Abstract

We propose a plasmonic data storage medium with a high-transmission metal aperture array embedded in a dielectric material. Bowtie apertures, having an outline of 80 nm and a ridge gap of 30 nm, are arranged in a two dimensional array with a bit pitch of 100 nm and a track pitch of 280 nm. Using the finite differential time domain (FDTD) method, we calculate the exposure power needed to record optical data, the contrast for readability of recorded data, and cross talk between the main track and adjacent tracks. Compared to a conventional blu-ray disc, the exposure power needed to record optical data in the proposed plasmonic data storage medium is less than a quarter of the conventional threshold power, and the density of the data storage is about 1.8 times larger.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Mansfield, W. R. Studenmund, G. S. Kino, and K. Osato, “High-numerical-aperture lens system for an optical storage head,” Opt. Lett. 18(4), 305–307 (1993).
    [CrossRef] [PubMed]
  2. B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
    [CrossRef]
  3. X. Shi and L. Hesselink, “Mechanisms for Enhancing Power Throughput from Planar Nano-Apertures for Near-Field Optical Data Storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
    [CrossRef]
  4. K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
    [CrossRef] [PubMed]
  5. E. X. Jin and X. Xu, “Finitte-Difference Time-Domain Studies on Optical Transmission through Planar Nano-Apertures in a Metal Film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
    [CrossRef]
  6. K. Tanaka and M. Tanaka, “Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen,” J. Appl. Phys. 95(7), 3765–3771 (2004).
    [CrossRef]
  7. L. Feng and P. Dawson, “Optical transmission through single subwavelength apertures using prism coupled input of laser light of annular intensity profile,” Opt. Express 15(26), 17863–17873 (2007).
    [CrossRef] [PubMed]
  8. S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, J. Lu, and E. Yablonovitch, “Nanoscale Fabrication of a Plasmonic Dimple Lens for Nano-focusing of Light,” Proc. SPIE 6641, 66411J (2007).
    [CrossRef]
  9. W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
    [CrossRef]
  10. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
    [CrossRef] [PubMed]
  11. N.-C. Park, H.-S. Yang, Y.-C. Rhim, and Y.-P. Park, “A Study on Enhancing Data Storage Capacity and Mechanical Reliability of Solid Immersion Lens-Based Near-Field Recording System,” Jpn. J. Appl. Phys. 47(8), 6646–6654 (2008).
    [CrossRef]
  12. J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73(15), 2078–2080 (1998).
    [CrossRef]
  13. J. Tominaga, and T. Nakano, Optical Near-Field Recording: Science and Technology (Springer, Berlin, 2005).
  14. H. S. Lee, B.- Cheong, T. S. Lee, K. S. Lee, W. M. Kim, J. W. Lee, S. H. Cho, and J. Youl Huh, “Thermoelectric PbTe thin film for superresolution optical data storage,” Appl. Phys. Lett. 85(14), 2782–2784 (2004).
    [CrossRef]
  15. L. Shi, T. C. Chong, P. K. Tan, J. Li, X. Hu, X. Miao, and Q. Wang, “Investigation on Super-Resolution Near-Field Blu-Ray-Type Phase-Change Optical Disk with Sb2Te3 Mask Layer,” Jpn. J. Appl. Phys. 44(No. 5B), 3615–3619 (2005).
    [CrossRef]
  16. Q. Liu, T. Fukaya, S. Cao, C. Guo, Z. Zhang, Y. Guo, J. Wei, and J. Tominaga, “Study on readout durability of super-RENS disk,” Opt. Express 16(1), 213–218 (2008).
    [CrossRef] [PubMed]
  17. L. Wang and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nano-apertures,” J. Microsc. 229(3), 483–489 (2008).
    [CrossRef] [PubMed]
  18. L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14(21), 9902–9908 (2006).
    [CrossRef] [PubMed]
  19. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
    [CrossRef]
  20. L. H. Ting, X. S. Miao, M. L. Lee, M. D. Sofian, and L. P. Shi, “Optical and Magneto-optical Characterization for Multi-dimensional Multi-level Optical Recording Material,” Synth. React. Inorg. Met.-Org. Chem. 38, 284–287 (2008).
  21. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [CrossRef]
  22. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [CrossRef]
  23. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  24. J. C. Rhee, M. Okuda, and T. Matsushita, “Write-Erase Characteristics of Phase Change Optical Recording in Ga-Se-Te Systems,” Jpn. J. Appl. Phys. 26(Part 1, No. 1), 102–105 (1987).
    [CrossRef]
  25. E. T. Meinders, A. V. Mijiritskii, L. van Pieterson, and M. Wuttig, Optical Data Storage: Phase-change Media and Recording (Springer, Dordrecht, 2006).
  26. X. G. Huang, M. R. Wang, Y. Tsui, and C. Wu, “Characterization of erasable inorganic photochromic media for optical disk data storage,” J. Appl. Phys. 83(7), 3795–3799 (1998).
    [CrossRef]
  27. C. Peng and M. Mansuripur, “Sources of noise in erasable optical disk data storage,” Appl. Opt. 37(5), 921–928 (1998).
    [CrossRef]
  28. C. Peng, “Superresolution near-field readout in phase-change optical disk data storage,” Appl. Opt. 40(23), 3922–3931 (2001).
    [CrossRef]
  29. K. B. Chung, “Numerical analysis of readout-signal cross talk in magneto-optical land and groove recording,” Appl. Opt. 36(8), 1789–1795 (1997).
    [CrossRef] [PubMed]

