Abstract

We report the fabrication of an all-solid highly nonlinear microstructured optical fiber. The structured preform was made by glass extrusion using two types of commercial lead silicate glasses that provide high index-contrast. Effectively single-moded guidance was observed in the fiber at 1.55μm. The effective nonlinearity and the propagation loss at this wavelength were measured to be 120W−1km−1 and 0.8dB/m, respectively. Numerical simulations indicate that the fiber is dispersion-shifted with a zero-dispersion-wavelength of 1475nm and a dispersion slope of 0.16ps/nm2/km respectively at 1.55μm. These predictions are consistent with the experimentally determined dispersion of + 12.5ps/nm/km at 1.55μm. Tunable and efficient four-wave-mixing based wavelength conversion was demonstrated at wavelengths around 1.55μm using a 1.5m-length of the fiber.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).Errata, Opt. Lett. 22, 484–485 (1997).
    [CrossRef] [PubMed]
  2. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  3. T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
    [CrossRef]
  4. T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt, and D. J. Richardson, “High nonlinearity extruded single-mode holey optical fibers,” OFC2002 (OSA, Washington, DC, 2002),” Postdeadline FA1, 1–3 (2002).
  5. X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Non-silica glasses for holey fibers,” J. Lightwave Technology 23(6), 2046–2054 (2005).
  6. X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express 11(18), 2225–2230 (2003).
    [CrossRef] [PubMed]
  7. X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005).
    [CrossRef]
  8. S. Asimakis, P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, “Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers,” Opt. Express 15(2), 596–601 (2007).
    [CrossRef] [PubMed]
  9. E. Schott, -Catalogue 2000—Optical Glass, for Windows, version1.1E (Schott Glass, 2001).
  10. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55μm,” Opt. Lett. 21(24), 1966–1968 (1996).
    [CrossRef] [PubMed]
  11. T. Hasegawa, T. Nagashima, and N. Sugimoto, “Determination of nonlinear coefficient and group-velocity-dispersion of bismuth-based high nonlinear optical fiber by four-wave-mixing,” Opt. Commun. 281(4), 782–787 (2008).
    [CrossRef]
  12. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
    [CrossRef]
  13. T. Torounidis, M. Karlsson, and P. A. Andrekson, “Fiber optical parametric amplifier pulse source: theory and experiments,” J. Lightwave Technol. 23(12), 4067–4073 (2005).
    [CrossRef]

2008

T. Hasegawa, T. Nagashima, and N. Sugimoto, “Determination of nonlinear coefficient and group-velocity-dispersion of bismuth-based high nonlinear optical fiber by four-wave-mixing,” Opt. Commun. 281(4), 782–787 (2008).
[CrossRef]

2007

2005

T. Torounidis, M. Karlsson, and P. A. Andrekson, “Fiber optical parametric amplifier pulse source: theory and experiments,” J. Lightwave Technol. 23(12), 4067–4073 (2005).
[CrossRef]

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Non-silica glasses for holey fibers,” J. Lightwave Technology 23(6), 2046–2054 (2005).

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005).
[CrossRef]

2003

2002

T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt, and D. J. Richardson, “High nonlinearity extruded single-mode holey optical fibers,” OFC2002 (OSA, Washington, DC, 2002),” Postdeadline FA1, 1–3 (2002).

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

2000

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

1996

Andrekson, P. A.

T. Torounidis, M. Karlsson, and P. A. Andrekson, “Fiber optical parametric amplifier pulse source: theory and experiments,” J. Lightwave Technol. 23(12), 4067–4073 (2005).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Asimakis, S.

Atkin, D. M.

Birks, T. A.

Boskovic, A.

Broderick, N. G. R.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Chernikov, S. V.

Feng, X.

S. Asimakis, P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, “Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers,” Opt. Express 15(2), 596–601 (2007).
[CrossRef] [PubMed]

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Non-silica glasses for holey fibers,” J. Lightwave Technology 23(6), 2046–2054 (2005).

