang, L. Yin, and N. Fang, "Focusing ultrasound with an acoustic metamaterial network," Phys. Rev. Lett. 102, 194301 (2009).
[CrossRef] [PubMed]

Zhang, X.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

A. K. Iyera and G. V. Eleftheriades, "A three-dimensional isotropic transmission-line metamaterial topology for free-space excitation," Appl. Phys. Lett. 92, 261106 (2008).
[CrossRef]

A. K. Azad, A. J. Taylor, E. Smirnova, J. F. O'Hara, " Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators," Appl. Phys. Lett. 92, 011119 (2008).
[CrossRef]

J Phys. D: Appl. Phys. (1)

Y. X Li, Y. S. Xie, H. W. Zhang, Y. L. Liu, Q. Y. Wen, W. W. Lin, "The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modeling," J Phys. D: Appl. Phys. 42,095408 (2009).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

M. Kafesaki, Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou and C. M. Soukoulis, " Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt. 7, S12-S22 (2005).
[CrossRef]

Microwave Opt. Technol. Lett. (1)

F. Bilotti, L. Nucci, and L. Vegni, "An SRR based microwave absorber," Microwave Opt. Technol. Lett. 48, 2171-2175 (2006).
[CrossRef]

New J. Phys. (1)

F. Elek and G. V. Eleftheriades, "A two-dimensional uniplanar transmission-line metamaterial with a negative index of refraction," New J. Phys. 7, 163 (2005).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (6)

W. J. Padilla, M. T. Aronsson, C. Highstrete, Mark Lee, A. J. Taylor, and R. D. Averitt, "Electrically resonant terahertz metamaterials: Theoretical and experimental investigations," Phys. Rev. B 75, 041102 (2007).
[CrossRef]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Y. Avitzour, Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Phys. Rev. B 79, 045131 (2009).
[CrossRef]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Phys. Rev. B 79, 125104 (2009).
[CrossRef]

L. Fu, H. Schweizer, H. Guo, N. Liu, H. Giessen, " Synthesis of transmission line models for metamaterial slabs at optical frequencies," Phys. Rev. B 78, 115110 (2008).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Phys. Rev. Lett. (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect Metamaterial Absorber," Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef] [PubMed]

S. Zhang, L. Yin, and N. Fang, "Focusing ultrasound with an acoustic metamaterial network," Phys. Rev. Lett. 102, 194301 (2009).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

Science (4)

N. Fang, H. Lee, and C. Sun, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537(2005).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-1782(2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980(2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001).
[CrossRef] [PubMed]

Other (1)

C. Caloz and T. Itoh. Electromagnetic Metamaterial: Transmission Line Theory and Microwave Applications (John Wiley & Sons, 2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

The transmission line model for the metamaterial absorber. The parameters R1, L1, C1 and R2, L2, C2 corresponds to the LC and dipole resonance of the eSRR, respectively, and M refers to the coupling between them. R3, L3 and C3 specify the resonance of wires structure and TL refers to the transmission line which representing the separation layer, Zi and Zo is the input and output impedance of the system respectively.

Fig. 2.
Fig. 2.

Dimension details of the (a) MM absorber, (b) Wire and (c) eSRR, where the marked numerical value are in unit of µm

Fig. 3.
Fig. 3.

Schematic drawing of (a) the eSRR and (b) the wire metamaterials. The E, H, k components of THz wave were plotted for a positive case.

Fig. 4.
Fig. 4.

The S-parameters of (a) eSRR and (b) wire metamateirals. The S parameters with a prefix of Sim are the results from CST simulation, while those with a prefix of Cal are the results from TL model calculation.

Fig. 5.
Fig. 5.

The simulated (solid lines) and calculated (dotted lines) S-parameters of MM absorber.

Fig. 6.
Fig. 6.

The spectrum of energy consumption of Ri (i=1,2,3) in TL model for the positive (P) and negative (N) incidence of the THz wave.

Fig. 7.
Fig. 7.

(a). The distribution of average power loss density in absorber plane, and (b) and (c) a illustrating distribution of a typical power loss density (3×1011w/m3) from front and side view.

Fig. 8.
Fig. 8.

The calculated S11 curves of MM absorber with different R1 value.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

[AERRBERRCERRDERR]=[101X1X2X1+X2+M1]
[AisoBisoCisoDiso]=[cos(kl)jZcsin(kl)jsin(kl)Zccos(kl)]
[AwiresBwiresCwiresDwires]=[101X31]
[ABCD]=[AERRBERRCERRDERR][AisoBisoCisoDiso][AwiresBwiresCwiresDwires]
=[cos(kl)+iZcsin(kl)X3jZcsin(kl)[1X1X2X1+X2+M+1X3]cos(kl)+jsin(kl)X3Zc[X3+Zc2X1X2X1+X2+M]cos(kl)+jZcsin(kl)X1X2X1+X2+M]
[S11S12S21S22]=[AZo+B(CZo+D)ZiAZo+B+(CZ+D)Zi2ZiZoAZo+B+(CZo+D)Zi2ZiZoAZo+B+(CZo+D)ZiAZo+B(CZoD)ZiAZo+B+(CZo+D)Zi]

Metrics