2009 (1)

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

2008 (4)

N.-C. Park, H.-S. Yang, Y.-C. Rhim, and Y.-P. Park, “A Study on Enhancing Data Storage Capacity and Mechanical Reliability of Solid Immersion Lens-Based Near-Field Recording System,” Jpn. J. Appl. Phys. 47(8), 6646–6654 (2008).
[CrossRef]

Q. Liu, T. Fukaya, S. Cao, C. Guo, Z. Zhang, Y. Guo, J. Wei, and J. Tominaga, “Study on readout durability of super-RENS disk,” Opt. Express 16(1), 213–218 (2008).
[CrossRef] [PubMed]

L. Wang and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nano-apertures,” J. Microsc. 229(3), 483–489 (2008).
[CrossRef] [PubMed]

L. H. Ting, X. S. Miao, M. L. Lee, M. D. Sofian, and L. P. Shi, “Optical and Magneto-optical Characterization for Multi-dimensional Multi-level Optical Recording Material,” Synth. React. Inorg. Met.-Org. Chem. 38, 284–287 (2008).

2007 (3)

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[CrossRef] [PubMed]

L. Feng and P. Dawson, “Optical transmission through single subwavelength apertures using prism coupled input of laser light of annular intensity profile,” Opt. Express 15(26), 17863–17873 (2007).
[CrossRef] [PubMed]

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, J. Lu, and E. Yablonovitch, “Nanoscale Fabrication of a Plasmonic Dimple Lens for Nano-focusing of Light,” Proc. SPIE 6641, 66411J (2007).
[CrossRef]

2006 (1)

2005 (1)

L. Shi, T. C. Chong, P. K. Tan, J. Li, X. Hu, X. Miao, and Q. Wang, “Investigation on Super-Resolution Near-Field Blu-Ray-Type Phase-Change Optical Disk with Sb2Te3 Mask Layer,” Jpn. J. Appl. Phys. 44(No. 5B), 3615–3619 (2005).
[CrossRef]

2004 (3)

H. S. Lee, B.- Cheong, T. S. Lee, K. S. Lee, W. M. Kim, J. W. Lee, S. H. Cho, and J. Youl Huh, “Thermoelectric PbTe thin film for superresolution optical data storage,” Appl. Phys. Lett. 85(14), 2782–2784 (2004).
[CrossRef]