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005).
[CrossRef]

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express 11(18), 2225–2230 (2003).
[CrossRef] [PubMed]

Finazzi, V.

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005).
[CrossRef]

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express 11(18), 2225–2230 (2003).
[CrossRef] [PubMed]

Frampton, K.

T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt, and D. J. Richardson, “High nonlinearity extruded single-mode holey optical fibers,” OFC2002 (OSA, Washington, DC, 2002),” Postdeadline FA1, 1–3 (2002).

Frampton, K. E.

Gruner-Nielsen, L.

Hansryd, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Hasegawa, T.

T. Hasegawa, T. Nagashima, and N. Sugimoto, “Determination of nonlinear coefficient and group-velocity-dispersion of bismuth-based high nonlinear optical fiber by four-wave-mixing,” Opt. Commun. 281(4), 782–787 (2008).
[CrossRef]

Hedekvist, P.-O.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Hewak, D.

Hewak, D. W.

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Non-silica glasses for holey fibers,” J. Lightwave Technology 23(6), 2046–2054 (2005).

T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt, and D. J. Richardson, “High nonlinearity extruded single-mode holey optical fibers,” OFC2002 (OSA, Washington, DC, 2002),” Postdeadline FA1, 1–3 (2002).

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Karlsson, M.

Kiang, K. M.

T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt, and D. J. Richardson, “High nonlinearity extruded single-mode holey optical fibers,” OFC2002 (OSA, Washington, DC, 2002),” Postdeadline FA1, 1–3 (2002).

Knight, J. C.

Lee, J. H.

T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt, and D. J. Richardson, “High nonlinearity extruded single-mode holey optical fibers,” OFC2002 (OSA, Washington, DC, 2002),” Postdeadline FA1, 1–3 (2002).

Leong, J. Y. Y.

Levring, O. A.

Li, J.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Loh, W. H.

Mairaj, A. K.

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Non-silica glasses for holey fibers,” J. Lightwave Technology 23(6), 2046–2054 (2005).

Monro, T. M.

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Non-silica glasses for holey fibers,” J. Lightwave Technology 23(6), 2046–2054 (2005).

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005).
[CrossRef]

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. Hewak, “Solid microstructured optical fiber,” Opt. Express 11(18), 2225–2230 (2003).
[CrossRef] [PubMed]

T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt, and D. J. Richardson, “High nonlinearity extruded single-mode holey optical fibers,” OFC2002 (OSA, Washington, DC, 2002),” Postdeadline FA1, 1–3 (2002).

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Moore, R.

T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt, and D. J. Richardson, “High nonlinearity extruded single-mode holey optical fibers,” OFC2002 (OSA, Washington, DC, 2002),” Postdeadline FA1, 1–3 (2002).

Moore, R. C.

Nagashima, T.

T. Hasegawa, T. Nagashima, and N. Sugimoto, “Determination of nonlinear coefficient and group-velocity-dispersion of bismuth-based high nonlinear optical fiber by four-wave-mixing,” Opt. Commun. 281(4), 782–787 (2008).
[CrossRef]

Petropoulos, P.

Poletti, F.

Richardson, D. J.

S. Asimakis, P. Petropoulos, F. Poletti, J. Y. Y. Leong, R. C. Moore, K. E. Frampton, X. Feng, W. H. Loh, and D. J. Richardson, “Towards efficient and broadband four-wave-mixing using short-length dispersion tailored lead silicate holey fibers,” Opt. Express 15(2), 596–601 (2007).
[CrossRef] [PubMed]

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005).
[CrossRef]

T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt, and D. J. Richardson, “High nonlinearity extruded single-mode holey optical fibers,” OFC2002 (OSA, Washington, DC, 2002),” Postdeadline FA1, 1–3 (2002).

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Russell, P. St. J.

Rutt, H. N.

