Abstract

Temperature dependent gain characteristics and linewidth enhancement factor (α-factor) of vertical-cavity surface-emitting lasers with InGaN/GaN multiple quantum wells were studied by measuring the photoluminescence spectra below the threshold condition and analyzed by using the Hakki-Paoli method. The optical gain and differential gain showed a more rapid increase as a function of the injected carriers as temperature decreased. The α-factor for the lasing mode was estimated as 2.8 at room temperature and decreased to a value as low as 0.6 at 80 K.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285(5435), 1905–1906 (1999).
    [CrossRef] [PubMed]
  2. Y. K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Cuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett. 76(13), 1662 (2000).
    [CrossRef]
  3. C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
    [CrossRef]
  4. T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
    [CrossRef]
  5. Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection,” Appl. Phys. Lett. 1, 121102 (2008).
  6. C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
    [CrossRef]
  7. B. W. Hakki and T. L. Paoli, “cw degradation at 300°K of GaAs double-heterostructure junction lasers. II. Electronic gain,” J. Appl. Phys. 44(9), 4113 (1973).
    [CrossRef]
  8. J. T. Chu, T. C. Lu, M. You, B. J. Su, C. C. Kao, H. C. Kuo, and S. C. Wang, “Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121112 (2006).
    [CrossRef]
  9. U. T. Schwarz, E. Sturm, W. Wegscheider, V. Kümmler, A. Lell, V. Härle, E. Sturm, W. Wegscheider, V. Kummler, A. Lell, and V. Harle, “Optical gain, carrier-induced phase shift, and linewidth enhancement factor in InGaN quantum well lasers,” Appl. Phys. Lett. 83(20), 4095 (2003).
    [CrossRef]
  10. A. V. Sakharov, W. V. Lundin, I. L. Krestnikov, V. A. Semenov, A. S. Usikov, A. F. Tsatsul’nikov, Yu. G. Musikhin, M. V. Baidakova, Zh. I. Alferov, N. N. Ledentsov, A. Hoffmann, and D. Bimberg, “Surface-mode lasing from stacked InGaN insertions in a GaN matrix,” Appl. Phys. Lett. 74(26), 3921 (1999).
    [CrossRef]
  11. M. O. Manasreh, “Optical absorption near the band edge in GaN grown by metalorganic chemical-vapor deposition,” Phys. Rev. B 53(24), 16425–16428 (1996).
    [CrossRef]
  12. I. D. Henning and J. V. Collins, “Measurements of the semiconductor laser linewidth broadening factor,” Electron. Lett. 19(22), 927 (1983).
    [CrossRef]
  13. H. D. Summers, P. Dowd, I. H. White, and M. R. T. Tan, “Calculation of differential gain and linewidth enhancement factorin 980-nm InGaAs vertical cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7(7), 736–738 (1995).
    [CrossRef]
  14. K. G. Gan and J. E. Bowers, “Measurement of gain, group index, group velocity dispersion, and linewidth enhancement factor of an InGaN multiple quantum-well laser diode,” IEEE Photon. Technol. Lett. 16(5), 1256–1258 (2004).
    [CrossRef]

2008 (2)

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
[CrossRef]

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection,” Appl. Phys. Lett. 1, 121102 (2008).

2006 (1)

J. T. Chu, T. C. Lu, M. You, B. J. Su, C. C. Kao, H. C. Kuo, and S. C. Wang, “Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121112 (2006).
[CrossRef]

2005 (1)

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[CrossRef]

2004 (1)

K. G. Gan and J. E. Bowers, “Measurement of gain, group index, group velocity dispersion, and linewidth enhancement factor of an InGaN multiple quantum-well laser diode,” IEEE Photon. Technol. Lett. 16(5), 1256–1258 (2004).
[CrossRef]

2003 (1)