E. X. Jin and X. Xu, “Finitte-Difference Time-Domain Studies on Optical Transmission through Planar Nano-Apertures in a Metal Film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[CrossRef]

K. Tanaka and M. Tanaka, “Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen,” J. Appl. Phys. 95(7), 3765–3771 (2004).
[CrossRef]

2003 (1)

K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
[CrossRef] [PubMed]

2002 (1)

X. Shi and L. Hesselink, “Mechanisms for Enhancing Power Throughput from Planar Nano-Apertures for Near-Field Optical Data Storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
[CrossRef]

2001 (1)

1998 (5)

A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

X. G. Huang, M. R. Wang, Y. Tsui, and C. Wu, “Characterization of erasable inorganic photochromic media for optical disk data storage,” J. Appl. Phys. 83(7), 3795–3799 (1998).
[CrossRef]

C. Peng and M. Mansuripur, “Sources of noise in erasable optical disk data storage,” Appl. Opt. 37(5), 921–928 (1998).
[CrossRef]

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73(15), 2078–2080 (1998).
[CrossRef]

1997 (1)

1994 (1)

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

1993 (1)

1991 (1)

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

1987 (1)

J. C. Rhee, M. Okuda, and T. Matsushita, “Write-Erase Characteristics of Phase Change Optical Recording in Ga-Se-Te Systems,” Jpn. J. Appl. Phys. 26(Part 1, No. 1), 102–105 (1987).
[CrossRef]

1965 (1)

Aeschlimann, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Akahira, N.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Atoda, N.

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73(15), 2078–2080 (1998).
[CrossRef]

Bauer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Bayer, D.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Brixner, T.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Cao, S.

Challener, W.

K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
[CrossRef] [PubMed]

Challener, W. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Cheong, B.-

H. S. Lee, B.- Cheong, T. S. Lee, K. S. Lee, W. M. Kim, J. W. Lee, S. H. Cho, and J. Youl Huh, “Thermoelectric PbTe thin film for superresolution optical data storage,” Appl. Phys. Lett. 85(14), 2782–2784 (2004).
[CrossRef]

Cho, S. H.

H. S. Lee, B.- Cheong, T. S. Lee, K. S. Lee, W. M. Kim, J. W. Lee, S. H. Cho, and J. Youl Huh, “Thermoelectric PbTe thin film for superresolution optical data storage,” Appl. Phys. Lett. 85(14), 2782–2784 (2004).
[CrossRef]

Chong, T. C.

L. Shi, T. C. Chong, P. K. Tan, J. Li, X. Hu, X. Miao, and Q. Wang, “Investigation on Super-Resolution Near-Field Blu-Ray-Type Phase-Change Optical Disk with Sb2Te3 Mask Layer,” Jpn. J. Appl. Phys. 44(No. 5B), 3615–3619 (2005).
[CrossRef]

Chung, K. B.

Conway, J.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, J. Lu, and E. Yablonovitch, “Nanoscale Fabrication of a Plasmonic Dimple Lens for Nano-focusing of Light,” Proc. SPIE 6641, 66411J (2007).
[CrossRef]

Dawson, P.

Djurišic, A. B.

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Elazar, J. M.

Feng, L.

Fukaya, T.

Gage, E. C.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

García de Abajo, F. J.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Gokemeijer, N. J.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Guo, C.

Guo, Y.

Hesselink, L.

X. Shi and L. Hesselink, “Mechanisms for Enhancing Power Throughput from Planar Nano-Apertures for Near-Field Optical Data Storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
[CrossRef]

Hsia, Y.-T.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Hu, X.

