Abstract

Plasmonic reflectors based on serial stub structure are studied in this paper. A general theory of periodic stub structure using transmission line model is developed. The transmission characteristics, e.g., periodicity and symmetry of the spectra, are closely related to the ratio of structure period to stub length. Investigation reveals that the transmission valleys of the spectra could be divided into two categories, which is quite different from conventional Bragg reflectors. Finite-Difference Time-Domain (FDTD) method is used in numerical analysis in this paper.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424824-830 (2003).
    [CrossRef] [PubMed]
  2. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311189-193 (2006).
    [CrossRef] [PubMed]
  3. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87,061106 (2005).
    [CrossRef]
  4. D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069-1071 (2004).
    [CrossRef] [PubMed]
  5. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73,035407 (2006).
    [CrossRef]
  6. B. Wang and G.P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
    [CrossRef]
  7. A. Hossieni and Y. Massoud, "A low-loss metal-insulator-metal plasmonic bragg reflector," Opt. Express 14, 11318-11323 (2006).
    [CrossRef] [PubMed]
  8. Z. Han, E. Forsberg, and S. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett. 19, 91-93 (2007).
    [CrossRef]
  9. J. Liu, L. Wang, M. He, W. Huang, D. Wang, B. Zou, and S. Wen, "A wide bandgap plasmonic Bragg reflector," Opt. Express 16, 4888-4894 (2008).
    [CrossRef] [PubMed]
  10. Q. Zhang, X. Huang, X. Lin, J. Tao, and X. Jin, "A subwavelength coupler-type MIM optical filter," Opt. Express 17, 7549-7555 (2009).
    [CrossRef]
  11. S. Xiao, L. Liu, and M. Qiu, "Resonator channel drop filters in a plasmon-polaritons metal," Opt. Express 14, 2932-2937 (2006).
    [CrossRef] [PubMed]
  12. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui and M. Nakagaki, "Characteristics of gap plasmon waveguide with stub structures," Opt. Express 16, 16314-16325 (2008).
    [CrossRef] [PubMed]
  13. X. Lin and X. Huang, "Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter," J. Opt. Soc. Am. B 26, 1263-1268 (2009).
    [CrossRef]
  14. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (MA: Artech House, Boston, 2000).
  15. G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
    [CrossRef]
  16. S. E. Kocabas, G. Veronis, D. A. B. Miller, S. Fan, "Transmission Line and Equivalent Circuit Models for Plasmonic Waveguide Components," IEEE J. Sel. Top. Quantum Electron. 14, 1462-1472 (2008).
    [CrossRef]

2009 (2)

2008 (3)

2007 (1)

Z. Han, E. Forsberg, and S. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett. 19, 91-93 (2007).
[CrossRef]

2006 (4)

E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311189-193 (2006).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73,035407 (2006).
[CrossRef]

S. Xiao, L. Liu, and M. Qiu, "Resonator channel drop filters in a plasmon-polaritons metal," Opt. Express 14, 2932-2937 (2006).
[CrossRef] [PubMed]

A. Hossieni and Y. Massoud, "A low-loss metal-insulator-metal plasmonic bragg reflector," Opt. Express 14, 11318-11323 (2006).
[CrossRef] [PubMed]

2005 (3)

B. Wang and G.P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87,061106 (2005).
[CrossRef]

G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

2004 (1)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424824-830 (2003).
[CrossRef] [PubMed]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73,035407 (2006).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424824-830 (2003).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424824-830 (2003).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73,035407 (2006).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424824-830 (2003).
[CrossRef] [PubMed]

Fan, S.

S. E. Kocabas, G. Veronis, D. A. B. Miller, S. Fan, "Transmission Line and Equivalent Circuit Models for Plasmonic Waveguide Components," IEEE J. Sel. Top. Quantum Electron. 14, 1462-1472 (2008).
[CrossRef]

G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Forsberg, E.

Z. Han, E. Forsberg, and S. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett. 19, 91-93 (2007).
[CrossRef]

Fukui, M.

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui and M. Nakagaki, "Characteristics of gap plasmon waveguide with stub structures," Opt. Express 16, 16314-16325 (2008).
[CrossRef] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87,061106 (2005).
[CrossRef]

Gramotnev, D. K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87,061106 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069-1071 (2004).
[CrossRef] [PubMed]

Han, Z.

Z. Han, E. Forsberg, and S. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett. 19, 91-93 (2007).
[CrossRef]

Haraguchi, M.

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui and M. Nakagaki, "Characteristics of gap plasmon waveguide with stub structures," Opt. Express 16, 16314-16325 (2008).
[CrossRef] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87,061106 (2005).
[CrossRef]

He, M.