U. T. Schwarz, E. Sturm, W. Wegscheider, V. Kümmler, A. Lell, V. Härle, E. Sturm, W. Wegscheider, V. Kummler, A. Lell, and V. Harle, “Optical gain, carrier-induced phase shift, and linewidth enhancement factor in InGaN quantum well lasers,” Appl. Phys. Lett. 83(20), 4095 (2003).
[CrossRef]

2000 (1)

Y. K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Cuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett. 76(13), 1662 (2000).
[CrossRef]

1999 (2)

T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285(5435), 1905–1906 (1999).
[CrossRef] [PubMed]

A. V. Sakharov, W. V. Lundin, I. L. Krestnikov, V. A. Semenov, A. S. Usikov, A. F. Tsatsul’nikov, Yu. G. Musikhin, M. V. Baidakova, Zh. I. Alferov, N. N. Ledentsov, A. Hoffmann, and D. Bimberg, “Surface-mode lasing from stacked InGaN insertions in a GaN matrix,” Appl. Phys. Lett. 74(26), 3921 (1999).
[CrossRef]

1996 (1)

M. O. Manasreh, “Optical absorption near the band edge in GaN grown by metalorganic chemical-vapor deposition,” Phys. Rev. B 53(24), 16425–16428 (1996).
[CrossRef]

1995 (1)

H. D. Summers, P. Dowd, I. H. White, and M. R. T. Tan, “Calculation of differential gain and linewidth enhancement factorin 980-nm InGaAs vertical cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7(7), 736–738 (1995).
[CrossRef]

1983 (1)

I. D. Henning and J. V. Collins, “Measurements of the semiconductor laser linewidth broadening factor,” Electron. Lett. 19(22), 927 (1983).
[CrossRef]

1982 (1)

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[CrossRef]

1973 (1)

B. W. Hakki and T. L. Paoli, “cw degradation at 300°K of GaAs double-heterostructure junction lasers. II. Electronic gain,” J. Appl. Phys. 44(9), 4113 (1973).
[CrossRef]

Alferov, Zh. I.

A. V. Sakharov, W. V. Lundin, I. L. Krestnikov, V. A. Semenov, A. S. Usikov, A. F. Tsatsul’nikov, Yu. G. Musikhin, M. V. Baidakova, Zh. I. Alferov, N. N. Ledentsov, A. Hoffmann, and D. Bimberg, “Surface-mode lasing from stacked InGaN insertions in a GaN matrix,” Appl. Phys. Lett. 74(26), 3921 (1999).
[CrossRef]

Arakawa, Y.

T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285(5435), 1905–1906 (1999).
[CrossRef] [PubMed]

Baidakova, M. V.

A. V. Sakharov, W. V. Lundin, I. L. Krestnikov, V. A. Semenov, A. S. Usikov, A. F. Tsatsul’nikov, Yu. G. Musikhin, M. V. Baidakova, Zh. I. Alferov, N. N. Ledentsov, A. Hoffmann, and D. Bimberg, “Surface-mode lasing from stacked InGaN insertions in a GaN matrix,” Appl. Phys. Lett. 74(26), 3921 (1999).
[CrossRef]

Bimberg, D.

A. V. Sakharov, W. V. Lundin, I. L. Krestnikov, V. A. Semenov, A. S. Usikov, A. F. Tsatsul’nikov, Yu. G. Musikhin, M. V. Baidakova, Zh. I. Alferov, N. N. Ledentsov, A. Hoffmann, and D. Bimberg, “Surface-mode lasing from stacked InGaN insertions in a GaN matrix,” Appl. Phys. Lett. 74(26), 3921 (1999).
[CrossRef]

Bowers, J. E.

K. G. Gan and J. E. Bowers, “Measurement of gain, group index, group velocity dispersion, and linewidth enhancement factor of an InGaN multiple quantum-well laser diode,” IEEE Photon. Technol. Lett. 16(5), 1256–1258 (2004).
[CrossRef]

Carter-Coman, C.

Y. K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Cuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett. 76(13), 1662 (2000).
[CrossRef]

Catalano, M.

