Abstract

We propose a scheme for efficient cavity-enhanced nonlinear THz generation via difference-frequency generation (DFG) processes using a triply resonant system based on photonic crystal cavities. We show that high nonlinear overlap can be achieved by coupling a THz cavity to a doubly-resonant, dual-polarization near-infrared (e.g. telecom band) photonic-crystal nanobeam cavity, allowing the mixing of three mutually orthogonal fundamental cavity modes through a χ (2) nonlinearity. We demonstrate through coupled-mode theory that complete depletion of the pump frequency — i.e., quantum-limited conversion — is possible. We show that the output power at the point of optimal total conversion efficiency is adjustable by varying the mode quality (Q) factors.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics (Academic Press, 2003).
  2. M. A. Belkin, F. Capasso, A. Belyanin, D.L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, G. W. Turner, "Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation," Nature Photonics 1, 288-292 (2007).
    [CrossRef]
  3. M. Bieler, "THz generation from resonant excitation of semiconductor nanostructures: Investigation of secondorder nonlinear optical effects," IEEE J. Sel. Top. Quantum Electron. 14, 458-469 (2008).
    [CrossRef]
  4. A. Andronico, J. Claudon, J. M Gerard, V. Berger, G. Leo, "Integrated terahertz source based on three-wave mixing of whispering-gallery modes," Opt. Lett. 33, 2416-2418 (2008).
    [CrossRef] [PubMed]
  5. K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, C. Lynch, "Terahertz-wave generation in quasi-phase-matched GaAs," Appl. Phys. Lett. 89, 141119 (2006).
    [CrossRef]
  6. G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, C. Lynch, "High-power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser," Opt. Express 14, 4439-4444 (2006).
    [CrossRef] [PubMed]
  7. J. Hebling, A. G. Stepanov, G. Almassi, B. Bartal, J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B 78, 593-599 (2004).
    [CrossRef]
  8. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, "Terahertz Spectroscopy," J. Phys. Chem. B 106, 7146-7159 (2002).
    [CrossRef]
  9. M. van Exter, D. R. Grischkowsky, "Characterization of an Optoelectronic Terahertz Beam System," IEEE Trans. Microwave Theory Tech. 38, 1684-1691 (1990).
    [CrossRef]
  10. Q. Wu, M. Litz, X. C. Zhang, "Broadband detection capability of ZnTe electro-optic field detectors," Appl. Phys. Lett 68, 2924-2926 (1996).
    [CrossRef]
  11. Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett. 76, 2505-2507 (2000).
    [CrossRef]
  12. J. E. Schaar, K. L. Vodopyanov, M. M. Fejer, "Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs," Opt. Lett. 32, 1284-1286 (2007).
    [CrossRef] [PubMed]
  13. R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi,"Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
    [CrossRef] [PubMed]
  14. B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331-3339 (2005).
    [CrossRef] [PubMed]
  15. M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, E. H. Linfield, "Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K," Opt. Express 16, 3242-3248 (2008).
    [CrossRef] [PubMed]
  16. M. W. McCutcheon, J. F. Young, G. W. Reiger, D. Dalacu, S. Frederick, P. J. Poole, R. L. Williams "Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers," Phys. Rev. B 76, 245104 (2007).
    [CrossRef]
  17. R.E. Hamam, M. Ibanescu, E.J. Reed, P. Bernel, S. G. Johnson, E. Ippen, J. D. Joannopoulos, M. Soljacic, "Purcell effect in nonlinear photonic structures: A coupled mode theory analysis," Opt. Express 16, 12523-12537 (2008).
    [CrossRef] [PubMed]
  18. M. Soljacic, J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Materials 3, 211-219 (2004).
    [CrossRef] [PubMed]
  19. Y. H. Avetisyan, "Cavity-enhanced terahertz region difference-frequency generation in surface-emitting geometry," Proc. SPIE 3795, 501.
  20. M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, R. L. Williams, "Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities," Appl. Phys. Lett. 87, 221110 (2005).
    [CrossRef]
  21. J. Bravo-Abad, A. Rodriguez, P. Bernel, S. G. Johnson, J.D. Joannopoulos, M. Soljacic, "Enhanced nonlinear optics in photonic-crystal microcavities," Opt. Express 15, 16161-16176 (2007).
    [CrossRef] [PubMed]