L. Shi, T. C. Chong, P. K. Tan, J. Li, X. Hu, X. Miao, and Q. Wang, “Investigation on Super-Resolution Near-Field Blu-Ray-Type Phase-Change Optical Disk with Sb2Te3 Mask Layer,” Jpn. J. Appl. Phys. 44(No. 5B), 3615–3619 (2005).
[CrossRef]

Huang, X. G.

X. G. Huang, M. R. Wang, Y. Tsui, and C. Wu, “Characterization of erasable inorganic photochromic media for optical disk data storage,” J. Appl. Phys. 83(7), 3795–3799 (1998).
[CrossRef]

Itagi, A. V.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Jin, E. X.

L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14(21), 9902–9908 (2006).
[CrossRef] [PubMed]

E. X. Jin and X. Xu, “Finitte-Difference Time-Domain Studies on Optical Transmission through Planar Nano-Apertures in a Metal Film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[CrossRef]

Ju, G.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Karns, D.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Kim, W. M.

H. S. Lee, B.- Cheong, T. S. Lee, K. S. Lee, W. M. Kim, J. W. Lee, S. H. Cho, and J. Youl Huh, “Thermoelectric PbTe thin film for superresolution optical data storage,” Appl. Phys. Lett. 85(14), 2782–2784 (2004).
[CrossRef]

Kino, G. S.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

S. M. Mansfield, W. R. Studenmund, G. S. Kino, and K. Osato, “High-numerical-aperture lens system for an optical storage head,” Opt. Lett. 18(4), 305–307 (1993).
[CrossRef] [PubMed]

Lee, H.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, J. Lu, and E. Yablonovitch, “Nanoscale Fabrication of a Plasmonic Dimple Lens for Nano-focusing of Light,” Proc. SPIE 6641, 66411J (2007).
[CrossRef]

Lee, H. S.

H. S. Lee, B.- Cheong, T. S. Lee, K. S. Lee, W. M. Kim, J. W. Lee, S. H. Cho, and J. Youl Huh, “Thermoelectric PbTe thin film for superresolution optical data storage,” Appl. Phys. Lett. 85(14), 2782–2784 (2004).
[CrossRef]

Lee, J. W.

H. S. Lee, B.- Cheong, T. S. Lee, K. S. Lee, W. M. Kim, J. W. Lee, S. H. Cho, and J. Youl Huh, “Thermoelectric PbTe thin film for superresolution optical data storage,” Appl. Phys. Lett. 85(14), 2782–2784 (2004).
[CrossRef]

Lee, K. S.

H. S. Lee, B.- Cheong, T. S. Lee, K. S. Lee, W. M. Kim, J. W. Lee, S. H. Cho, and J. Youl Huh, “Thermoelectric PbTe thin film for superresolution optical data storage,” Appl. Phys. Lett. 85(14), 2782–2784 (2004).
[CrossRef]

Lee, M. L.

L. H. Ting, X. S. Miao, M. L. Lee, M. D. Sofian, and L. P. Shi, “Optical and Magneto-optical Characterization for Multi-dimensional Multi-level Optical Recording Material,” Synth. React. Inorg. Met.-Org. Chem. 38, 284–287 (2008).

Lee, T. S.

H. S. Lee, B.- Cheong, T. S. Lee, K. S. Lee, W. M. Kim, J. W. Lee, S. H. Cho, and J. Youl Huh, “Thermoelectric PbTe thin film for superresolution optical data storage,” Appl. Phys. Lett. 85(14), 2782–2784 (2004).
[CrossRef]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, J.

L. Shi, T. C. Chong, P. K. Tan, J. Li, X. Hu, X. Miao, and Q. Wang, “Investigation on Super-Resolution Near-Field Blu-Ray-Type Phase-Change Optical Disk with Sb2Te3 Mask Layer,” Jpn. J. Appl. Phys. 44(No. 5B), 3615–3619 (2005).
[CrossRef]

Liu, Q.

Lu, J.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, J. Lu, and E. Yablonovitch, “Nanoscale Fabrication of a Plasmonic Dimple Lens for Nano-focusing of Light,” Proc. SPIE 6641, 66411J (2007).
[CrossRef]

Majewski, M. L.