T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285(5435), 1905–1906 (1999).
[CrossRef] [PubMed]

Chang, Y. H.

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[CrossRef]

Chu, J. T.

J. T. Chu, T. C. Lu, M. You, B. J. Su, C. C. Kao, H. C. Kuo, and S. C. Wang, “Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121112 (2006).
[CrossRef]

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[CrossRef]

Cingolani, R.

T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285(5435), 1905–1906 (1999).
[CrossRef] [PubMed]

Collins, J. V.

I. D. Henning and J. V. Collins, “Measurements of the semiconductor laser linewidth broadening factor,” Electron. Lett. 19(22), 927 (1983).
[CrossRef]

Cuo, C. P.

Y. K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Cuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett. 76(13), 1662 (2000).
[CrossRef]

Diagne, M.

Y. K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Cuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett. 76(13), 1662 (2000).
[CrossRef]

Dowd, P.

H. D. Summers, P. Dowd, I. H. White, and M. R. T. Tan, “Calculation of differential gain and linewidth enhancement factorin 980-nm InGaAs vertical cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7(7), 736–738 (1995).
[CrossRef]

Forchel, A.

T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285(5435), 1905–1906 (1999).
[CrossRef] [PubMed]

Gan, K. G.

K. G. Gan and J. E. Bowers, “Measurement of gain, group index, group velocity dispersion, and linewidth enhancement factor of an InGaN multiple quantum-well laser diode,” IEEE Photon. Technol. Lett. 16(5), 1256–1258 (2004).
[CrossRef]

Hakki, B. W.

B. W. Hakki and T. L. Paoli, “cw degradation at 300°K of GaAs double-heterostructure junction lasers. II. Electronic gain,” J. Appl. Phys. 44(9), 4113 (1973).
[CrossRef]

Harl, V.

U. T. Schwarz, E. Sturm, W. Wegscheider, V. Kümmler, A. Lell, V. Härle, E. Sturm, W. Wegscheider, V. Kummler, A. Lell, and V. Harle, “Optical gain, carrier-induced phase shift, and linewidth enhancement factor in InGaN quantum well lasers,” Appl. Phys. Lett. 83(20), 4095 (2003).
[CrossRef]

Härle, V.

U. T. Schwarz, E. Sturm, W. Wegscheider, V. Kümmler, A. Lell, V. Härle, E. Sturm, W. Wegscheider, V. Kummler, A. Lell, and V. Harle, “Optical gain, carrier-induced phase shift, and linewidth enhancement factor in InGaN quantum well lasers,” Appl. Phys. Lett. 83(20), 4095 (2003).
[CrossRef]

Henning, I. D.

I. D. Henning and J. V. Collins, “Measurements of the semiconductor laser linewidth broadening factor,” Electron. Lett. 19(22), 927 (1983).
[CrossRef]

Henry, C. H.

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[CrossRef]

Higuchi, Y.

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection,” Appl. Phys. Lett. 1, 121102 (2008).

Hoffmann, A.

A. V. Sakharov, W. V. Lundin, I. L. Krestnikov, V. A. Semenov, A. S. Usikov, A. F. Tsatsul’nikov, Yu. G. Musikhin, M. V. Baidakova, Zh. I. Alferov, N. N. Ledentsov, A. Hoffmann, and D. Bimberg, “Surface-mode lasing from stacked InGaN insertions in a GaN matrix,” Appl. Phys. Lett. 74(26), 3921 (1999).
[CrossRef]

Huang, G. S.

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
[CrossRef]

Huang, H. W.

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[CrossRef]

Kao, C. C.

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
[CrossRef]

J. T. Chu, T. C. Lu, M. You, B. J. Su, C. C. Kao, H. C. Kuo, and S. C. Wang, “Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121112 (2006).
[CrossRef]

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[CrossRef]

Kao, T. T.

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[CrossRef]

Kern, R. S.