  22. A. B. Matsko, D. V. Strekalov, N. Yu, "Sensitivity of terahertz photonic receivers," Phys. Rev. A. 77, 043812 (2008).
    [CrossRef]
  23. A. Rodriguez, M. Soljacic, J.D. Joannopoulos, S.G. Johnson, "|(2) and |(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities," Opt. Express 15, 7303-7318 (2007).
    [CrossRef] [PubMed]
  24. I. B. Burgess, A. W. Rodriguez, M. W. McCutcheon, J. Bravo-Abad, Y. Zhang, S. G. Johnson, M. Loncar "Difference-frequency generation with quantum-limited efficiency in triply-resonant nonlinear cavities," Opt. Express 17, 9241-9251 (2009).
    [CrossRef] [PubMed]
  25. H. Hashemi, A. W. Rodriguez, J. D. Joannopoulos, M. Soljacic, S. G. Johnson, "Nonlinear harmonic generation and devices in doubly-resonant Kerr cavities," Phys. Rev. A 79, 013812 (2009).
    [CrossRef]
  26. At the position of highest THz field that exists above the THz material, the field amplitude has ? 25% of the maximum field amplitude for our THz nanobeam design.
  27. S. Singh, Nonlinear Optical Materials in Handbook of laser science and technology, M. J. Weber, ed., (Optical Materials, Part I, CRC Press 1986) Vol. III .
  28. Y. Zhang, M. W. McCutcheon, I. B. Burgess, M. Loncar, "Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities," Opt. Lett. 34, 2694-2696 (2009).
    [CrossRef] [PubMed]
  29. M. W. McCutcheon, D. E. Chang, Y. Zhang, M. D. Lukin, M. Loncar, "Broad-band spectral control of single photon sources using a nonlinear photonic crystal cavity," arXiv:0903.4706 (2009).
  30. M. W. McCutcheon, M. Loncar, "Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal," Opt. Express 16, 19136-19145 (2008).
    [CrossRef]
  31. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. M. Khan, M. Loncar, "High Quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009).
    [CrossRef]
  32. Y. Zhang, M. Loncar, "Ultra-high quality factor optical resonators based on semiconductor nanowires," Opt. Express 16, 17400 (2008).
    [CrossRef] [PubMed]
  33. M. Notomi, E. Kuramochi, H. Taniyama, "Ultrahigh-Q Nanocavity with 1D Photonic Gap," Opt. Express 16, 11095-11102 (2008).
    [CrossRef] [PubMed]
  34. R. Herrmann, T. Sunner, T. Hein, A. Loffler, M. Kamp, A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs," Opt. Lett. 31, 1229-1231 (2006).
    [CrossRef] [PubMed]
  35. S. Combrie, A. De Rossi, Q.V. Tran, H. Benisty, "GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55μm," Opt. Lett. 33, 1908-1910 (2008).
    [CrossRef] [PubMed]
  36. E. Weidner, S. Combrie, N.-V.-Q, Tran, A. De Rossi, J. Nagle, S. Cassete, A. Talneau, H. Benisty, "Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity," Appl. Phys. Lett. 89, 221104 (2006).
    [CrossRef]
  37. N. Jukam, C. Yee, M.S. Sherwin, I. Fushman, J. Vuckovic, "Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals," Appl. Phys. Lett. 89, 241112 (2006)
    [CrossRef]
  38. N. Jukam, M. S. Sherwin, "Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si," Appl. Phys. Lett. 83, 21-23 (2003).
    [CrossRef]
  39. D. X. Qu, D. Grischkowsky,W. L. Zhang, "Terahertz transmission properties of thin, subwavelength metallic hole arrays," Opt. Lett. 29, 896-898 (2004).
    [CrossRef] [PubMed]
  40. Z. P. Jian, J. Pearce, D. M. Mittleman, "Terahertz transmission properties of thin, subwavelength metallic hole arrays," Opt. Lett. 29, 2067-2069 (2004).
    [CrossRef] [PubMed]
  41. C. M. Yee, M. S. Sherwin, "High-Q terahertz microcavities in silicon photonic crystal slabs," Appl. Phys. Lett. 94, 154104 (2009).
    [CrossRef]
  42. H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Y. Yuan, N. Kawai, K. Sakoda, K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
    [CrossRef]
  43. K. Srinivasan, P. E. Barclay, M. Borselli, O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
    [CrossRef]
  44. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  45. The NIR cavity was included in the THz cavity simulations and it was found to cause a slight decrease in the scattering-limited Q factor (2×106 ?1.4×106), while having a negligible effect on |T.
  46. The effective usable area where the NIR cavity can be fabricated is given by the product of the spacing between the two central holes and the width of the THz cavity.
  47. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).
  48. K. L. Vodopyanov, Yu. H. Avetisyan, "Optical terahertz wave generation in a planar GaAs waveguide," Opt. Lett. 33, 2314-2316 (2008).
    [CrossRef] [PubMed]