Malitson, I. H.

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

Mansfield, S. M.

Mansuripur, M.

Matsushita, T.

J. C. Rhee, M. Okuda, and T. Matsushita, “Write-Erase Characteristics of Phase Change Optical Recording in Ga-Se-Te Systems,” Jpn. J. Appl. Phys. 26(Part 1, No. 1), 102–105 (1987).
[CrossRef]

Miao, X.

L. Shi, T. C. Chong, P. K. Tan, J. Li, X. Hu, X. Miao, and Q. Wang, “Investigation on Super-Resolution Near-Field Blu-Ray-Type Phase-Change Optical Disk with Sb2Te3 Mask Layer,” Jpn. J. Appl. Phys. 44(No. 5B), 3615–3619 (2005).
[CrossRef]

Miao, X. S.

L. H. Ting, X. S. Miao, M. L. Lee, M. D. Sofian, and L. P. Shi, “Optical and Magneto-optical Characterization for Multi-dimensional Multi-level Optical Recording Material,” Synth. React. Inorg. Met.-Org. Chem. 38, 284–287 (2008).

Nakano, T.

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73(15), 2078–2080 (1998).
[CrossRef]

Nishiuchi, K.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Ohno, E.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Okuda, M.

J. C. Rhee, M. Okuda, and T. Matsushita, “Write-Erase Characteristics of Phase Change Optical Recording in Ga-Se-Te Systems,” Jpn. J. Appl. Phys. 26(Part 1, No. 1), 102–105 (1987).
[CrossRef]

Osato, K.

Park, N.-C.

N.-C. Park, H.-S. Yang, Y.-C. Rhim, and Y.-P. Park, “A Study on Enhancing Data Storage Capacity and Mechanical Reliability of Solid Immersion Lens-Based Near-Field Recording System,” Jpn. J. Appl. Phys. 47(8), 6646–6654 (2008).
[CrossRef]

Park, Y.-P.

N.-C. Park, H.-S. Yang, Y.-C. Rhim, and Y.-P. Park, “A Study on Enhancing Data Storage Capacity and Mechanical Reliability of Solid Immersion Lens-Based Near-Field Recording System,” Jpn. J. Appl. Phys. 47(8), 6646–6654 (2008).
[CrossRef]

Peng, C.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

C. Peng, “Superresolution near-field readout in phase-change optical disk data storage,” Appl. Opt. 40(23), 3922–3931 (2001).
[CrossRef]

C. Peng and M. Mansuripur, “Sources of noise in erasable optical disk data storage,” Appl. Opt. 37(5), 921–928 (1998).
[CrossRef]

Peng, W.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Peng, Y.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Pfeiffer, W.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Rakic, A. D.

Rhee, J. C.

J. C. Rhee, M. Okuda, and T. Matsushita, “Write-Erase Characteristics of Phase Change Optical Recording in Ga-Se-Te Systems,” Jpn. J. Appl. Phys. 26(Part 1, No. 1), 102–105 (1987).
[CrossRef]

Rhim, Y.-C.

N.-C. Park, H.-S. Yang, Y.-C. Rhim, and Y.-P. Park, “A Study on Enhancing Data Storage Capacity and Mechanical Reliability of Solid Immersion Lens-Based Near-Field Recording System,” Jpn. J. Appl. Phys. 47(8), 6646–6654 (2008).
[CrossRef]

Rohmer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Rottmayer, R. E.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Rugar, D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

Seigler, M. A.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Sendur, K.

K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
[CrossRef] [PubMed]

Shi, L.

L. Shi, T. C. Chong, P. K. Tan, J. Li, X. Hu, X. Miao, and Q. Wang, “Investigation on Super-Resolution Near-Field Blu-Ray-Type Phase-Change Optical Disk with Sb2Te3 Mask Layer,” Jpn. J. Appl. Phys. 44(No. 5B), 3615–3619 (2005).
[CrossRef]

Shi, L. P.