Y. K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Cuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett. 76(13), 1662 (2000).
[CrossRef]

Kish, F. A.

Y. K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Cuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett. 76(13), 1662 (2000).
[CrossRef]

Krames, M. R.

Y. K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Cuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett. 76(13), 1662 (2000).
[CrossRef]

Krestnikov, I. L.

A. V. Sakharov, W. V. Lundin, I. L. Krestnikov, V. A. Semenov, A. S. Usikov, A. F. Tsatsul’nikov, Yu. G. Musikhin, M. V. Baidakova, Zh. I. Alferov, N. N. Ledentsov, A. Hoffmann, and D. Bimberg, “Surface-mode lasing from stacked InGaN insertions in a GaN matrix,” Appl. Phys. Lett. 74(26), 3921 (1999).
[CrossRef]

Kummler, V.

U. T. Schwarz, E. Sturm, W. Wegscheider, V. Kümmler, A. Lell, V. Härle, E. Sturm, W. Wegscheider, V. Kummler, A. Lell, and V. Harle, “Optical gain, carrier-induced phase shift, and linewidth enhancement factor in InGaN quantum well lasers,” Appl. Phys. Lett. 83(20), 4095 (2003).
[CrossRef]

Kümmler, V.

U. T. Schwarz, E. Sturm, W. Wegscheider, V. Kümmler, A. Lell, V. Härle, E. Sturm, W. Wegscheider, V. Kummler, A. Lell, and V. Harle, “Optical gain, carrier-induced phase shift, and linewidth enhancement factor in InGaN quantum well lasers,” Appl. Phys. Lett. 83(20), 4095 (2003).
[CrossRef]

Kuo, H. C.

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
[CrossRef]

J. T. Chu, T. C. Lu, M. You, B. J. Su, C. C. Kao, H. C. Kuo, and S. C. Wang, “Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121112 (2006).
[CrossRef]

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[CrossRef]

Ledentsov, N. N.

A. V. Sakharov, W. V. Lundin, I. L. Krestnikov, V. A. Semenov, A. S. Usikov, A. F. Tsatsul’nikov, Yu. G. Musikhin, M. V. Baidakova, Zh. I. Alferov, N. N. Ledentsov, A. Hoffmann, and D. Bimberg, “Surface-mode lasing from stacked InGaN insertions in a GaN matrix,” Appl. Phys. Lett. 74(26), 3921 (1999).
[CrossRef]

Lell, A.

U. T. Schwarz, E. Sturm, W. Wegscheider, V. Kümmler, A. Lell, V. Härle, E. Sturm, W. Wegscheider, V. Kummler, A. Lell, and V. Harle, “Optical gain, carrier-induced phase shift, and linewidth enhancement factor in InGaN quantum well lasers,” Appl. Phys. Lett. 83(20), 4095 (2003).
[CrossRef]

U. T. Schwarz, E. Sturm, W. Wegscheider, V. Kümmler, A. Lell, V. Härle, E. Sturm, W. Wegscheider, V. Kummler, A. Lell, and V. Harle, “Optical gain, carrier-induced phase shift, and linewidth enhancement factor in InGaN quantum well lasers,” Appl. Phys. Lett. 83(20), 4095 (2003).
[CrossRef]

Lin, C. F.

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[CrossRef]

Lu, T. C.

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
[CrossRef]

J. T. Chu, T. C. Lu, M. You, B. J. Su, C. C. Kao, H. C. Kuo, and S. C. Wang, “Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121112 (2006).
[CrossRef]

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[CrossRef]

Lundin, W. V.

A. V. Sakharov, W. V. Lundin, I. L. Krestnikov, V. A. Semenov, A. S. Usikov, A. F. Tsatsul’nikov, Yu. G. Musikhin, M. V. Baidakova, Zh. I. Alferov, N. N. Ledentsov, A. Hoffmann, and D. Bimberg, “Surface-mode lasing from stacked InGaN insertions in a GaN matrix,” Appl. Phys. Lett. 74(26), 3921 (1999).
[CrossRef]

Manasreh, M. O.