2009 (5)

I. B. Burgess, A. W. Rodriguez, M. W. McCutcheon, J. Bravo-Abad, Y. Zhang, S. G. Johnson, M. Loncar "Difference-frequency generation with quantum-limited efficiency in triply-resonant nonlinear cavities," Opt. Express 17, 9241-9251 (2009).
[CrossRef] [PubMed]

H. Hashemi, A. W. Rodriguez, J. D. Joannopoulos, M. Soljacic, S. G. Johnson, "Nonlinear harmonic generation and devices in doubly-resonant Kerr cavities," Phys. Rev. A 79, 013812 (2009).
[CrossRef]

Y. Zhang, M. W. McCutcheon, I. B. Burgess, M. Loncar, "Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities," Opt. Lett. 34, 2694-2696 (2009).
[CrossRef] [PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. M. Khan, M. Loncar, "High Quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

C. M. Yee, M. S. Sherwin, "High-Q terahertz microcavities in silicon photonic crystal slabs," Appl. Phys. Lett. 94, 154104 (2009).
[CrossRef]

2008 (10)

K. L. Vodopyanov, Yu. H. Avetisyan, "Optical terahertz wave generation in a planar GaAs waveguide," Opt. Lett. 33, 2314-2316 (2008).
[CrossRef] [PubMed]

Y. Zhang, M. Loncar, "Ultra-high quality factor optical resonators based on semiconductor nanowires," Opt. Express 16, 17400 (2008).
[CrossRef] [PubMed]

M. Notomi, E. Kuramochi, H. Taniyama, "Ultrahigh-Q Nanocavity with 1D Photonic Gap," Opt. Express 16, 11095-11102 (2008).
[CrossRef] [PubMed]

M. W. McCutcheon, M. Loncar, "Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal," Opt. Express 16, 19136-19145 (2008).
[CrossRef]

S. Combrie, A. De Rossi, Q.V. Tran, H. Benisty, "GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55μm," Opt. Lett. 33, 1908-1910 (2008).
[CrossRef] [PubMed]

A. B. Matsko, D. V. Strekalov, N. Yu, "Sensitivity of terahertz photonic receivers," Phys. Rev. A. 77, 043812 (2008).
[CrossRef]

M. Bieler, "THz generation from resonant excitation of semiconductor nanostructures: Investigation of secondorder nonlinear optical effects," IEEE J. Sel. Top. Quantum Electron. 14, 458-469 (2008).
[CrossRef]

A. Andronico, J. Claudon, J. M Gerard, V. Berger, G. Leo, "Integrated terahertz source based on three-wave mixing of whispering-gallery modes," Opt. Lett. 33, 2416-2418 (2008).
[CrossRef] [PubMed]

M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, E. H. Linfield, "Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K," Opt. Express 16, 3242-3248 (2008).
[CrossRef] [PubMed]

R.E. Hamam, M. Ibanescu, E.J. Reed, P. Bernel, S. G. Johnson, E. Ippen, J. D. Joannopoulos, M. Soljacic, "Purcell effect in nonlinear photonic structures: A coupled mode theory analysis," Opt. Express 16, 12523-12537 (2008).
[CrossRef] [PubMed]

2007 (5)

J. Bravo-Abad, A. Rodriguez, P. Bernel, S. G. Johnson, J.D. Joannopoulos, M. Soljacic, "Enhanced nonlinear optics in photonic-crystal microcavities," Opt. Express 15, 16161-16176 (2007).
[CrossRef] [PubMed]

M. W. McCutcheon, J. F. Young, G. W. Reiger, D. Dalacu, S. Frederick, P. J. Poole, R. L. Williams "Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers," Phys. Rev. B 76, 245104 (2007).
[CrossRef]

M. A. Belkin, F. Capasso, A. Belyanin, D.L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, G. W. Turner, "Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation," Nature Photonics 1, 288-292 (2007).
[CrossRef]