L. H. Ting, X. S. Miao, M. L. Lee, M. D. Sofian, and L. P. Shi, “Optical and Magneto-optical Characterization for Multi-dimensional Multi-level Optical Recording Material,” Synth. React. Inorg. Met.-Org. Chem. 38, 284–287 (2008).

Shi, X.

X. Shi and L. Hesselink, “Mechanisms for Enhancing Power Throughput from Planar Nano-Apertures for Near-Field Optical Data Storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
[CrossRef]

Sofian, M. D.

L. H. Ting, X. S. Miao, M. L. Lee, M. D. Sofian, and L. P. Shi, “Optical and Magneto-optical Characterization for Multi-dimensional Multi-level Optical Recording Material,” Synth. React. Inorg. Met.-Org. Chem. 38, 284–287 (2008).

Spindler, C.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Staffaroni, M.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, J. Lu, and E. Yablonovitch, “Nanoscale Fabrication of a Plasmonic Dimple Lens for Nano-focusing of Light,” Proc. SPIE 6641, 66411J (2007).
[CrossRef]

Steeb, F.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Studenmund, W. R.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

S. M. Mansfield, W. R. Studenmund, G. S. Kino, and K. Osato, “High-numerical-aperture lens system for an optical storage head,” Opt. Lett. 18(4), 305–307 (1993).
[CrossRef] [PubMed]

Takao, M.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Tan, P. K.

L. Shi, T. C. Chong, P. K. Tan, J. Li, X. Hu, X. Miao, and Q. Wang, “Investigation on Super-Resolution Near-Field Blu-Ray-Type Phase-Change Optical Disk with Sb2Te3 Mask Layer,” Jpn. J. Appl. Phys. 44(No. 5B), 3615–3619 (2005).
[CrossRef]

Tanaka, K.

K. Tanaka and M. Tanaka, “Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen,” J. Appl. Phys. 95(7), 3765–3771 (2004).
[CrossRef]

Tanaka, M.

K. Tanaka and M. Tanaka, “Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen,” J. Appl. Phys. 95(7), 3765–3771 (2004).
[CrossRef]

Tang, J.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, J. Lu, and E. Yablonovitch, “Nanoscale Fabrication of a Plasmonic Dimple Lens for Nano-focusing of Light,” Proc. SPIE 6641, 66411J (2007).
[CrossRef]

Terris, B. D.

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Ting, L. H.

L. H. Ting, X. S. Miao, M. L. Lee, M. D. Sofian, and L. P. Shi, “Optical and Magneto-optical Characterization for Multi-dimensional Multi-level Optical Recording Material,” Synth. React. Inorg. Met.-Org. Chem. 38, 284–287 (2008).

Tominaga, J.

Q. Liu, T. Fukaya, S. Cao, C. Guo, Z. Zhang, Y. Guo, J. Wei, and J. Tominaga, “Study on readout durability of super-RENS disk,” Opt. Express 16(1), 213–218 (2008).
[CrossRef] [PubMed]

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73(15), 2078–2080 (1998).
[CrossRef]

Tsui, Y.

X. G. Huang, M. R. Wang, Y. Tsui, and C. Wu, “Characterization of erasable inorganic photochromic media for optical disk data storage,” J. Appl. Phys. 83(7), 3795–3799 (1998).
[CrossRef]

Uppuluri, S. M.

Vedantam, S.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, J. Lu, and E. Yablonovitch, “Nanoscale Fabrication of a Plasmonic Dimple Lens for Nano-focusing of Light,” Proc. SPIE 6641, 66411J (2007).
[CrossRef]

Wang, L.

L. Wang and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nano-apertures,” J. Microsc. 229(3), 483–489 (2008).
[CrossRef] [PubMed]

L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14(21), 9902–9908 (2006).
[CrossRef] [PubMed]

Wang, M. R.