M. O. Manasreh, “Optical absorption near the band edge in GaN grown by metalorganic chemical-vapor deposition,” Phys. Rev. B 53(24), 16425–16428 (1996).
[CrossRef]

Matsumura, H.

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection,” Appl. Phys. Lett. 1, 121102 (2008).

Mukai, T.

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection,” Appl. Phys. Lett. 1, 121102 (2008).

Musikhin, Yu. G.

A. V. Sakharov, W. V. Lundin, I. L. Krestnikov, V. A. Semenov, A. S. Usikov, A. F. Tsatsul’nikov, Yu. G. Musikhin, M. V. Baidakova, Zh. I. Alferov, N. N. Ledentsov, A. Hoffmann, and D. Bimberg, “Surface-mode lasing from stacked InGaN insertions in a GaN matrix,” Appl. Phys. Lett. 74(26), 3921 (1999).
[CrossRef]

Nurmikko, A. V.

Y. K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Cuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett. 76(13), 1662 (2000).
[CrossRef]

Omae, K.

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection,” Appl. Phys. Lett. 1, 121102 (2008).

Paoli, T. L.

B. W. Hakki and T. L. Paoli, “cw degradation at 300°K of GaAs double-heterostructure junction lasers. II. Electronic gain,” J. Appl. Phys. 44(9), 4113 (1973).
[CrossRef]

Peng, Y. C.

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[CrossRef]

Sakharov, A. V.

A. V. Sakharov, W. V. Lundin, I. L. Krestnikov, V. A. Semenov, A. S. Usikov, A. F. Tsatsul’nikov, Yu. G. Musikhin, M. V. Baidakova, Zh. I. Alferov, N. N. Ledentsov, A. Hoffmann, and D. Bimberg, “Surface-mode lasing from stacked InGaN insertions in a GaN matrix,” Appl. Phys. Lett. 74(26), 3921 (1999).
[CrossRef]

Schneider, R. P.

Y. K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Cuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett. 76(13), 1662 (2000).
[CrossRef]

Schwarz, U. T.

U. T. Schwarz, E. Sturm, W. Wegscheider, V. Kümmler, A. Lell, V. Härle, E. Sturm, W. Wegscheider, V. Kummler, A. Lell, and V. Harle, “Optical gain, carrier-induced phase shift, and linewidth enhancement factor in InGaN quantum well lasers,” Appl. Phys. Lett. 83(20), 4095 (2003).
[CrossRef]

Semenov, V. A.

A. V. Sakharov, W. V. Lundin, I. L. Krestnikov, V. A. Semenov, A. S. Usikov, A. F. Tsatsul’nikov, Yu. G. Musikhin, M. V. Baidakova, Zh. I. Alferov, N. N. Ledentsov, A. Hoffmann, and D. Bimberg, “Surface-mode lasing from stacked InGaN insertions in a GaN matrix,” Appl. Phys. Lett. 74(26), 3921 (1999).
[CrossRef]

Someya, T.

T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285(5435), 1905–1906 (1999).
[CrossRef] [PubMed]

Song, Y. K.

Y. K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Cuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett. 76(13), 1662 (2000).
[CrossRef]

Sturm, E.

U. T. Schwarz, E. Sturm, W. Wegscheider, V. Kümmler, A. Lell, V. Härle, E. Sturm, W. Wegscheider, V. Kummler, A. Lell, and V. Harle, “Optical gain, carrier-induced phase shift, and linewidth enhancement factor in InGaN quantum well lasers,” Appl. Phys. Lett. 83(20), 4095 (2003).
[CrossRef]

U. T. Schwarz, E. Sturm, W. Wegscheider, V. Kümmler, A. Lell, V. Härle, E. Sturm, W. Wegscheider, V. Kummler, A. Lell, and V. Harle, “Optical gain, carrier-induced phase shift, and linewidth enhancement factor in InGaN quantum well lasers,” Appl. Phys. Lett. 83(20), 4095 (2003).
[CrossRef]

Su, B. J.