He, S.

Z. Han, E. Forsberg, and S. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett. 19, 91-93 (2007).
[CrossRef]

Hossieni, A.

Huang, W.

Huang, X.

Jin, X.

Kocabas, S. E.

S. E. Kocabas, G. Veronis, D. A. B. Miller, S. Fan, "Transmission Line and Equivalent Circuit Models for Plasmonic Waveguide Components," IEEE J. Sel. Top. Quantum Electron. 14, 1462-1472 (2008).
[CrossRef]

Lin, X.

Liu, J.

Liu, L.

Massoud, Y.

Matsuo, S.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87,061106 (2005).
[CrossRef]

Matsuzaki, Y.

Miller, D. A. B.

S. E. Kocabas, G. Veronis, D. A. B. Miller, S. Fan, "Transmission Line and Equivalent Circuit Models for Plasmonic Waveguide Components," IEEE J. Sel. Top. Quantum Electron. 14, 1462-1472 (2008).
[CrossRef]

Nakagaki, M.

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87,061106 (2005).
[CrossRef]

Okamoto, T.

Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui and M. Nakagaki, "Characteristics of gap plasmon waveguide with stub structures," Opt. Express 16, 16314-16325 (2008).
[CrossRef] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87,061106 (2005).
[CrossRef]

Ozbay, E.

E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311189-193 (2006).
[CrossRef] [PubMed]

Pile, D. F. P.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87,061106 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett. 29, 1069-1071 (2004).
[CrossRef] [PubMed]

Qiu, M.

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73,035407 (2006).
[CrossRef]

Tao, J.

Veronis, G.

S. E. Kocabas, G. Veronis, D. A. B. Miller, S. Fan, "Transmission Line and Equivalent Circuit Models for Plasmonic Waveguide Components," IEEE J. Sel. Top. Quantum Electron. 14, 1462-1472 (2008).
[CrossRef]

G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Wang, B.

B. Wang and G.P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

Wang, D.

Wang, G.P.

B. Wang and G.P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

Wang, L.

Wen, S.

Xiao, S.

Zhang, Q.

Zou, B.

Appl. Phys. Lett. (3)

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, "Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding," Appl. Phys. Lett. 87,061106 (2005).
[CrossRef]

B. Wang and G.P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

G. Veronis and S. Fan, "Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides," Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. E. Kocabas, G. Veronis, D. A. B. Miller, S. Fan, "Transmission Line and Equivalent Circuit Models for Plasmonic Waveguide Components," IEEE J. Sel. Top. Quantum Electron. 14, 1462-1472 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. Han, E. Forsberg, and S. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol. Lett. 19, 91-93 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424824-830 (2003).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. B (1)

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B 73,035407 (2006).
[CrossRef]

Science (1)

E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311189-193 (2006).
[CrossRef] [PubMed]

Other (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (MA: Artech House, Boston, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of MIM waveguide reflector with serial stub structure.

Fig. 2.
Fig. 2.

Equivalent circuit of the serial stub structure.

Fig. 3.
Fig. 3.

(a) The first two periods of the transmission spectra for serial stub structure with L=d=400 nm and N=4 by FDTD (lossy case, blue) and TMM (lossless case, red). (b) The first period of the transmission spectra for serial stub structure with L=400 nm, d=600 nm and N=4. (c) and (d) are the corresponding dispersion curves for lossless infinite periodic stub structure with the same geometric parameters as (a) and (b), respectively.

Fig. 4.
Fig. 4.

(a) The transmission spectra by FDTD for serial stub structure with different stub number N=1, 2, 4 and 8, respectively. Other paramters remain unchanged as in Fig.3(b). (b) and (c) The corresponding optical field distributions (|Hz |2) for the first two transmission valleys in (a): λ=1503 nm (b) and λ=2191 nm (c).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

[Vn+Vn]=Mn,n+1[Vn+1+vn+1]
[m11m12m21m22]=[ejkspd200ejkspd2][1+Ys2Y0Ys2Y0Ys2Y01Ys2Y0][ejkspd200ejkspd2]
=[ejkspd(1+j2tan(kspL))j2tan(kspL)j2tan(kspL)ejkspd(1j2tan(kspL))]
cos(Kd)=12(m11+m22)=cos(kspd)12tan(kspL)sin(kspd)
cosh(βd)=cos(kspd)12tan(kspL)sin(kspd)1
T=VN+2V1+2=(sin(Kd)sin(NKd))2m212+(sin(Kd)sin(NKd))2=44+F
F=tan2(kspL)sin2(Kd)sin2(NKd)
tan2(kspL)
sin2(Kd)sin2(NKd)0
kspL=(m+12)π

Metrics