X. G. Huang, M. R. Wang, Y. Tsui, and C. Wu, “Characterization of erasable inorganic photochromic media for optical disk data storage,” J. Appl. Phys. 83(7), 3795–3799 (1998).
[CrossRef]

Wang, Q.

L. Shi, T. C. Chong, P. K. Tan, J. Li, X. Hu, X. Miao, and Q. Wang, “Investigation on Super-Resolution Near-Field Blu-Ray-Type Phase-Change Optical Disk with Sb2Te3 Mask Layer,” Jpn. J. Appl. Phys. 44(No. 5B), 3615–3619 (2005).
[CrossRef]

Wei, J.

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wu, C.

X. G. Huang, M. R. Wang, Y. Tsui, and C. Wu, “Characterization of erasable inorganic photochromic media for optical disk data storage,” J. Appl. Phys. 83(7), 3795–3799 (1998).
[CrossRef]

Xu, X.

L. Wang and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nano-apertures,” J. Microsc. 229(3), 483–489 (2008).
[CrossRef] [PubMed]

L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14(21), 9902–9908 (2006).
[CrossRef] [PubMed]

E. X. Jin and X. Xu, “Finitte-Difference Time-Domain Studies on Optical Transmission through Planar Nano-Apertures in a Metal Film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[CrossRef]

Yablonovitch, E.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, J. Lu, and E. Yablonovitch, “Nanoscale Fabrication of a Plasmonic Dimple Lens for Nano-focusing of Light,” Proc. SPIE 6641, 66411J (2007).
[CrossRef]

Yamada, N.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

Yang, H.-S.

N.-C. Park, H.-S. Yang, Y.-C. Rhim, and Y.-P. Park, “A Study on Enhancing Data Storage Capacity and Mechanical Reliability of Solid Immersion Lens-Based Near-Field Recording System,” Jpn. J. Appl. Phys. 47(8), 6646–6654 (2008).
[CrossRef]

Yang, X. M.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Youl Huh, J.

H. S. Lee, B.- Cheong, T. S. Lee, K. S. Lee, W. M. Kim, J. W. Lee, S. H. Cho, and J. Youl Huh, “Thermoelectric PbTe thin film for superresolution optical data storage,” Appl. Phys. Lett. 85(14), 2782–2784 (2004).
[CrossRef]

Zhang, Z.

Zhu, X.

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (3)

B. D. Terris, H. J. Mamin, D. Rugar, W. R. Studenmund, and G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65(4), 388–390 (1994).
[CrossRef]

J. Tominaga, T. Nakano, and N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73(15), 2078–2080 (1998).
[CrossRef]

H. S. Lee, B.- Cheong, T. S. Lee, K. S. Lee, W. M. Kim, J. W. Lee, S. H. Cho, and J. Youl Huh, “Thermoelectric PbTe thin film for superresolution optical data storage,” Appl. Phys. Lett. 85(14), 2782–2784 (2004).
[CrossRef]

J. Appl. Phys. (3)

K. Tanaka and M. Tanaka, “Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen,” J. Appl. Phys. 95(7), 3765–3771 (2004).
[CrossRef]

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69(5), 2849–2856 (1991).
[CrossRef]

X. G. Huang, M. R. Wang, Y. Tsui, and C. Wu, “Characterization of erasable inorganic photochromic media for optical disk data storage,” J. Appl. Phys. 83(7), 3795–3799 (1998).
[CrossRef]

J. Microsc. (2)

K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
[CrossRef] [PubMed]

L. Wang and X. Xu, “Numerical study of optical nanolithography using nanoscale bow-tie-shaped nano-apertures,” J. Microsc. 229(3), 483–489 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (5)