J. T. Chu, T. C. Lu, M. You, B. J. Su, C. C. Kao, H. C. Kuo, and S. C. Wang, “Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121112 (2006).
[CrossRef]

Summers, H. D.

H. D. Summers, P. Dowd, I. H. White, and M. R. T. Tan, “Calculation of differential gain and linewidth enhancement factorin 980-nm InGaAs vertical cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7(7), 736–738 (1995).
[CrossRef]

Tan, M. R. T.

H. D. Summers, P. Dowd, I. H. White, and M. R. T. Tan, “Calculation of differential gain and linewidth enhancement factorin 980-nm InGaAs vertical cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7(7), 736–738 (1995).
[CrossRef]

Tsai, J. Y.

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[CrossRef]

Tsatsul’nikov, A. F.

A. V. Sakharov, W. V. Lundin, I. L. Krestnikov, V. A. Semenov, A. S. Usikov, A. F. Tsatsul’nikov, Yu. G. Musikhin, M. V. Baidakova, Zh. I. Alferov, N. N. Ledentsov, A. Hoffmann, and D. Bimberg, “Surface-mode lasing from stacked InGaN insertions in a GaN matrix,” Appl. Phys. Lett. 74(26), 3921 (1999).
[CrossRef]

Usikov, A. S.

A. V. Sakharov, W. V. Lundin, I. L. Krestnikov, V. A. Semenov, A. S. Usikov, A. F. Tsatsul’nikov, Yu. G. Musikhin, M. V. Baidakova, Zh. I. Alferov, N. N. Ledentsov, A. Hoffmann, and D. Bimberg, “Surface-mode lasing from stacked InGaN insertions in a GaN matrix,” Appl. Phys. Lett. 74(26), 3921 (1999).
[CrossRef]

Wang, S. C.

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
[CrossRef]

J. T. Chu, T. C. Lu, M. You, B. J. Su, C. C. Kao, H. C. Kuo, and S. C. Wang, “Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121112 (2006).
[CrossRef]

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[CrossRef]

Wegscheider, W.

U. T. Schwarz, E. Sturm, W. Wegscheider, V. Kümmler, A. Lell, V. Härle, E. Sturm, W. Wegscheider, V. Kummler, A. Lell, and V. Harle, “Optical gain, carrier-induced phase shift, and linewidth enhancement factor in InGaN quantum well lasers,” Appl. Phys. Lett. 83(20), 4095 (2003).
[CrossRef]

U. T. Schwarz, E. Sturm, W. Wegscheider, V. Kümmler, A. Lell, V. Härle, E. Sturm, W. Wegscheider, V. Kummler, A. Lell, and V. Harle, “Optical gain, carrier-induced phase shift, and linewidth enhancement factor in InGaN quantum well lasers,” Appl. Phys. Lett. 83(20), 4095 (2003).
[CrossRef]

Werner, R.

T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285(5435), 1905–1906 (1999).
[CrossRef] [PubMed]

White, I. H.

H. D. Summers, P. Dowd, I. H. White, and M. R. T. Tan, “Calculation of differential gain and linewidth enhancement factorin 980-nm InGaAs vertical cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7(7), 736–738 (1995).
[CrossRef]

Yao, H. H.

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[CrossRef]

You, M.

J. T. Chu, T. C. Lu, M. You, B. J. Su, C. C. Kao, H. C. Kuo, and S. C. Wang, “Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121112 (2006).
[CrossRef]

Zhou, H.