J. E. Schaar, K. L. Vodopyanov, M. M. Fejer, "Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs," Opt. Lett. 32, 1284-1286 (2007).
[CrossRef] [PubMed]

A. Rodriguez, M. Soljacic, J.D. Joannopoulos, S.G. Johnson, "|(2) and |(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities," Opt. Express 15, 7303-7318 (2007).
[CrossRef] [PubMed]

2006 (5)

E. Weidner, S. Combrie, N.-V.-Q, Tran, A. De Rossi, J. Nagle, S. Cassete, A. Talneau, H. Benisty, "Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity," Appl. Phys. Lett. 89, 221104 (2006).
[CrossRef]

N. Jukam, C. Yee, M.S. Sherwin, I. Fushman, J. Vuckovic, "Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals," Appl. Phys. Lett. 89, 241112 (2006)
[CrossRef]

R. Herrmann, T. Sunner, T. Hein, A. Loffler, M. Kamp, A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs," Opt. Lett. 31, 1229-1231 (2006).
[CrossRef] [PubMed]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, C. Lynch, "Terahertz-wave generation in quasi-phase-matched GaAs," Appl. Phys. Lett. 89, 141119 (2006).
[CrossRef]

G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, C. Lynch, "High-power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser," Opt. Express 14, 4439-4444 (2006).
[CrossRef] [PubMed]

2005 (2)

B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331-3339 (2005).
[CrossRef] [PubMed]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, R. L. Williams, "Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities," Appl. Phys. Lett. 87, 221110 (2005).
[CrossRef]

2004 (5)

M. Soljacic, J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Materials 3, 211-219 (2004).
[CrossRef] [PubMed]

J. Hebling, A. G. Stepanov, G. Almassi, B. Bartal, J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B 78, 593-599 (2004).
[CrossRef]

D. X. Qu, D. Grischkowsky,W. L. Zhang, "Terahertz transmission properties of thin, subwavelength metallic hole arrays," Opt. Lett. 29, 896-898 (2004).
[CrossRef] [PubMed]

Z. P. Jian, J. Pearce, D. M. Mittleman, "Terahertz transmission properties of thin, subwavelength metallic hole arrays," Opt. Lett. 29, 2067-2069 (2004).
[CrossRef] [PubMed]

K. Srinivasan, P. E. Barclay, M. Borselli, O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
[CrossRef]

2003 (1)

N. Jukam, M. S. Sherwin, "Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si," Appl. Phys. Lett. 83, 21-23 (2003).
[CrossRef]

2002 (2)

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, "Terahertz Spectroscopy," J. Phys. Chem. B 106, 7146-7159 (2002).
[CrossRef]

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi,"Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

2001 (1)

H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Y. Yuan, N. Kawai, K. Sakoda, K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
[CrossRef]

2000 (1)

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett. 76, 2505-2507 (2000).
[CrossRef]

1996 (1)

Q. Wu, M. Litz, X. C. Zhang, "Broadband detection capability of ZnTe electro-optic field detectors," Appl. Phys. Lett 68, 2924-2926 (1996).
[CrossRef]

1990 (1)

M. van Exter, D. R. Grischkowsky, "Characterization of an Optoelectronic Terahertz Beam System," IEEE Trans. Microwave Theory Tech. 38, 1684-1691 (1990).
[CrossRef]

Aers, G. C.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, R. L. Williams, "Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities," Appl. Phys. Lett. 87, 221110 (2005).
[CrossRef]

Almassi, G.

J. Hebling, A. G. Stepanov, G. Almassi, B. Bartal, J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B 78, 593-599 (2004).
[CrossRef]

Andronico, A.

Avetisyan, Yu. H.

Barclay, P. E.

K. Srinivasan, P. E. Barclay, M. Borselli, O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
[CrossRef]

Bartal, B.

J. Hebling, A. G. Stepanov, G. Almassi, B. Bartal, J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B 78, 593-599 (2004).
[CrossRef]

Beard, M. C.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, "Terahertz Spectroscopy," J. Phys. Chem. B 106, 7146-7159 (2002).
[CrossRef]

Beere, H. E.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi,"Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Belkin, M. A.

M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, E. H. Linfield, "Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K," Opt. Express 16, 3242-3248 (2008).
[CrossRef] [PubMed]

M. A. Belkin, F. Capasso, A. Belyanin, D.L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, G. W. Turner, "Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation," Nature Photonics 1, 288-292 (2007).
[CrossRef]

Beltram, F.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi,"Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Belyanin, A.