J. C. Rhee, M. Okuda, and T. Matsushita, “Write-Erase Characteristics of Phase Change Optical Recording in Ga-Se-Te Systems,” Jpn. J. Appl. Phys. 26(Part 1, No. 1), 102–105 (1987).
[CrossRef]

L. Shi, T. C. Chong, P. K. Tan, J. Li, X. Hu, X. Miao, and Q. Wang, “Investigation on Super-Resolution Near-Field Blu-Ray-Type Phase-Change Optical Disk with Sb2Te3 Mask Layer,” Jpn. J. Appl. Phys. 44(No. 5B), 3615–3619 (2005).
[CrossRef]

N.-C. Park, H.-S. Yang, Y.-C. Rhim, and Y.-P. Park, “A Study on Enhancing Data Storage Capacity and Mechanical Reliability of Solid Immersion Lens-Based Near-Field Recording System,” Jpn. J. Appl. Phys. 47(8), 6646–6654 (2008).
[CrossRef]

E. X. Jin and X. Xu, “Finitte-Difference Time-Domain Studies on Optical Transmission through Planar Nano-Apertures in a Metal Film,” Jpn. J. Appl. Phys. 43(1), 407–417 (2004).
[CrossRef]

X. Shi and L. Hesselink, “Mechanisms for Enhancing Power Throughput from Planar Nano-Apertures for Near-Field Optical Data Storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
[CrossRef]

Nat. Photonics (1)

W. A. Challener, C. Peng, A. V. Itagi, D. Karns, W. Peng, Y. Peng, X. M. Yang, X. Zhu, N. J. Gokemeijer, Y.-T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(4), 220–224 (2009).
[CrossRef]

Nature (2)

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446(7133), 301–304 (2007).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Proc. SPIE (1)

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, J. Lu, and E. Yablonovitch, “Nanoscale Fabrication of a Plasmonic Dimple Lens for Nano-focusing of Light,” Proc. SPIE 6641, 66411J (2007).
[CrossRef]

Synth. React. Inorg. Met.-Org. Chem. (1)

L. H. Ting, X. S. Miao, M. L. Lee, M. D. Sofian, and L. P. Shi, “Optical and Magneto-optical Characterization for Multi-dimensional Multi-level Optical Recording Material,” Synth. React. Inorg. Met.-Org. Chem. 38, 284–287 (2008).

Other (2)

E. T. Meinders, A. V. Mijiritskii, L. van Pieterson, and M. Wuttig, Optical Data Storage: Phase-change Media and Recording (Springer, Dordrecht, 2006).

J. Tominaga, and T. Nakano, Optical Near-Field Recording: Science and Technology (Springer, Berlin, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Structure of the proposed plasmonic data storage medium, shown as a top view at top and a cross sectional view at bottom. (b) Total intensity distribution calculated in the cross section.

Fig. 2
Fig. 2

Recording intensity and contrast calculated as a function of data pit size. The threshold intensity Ith is the intensity required to record a data pit in the conventional optical storage medium. Iin is the intensity of the incident beam illuminated on the aperture.

Fig. 3
Fig. 3

Data reading schematics in the proposed plasmonic data storage medium. Ion is the reflected signal obtained when a data pit is under the center nano-aperture and Ioff is that obtained when the data pits are under both neighboring apertures.

Fig. 4
Fig. 4

(a) The difference between the reflected intensity distributions of Ion and Ioff. Concentric lines indicate the detection areas whose diameters are 100 nm, 200 nm, and 300 nm. (b) Contrast and signal strength (total intensity) of Ion calculated for different detection area diameters.

Fig. 5
Fig. 5

(a) Track and bit pitches in the plasmonic data storage medium. (b) Crosstalk calculated as a function of the track pitch.

Tables (1)

Tables Icon

Table 1 Optical properties of materials used in the design of the plasmonic data storage medium.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Contrast=|IonIoff|Ioff×100   (%)   .
Cross   talk=|RmRa|Rm   (dB)   ,

Metrics