Y. K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Cuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett. 76(13), 1662 (2000).
[CrossRef]

Appl. Phys. Lett. (7)

Y. K. Song, H. Zhou, M. Diagne, A. V. Nurmikko, R. P. Schneider, C. P. Cuo, M. R. Krames, R. S. Kern, C. Carter-Coman, and F. A. Kish, “A quasicontinuous wave, optically pumped violet vertical cavity surface emitting laser,” Appl. Phys. Lett. 76(13), 1662 (2000).
[CrossRef]

C. C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, H. W. Huang, T. T. Kao, T. C. Lu, H. C. Kuo, S. C. Wang, and C. F. Lin, “Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector,” Appl. Phys. Lett. 87(8), 081105 (2005).
[CrossRef]

T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92(14), 141102 (2008).
[CrossRef]

Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, “Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection,” Appl. Phys. Lett. 1, 121102 (2008).

J. T. Chu, T. C. Lu, M. You, B. J. Su, C. C. Kao, H. C. Kuo, and S. C. Wang, “Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 89(12), 121112 (2006).
[CrossRef]

U. T. Schwarz, E. Sturm, W. Wegscheider, V. Kümmler, A. Lell, V. Härle, E. Sturm, W. Wegscheider, V. Kummler, A. Lell, and V. Harle, “Optical gain, carrier-induced phase shift, and linewidth enhancement factor in InGaN quantum well lasers,” Appl. Phys. Lett. 83(20), 4095 (2003).
[CrossRef]

A. V. Sakharov, W. V. Lundin, I. L. Krestnikov, V. A. Semenov, A. S. Usikov, A. F. Tsatsul’nikov, Yu. G. Musikhin, M. V. Baidakova, Zh. I. Alferov, N. N. Ledentsov, A. Hoffmann, and D. Bimberg, “Surface-mode lasing from stacked InGaN insertions in a GaN matrix,” Appl. Phys. Lett. 74(26), 3921 (1999).
[CrossRef]

Electron. Lett. (1)

I. D. Henning and J. V. Collins, “Measurements of the semiconductor laser linewidth broadening factor,” Electron. Lett. 19(22), 927 (1983).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

H. D. Summers, P. Dowd, I. H. White, and M. R. T. Tan, “Calculation of differential gain and linewidth enhancement factorin 980-nm InGaAs vertical cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 7(7), 736–738 (1995).
[CrossRef]

K. G. Gan and J. E. Bowers, “Measurement of gain, group index, group velocity dispersion, and linewidth enhancement factor of an InGaN multiple quantum-well laser diode,” IEEE Photon. Technol. Lett. 16(5), 1256–1258 (2004).
[CrossRef]

J. Appl. Phys. (1)

B. W. Hakki and T. L. Paoli, “cw degradation at 300°K of GaAs double-heterostructure junction lasers. II. Electronic gain,” J. Appl. Phys. 44(9), 4113 (1973).
[CrossRef]

Phys. Rev. B (1)

M. O. Manasreh, “Optical absorption near the band edge in GaN grown by metalorganic chemical-vapor deposition,” Phys. Rev. B 53(24), 16425–16428 (1996).
[CrossRef]

Science (1)

T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, “Room temperature lasing at blue wavelengths in gallium nitride microcavities,” Science 285(5435), 1905–1906 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic structure of the GaN-based VCSEL sample. (b) Experiment setup.

Fig. 2
Fig. 2

The PL spectral evolution of the VCSEL under different pumping power levels at 300K. The PL intensity is normalized for comparisons.

Fig. 3
Fig. 3

The gain spectra of the VCSEL under different pumping level at (a) 300K, (b) 220K, (c) 150K, and (d) 80K.

Fig. 4
Fig. 4

(a) The pumping power dependence of the material peak gain was depicted as dotted points for different temperature. The solid curves were fitted to the measured data for different temperature respectively. (b) The g 0 factor as a function of temperature.

Fig. 5
Fig. 5

The α-factor as a function of wavelength obtained at different temperature. The α-factor is smaller at shorter wavelength and decreases as decreasing temperature.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G(λ)=1ΓLln[(I+)12(I)12(I+)12+(I)12](12ΓL)ln(R1R2)+αiΓ.
α=2πLΔλdλdg

Metrics