M. A. Belkin, F. Capasso, A. Belyanin, D.L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, G. W. Turner, "Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation," Nature Photonics 1, 288-292 (2007).
[CrossRef]

Benisty, H.

Berger, V.

Bernel, P.

Bieler, M.

M. Bieler, "THz generation from resonant excitation of semiconductor nanostructures: Investigation of secondorder nonlinear optical effects," IEEE J. Sel. Top. Quantum Electron. 14, 458-469 (2008).
[CrossRef]

Bliss, D.

G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, C. Lynch, "High-power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser," Opt. Express 14, 4439-4444 (2006).
[CrossRef] [PubMed]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, C. Lynch, "Terahertz-wave generation in quasi-phase-matched GaAs," Appl. Phys. Lett. 89, 141119 (2006).
[CrossRef]

Borselli, M.

K. Srinivasan, P. E. Barclay, M. Borselli, O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
[CrossRef]

Bravo-Abad, J.

Burgess, I. B.

Capasso, F.

M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, E. H. Linfield, "Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K," Opt. Express 16, 3242-3248 (2008).
[CrossRef] [PubMed]

M. A. Belkin, F. Capasso, A. Belyanin, D.L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, G. W. Turner, "Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation," Nature Photonics 1, 288-292 (2007).
[CrossRef]

Cheung, I. W.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, R. L. Williams, "Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities," Appl. Phys. Lett. 87, 221110 (2005).
[CrossRef]

Cho, A. Y.

M. A. Belkin, F. Capasso, A. Belyanin, D.L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, G. W. Turner, "Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation," Nature Photonics 1, 288-292 (2007).
[CrossRef]

Claudon, J.

Combrie, S.

S. Combrie, A. De Rossi, Q.V. Tran, H. Benisty, "GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55μm," Opt. Lett. 33, 1908-1910 (2008).
[CrossRef] [PubMed]

E. Weidner, S. Combrie, N.-V.-Q, Tran, A. De Rossi, J. Nagle, S. Cassete, A. Talneau, H. Benisty, "Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity," Appl. Phys. Lett. 89, 221104 (2006).
[CrossRef]

Dalacu, D.

M. W. McCutcheon, J. F. Young, G. W. Reiger, D. Dalacu, S. Frederick, P. J. Poole, R. L. Williams "Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers," Phys. Rev. B 76, 245104 (2007).
[CrossRef]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, R. L. Williams, "Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities," Appl. Phys. Lett. 87, 221110 (2005).
[CrossRef]

Davies, A. G.

M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, E. H. Linfield, "Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K," Opt. Express 16, 3242-3248 (2008).
[CrossRef] [PubMed]

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi,"Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

De Rossi, A.

Deotare, P. B.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. M. Khan, M. Loncar, "High Quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Fan, J. A.

Fejer, M. M.

Fermann, M. E.

Forchel, A.

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. M. Khan, M. Loncar, "High Quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Frederick, S.

M. W. McCutcheon, J. F. Young, G. W. Reiger, D. Dalacu, S. Frederick, P. J. Poole, R. L. Williams "Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers," Phys. Rev. B 76, 245104 (2007).
[CrossRef]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, R. L. Williams, "Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities," Appl. Phys. Lett. 87, 221110 (2005).
[CrossRef]

Fushman, I.

N. Jukam, C. Yee, M.S. Sherwin, I. Fushman, J. Vuckovic, "Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals," Appl. Phys. Lett. 89, 241112 (2006)
[CrossRef]

Galvanauskas, A.

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett. 76, 2505-2507 (2000).
[CrossRef]

Gerard, J. M

Grischkowsky, D.

Grischkowsky, D. R.

M. van Exter, D. R. Grischkowsky, "Characterization of an Optoelectronic Terahertz Beam System," IEEE Trans. Microwave Theory Tech. 38, 1684-1691 (1990).
[CrossRef]

Hamam, R. E.

Harris, J. S.

Harris, J.S.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, C. Lynch, "Terahertz-wave generation in quasi-phase-matched GaAs," Appl. Phys. Lett. 89, 141119 (2006).
[CrossRef]

Hashemi, H.