T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt, and D. J. Richardson, “High nonlinearity extruded single-mode holey optical fibers,” OFC2002 (OSA, Washington, DC, 2002),” Postdeadline FA1, 1–3 (2002).

Sugimoto, N.

T. Hasegawa, T. Nagashima, and N. Sugimoto, “Determination of nonlinear coefficient and group-velocity-dispersion of bismuth-based high nonlinear optical fiber by four-wave-mixing,” Opt. Commun. 281(4), 782–787 (2008).
[CrossRef]

Taylor, J. R.

Torounidis, T.

Tucknott, J.

T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt, and D. J. Richardson, “High nonlinearity extruded single-mode holey optical fibers,” OFC2002 (OSA, Washington, DC, 2002),” Postdeadline FA1, 1–3 (2002).

West, Y. D.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

Westlund, M.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

Yusoff, Z.

T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt, and D. J. Richardson, “High nonlinearity extruded single-mode holey optical fibers,” OFC2002 (OSA, Washington, DC, 2002),” Postdeadline FA1, 1–3 (2002).

Appl. Phys. Lett.

X. Feng, T. M. Monro, P. Petropoulos, V. Finazzi, and D. J. Richardson, “Extruded single-mode high-index-core one-dimensional microstructured optical fiber with high index-contrast for highly nonlinear optical devices,” Appl. Phys. Lett. 87(8), 081110 (2005).
[CrossRef]

Electron. Lett.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres,” Electron. Lett. 36(24), 1998–2000 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P.-O. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE J. Sel. Top. Quantum Electron. 8(3), 506–520 (2002).
[CrossRef]

J. Lightwave Technol.

J. Lightwave Technology

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Non-silica glasses for holey fibers,” J. Lightwave Technology 23(6), 2046–2054 (2005).

Opt. Commun.

T. Hasegawa, T. Nagashima, and N. Sugimoto, “Determination of nonlinear coefficient and group-velocity-dispersion of bismuth-based high nonlinear optical fiber by four-wave-mixing,” Opt. Commun. 281(4), 782–787 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Science

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Other

T. M. Monro, K. M. Kiang, J. H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D. W. Hewak, H. N. Rutt, and D. J. Richardson, “High nonlinearity extruded single-mode holey optical fibers,” OFC2002 (OSA, Washington, DC, 2002),” Postdeadline FA1, 1–3 (2002).

E. Schott, -Catalogue 2000—Optical Glass, for Windows, version1.1E (Schott Glass, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Viscosity curves of SF6 and LLF1 glasses; (b) schematic of forming preform with coaxial-ring structures by extrusion

Fig. 2
Fig. 2

(a) SEM photographs and (b) index profile of the solid MOF with 3.7μm core diameter

Fig. 3
Fig. 3

Comparison between the structured cane (left) and the microstructured cladding in the final fiber (right)

Fig. 4
Fig. 4

(a) Simulated (upper) and observed (lower) LP01 mode of 1D MOF; (b) linear fitting of the transmitted power (on a log scale) from the output end of 1D MOF, using the cutback method; (c) calculated dispersion curve and measured dispersion (red cross point at 1.55μm) of 1D MOF with core diameter (dcore) of 3.7μm, the dispersion curves of 1D MOF with core diameter of 5.0, 4.1 and 3.3μm, silica SMF28 fiber, and bulk SF6.

Fig. 5
Fig. 5

Experimental setup of FWM-based wavelength conversion of a short-pulse source.

Fig. 6
Fig. 6

(a) Measured spectral traces of FWM-based wavelength conversion in the 1.5m-length of MOF using a pulsed pump and tunable CW signal source; (b) illustration of the definition of FWM conversion efficiency with pulsed pump; (c) calculated curves of the FWM conversion efficiency using different fiber length under the experimental conditions (Note that the pulsed pump wavelength is fixed at 1545.5nm as well as its power.); (d) observed autocorrection traces of the input pump and the output idler pulses.

Metrics