H. Hashemi, A. W. Rodriguez, J. D. Joannopoulos, M. Soljacic, S. G. Johnson, "Nonlinear harmonic generation and devices in doubly-resonant Kerr cavities," Phys. Rev. A 79, 013812 (2009).
[CrossRef]

Haus, J. W.

H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Y. Yuan, N. Kawai, K. Sakoda, K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
[CrossRef]

Hebling, J.

J. Hebling, A. G. Stepanov, G. Almassi, B. Bartal, J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B 78, 593-599 (2004).
[CrossRef]

Hein, T.

Herrmann, R.

Hormoz, S.

Hu, Q.

Hurlbut, W. C.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, C. Lynch, "Terahertz-wave generation in quasi-phase-matched GaAs," Appl. Phys. Lett. 89, 141119 (2006).
[CrossRef]

Ibanescu, M.

Imeshev, G.

Inoue, K.

H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Y. Yuan, N. Kawai, K. Sakoda, K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
[CrossRef]

Iotti, R. C.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi,"Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Ippen, E.

Jian, Z. P.

Joannopoulos, J. D.

Johnson, S. G.

Jukam, N.

N. Jukam, C. Yee, M.S. Sherwin, I. Fushman, J. Vuckovic, "Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals," Appl. Phys. Lett. 89, 241112 (2006)
[CrossRef]

N. Jukam, M. S. Sherwin, "Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si," Appl. Phys. Lett. 83, 21-23 (2003).
[CrossRef]

Kamp, M.

Kawai, N.

H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Y. Yuan, N. Kawai, K. Sakoda, K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
[CrossRef]

Khan, M. M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. M. Khan, M. Loncar, "High Quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Khanna, S. P.

Kitahara, H.

H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Y. Yuan, N. Kawai, K. Sakoda, K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
[CrossRef]

Kohler, R.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi,"Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Kondo, H.

H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Y. Yuan, N. Kawai, K. Sakoda, K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
[CrossRef]

Kozlov, V. G.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, C. Lynch, "Terahertz-wave generation in quasi-phase-matched GaAs," Appl. Phys. Lett. 89, 141119 (2006).
[CrossRef]

Kuhl, J.

J. Hebling, A. G. Stepanov, G. Almassi, B. Bartal, J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B 78, 593-599 (2004).
[CrossRef]

Kumar, S.

Kuramochi, E.

Lachab, M.

Lee, Y. S.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, C. Lynch, "Terahertz-wave generation in quasi-phase-matched GaAs," Appl. Phys. Lett. 89, 141119 (2006).
[CrossRef]

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett. 76, 2505-2507 (2000).
[CrossRef]

Leo, G.

Linfield, E. H.

M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, E. H. Linfield, "Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K," Opt. Express 16, 3242-3248 (2008).
[CrossRef] [PubMed]

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi,"Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Litz, M.

Q. Wu, M. Litz, X. C. Zhang, "Broadband detection capability of ZnTe electro-optic field detectors," Appl. Phys. Lett 68, 2924-2926 (1996).
[CrossRef]

Loffler, A.

Lon?car, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. M. Khan, M. Loncar, "High Quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

Loncar, M.

Lynch, C.

G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, C. Lynch, "High-power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser," Opt. Express 14, 4439-4444 (2006).
[CrossRef] [PubMed]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, C. Lynch, "Terahertz-wave generation in quasi-phase-matched GaAs," Appl. Phys. Lett. 89, 141119 (2006).
[CrossRef]

Matsko, A. B.

A. B. Matsko, D. V. Strekalov, N. Yu, "Sensitivity of terahertz photonic receivers," Phys. Rev. A. 77, 043812 (2008).
[CrossRef]

McCutcheon, M. W.

Y. Zhang, M. W. McCutcheon, I. B. Burgess, M. Loncar, "Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities," Opt. Lett. 34, 2694-2696 (2009).
[CrossRef] [PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. M. Khan, M. Loncar, "High Quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

I. B. Burgess, A. W. Rodriguez, M. W. McCutcheon, J. Bravo-Abad, Y. Zhang, S. G. Johnson, M. Loncar "Difference-frequency generation with quantum-limited efficiency in triply-resonant nonlinear cavities," Opt. Express 17, 9241-9251 (2009).
[CrossRef] [PubMed]

M. W. McCutcheon, M. Loncar, "Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal," Opt. Express 16, 19136-19145 (2008).
[CrossRef]

M. W. McCutcheon, J. F. Young, G. W. Reiger, D. Dalacu, S. Frederick, P. J. Poole, R. L. Williams "Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers," Phys. Rev. B 76, 245104 (2007).
[CrossRef]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, R. L. Williams, "Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities," Appl. Phys. Lett. 87, 221110 (2005).
[CrossRef]

Meade, T.

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett. 76, 2505-2507 (2000).
[CrossRef]

Mittleman, D. M.

Norris, T. B.

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett. 76, 2505-2507 (2000).
[CrossRef]

Notomi, M.

Oakley, D. C.

M. A. Belkin, F. Capasso, A. Belyanin, D.L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, G. W. Turner, "Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation," Nature Photonics 1, 288-292 (2007).
[CrossRef]

Painter, O.

K. Srinivasan, P. E. Barclay, M. Borselli, O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
[CrossRef]

Pearce, J.

Perlin, V.

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett. 76, 2505-2507 (2000).
[CrossRef]

Poole, P. J.

M. W. McCutcheon, J. F. Young, G. W. Reiger, D. Dalacu, S. Frederick, P. J. Poole, R. L. Williams "Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers," Phys. Rev. B 76, 245104 (2007).
[CrossRef]

Poole, P.J.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, R. L. Williams, "Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities," Appl. Phys. Lett. 87, 221110 (2005).
[CrossRef]

Qu, D.X.

Reed, E. J.

Reiger, G. W.

M. W. McCutcheon, J. F. Young, G. W. Reiger, D. Dalacu, S. Frederick, P. J. Poole, R. L. Williams "Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers," Phys. Rev. B 76, 245104 (2007).
[CrossRef]

Reno, J. L.

Rieger, G. W.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, R. L. Williams, "Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities," Appl. Phys. Lett. 87, 221110 (2005).
[CrossRef]

Ritchie, D. A.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi,"Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Rodriguez, A.

Rodriguez, A. W.

H. Hashemi, A. W. Rodriguez, J. D. Joannopoulos, M. Soljacic, S. G. Johnson, "Nonlinear harmonic generation and devices in doubly-resonant Kerr cavities," Phys. Rev. A 79, 013812 (2009).
[CrossRef]

I. B. Burgess, A. W. Rodriguez, M. W. McCutcheon, J. Bravo-Abad, Y. Zhang, S. G. Johnson, M. Loncar "Difference-frequency generation with quantum-limited efficiency in triply-resonant nonlinear cavities," Opt. Express 17, 9241-9251 (2009).
[CrossRef] [PubMed]

Rossi, F.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi,"Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Sakoda, K.

H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Y. Yuan, N. Kawai, K. Sakoda, K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
[CrossRef]

Schaar, J. E.

Schmuttenmaer, C. A.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, "Terahertz Spectroscopy," J. Phys. Chem. B 106, 7146-7159 (2002).
[CrossRef]

Sherwin, M. S.

C. M. Yee, M. S. Sherwin, "High-Q terahertz microcavities in silicon photonic crystal slabs," Appl. Phys. Lett. 94, 154104 (2009).
[CrossRef]

N. Jukam, C. Yee, M.S. Sherwin, I. Fushman, J. Vuckovic, "Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals," Appl. Phys. Lett. 89, 241112 (2006)
[CrossRef]

N. Jukam, M. S. Sherwin, "Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si," Appl. Phys. Lett. 83, 21-23 (2003).
[CrossRef]

Sivco, D. L.

M. A. Belkin, F. Capasso, A. Belyanin, D.L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, G. W. Turner, "Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation," Nature Photonics 1, 288-292 (2007).
[CrossRef]

Srinivasan, K.

K. Srinivasan, P. E. Barclay, M. Borselli, O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
[CrossRef]

Stepanov, A. G.

J. Hebling, A. G. Stepanov, G. Almassi, B. Bartal, J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B 78, 593-599 (2004).
[CrossRef]

Strekalov, D. V.

A. B. Matsko, D. V. Strekalov, N. Yu, "Sensitivity of terahertz photonic receivers," Phys. Rev. A. 77, 043812 (2008).
[CrossRef]

Sunner, T.

Takeda, M. W.

H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Y. Yuan, N. Kawai, K. Sakoda, K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
[CrossRef]

Taniyama, H.

Tran, Q. V.

Tredicucci, A.

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi,"Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Tsumura, N.

H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Y. Yuan, N. Kawai, K. Sakoda, K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
[CrossRef]

Turner, G. M.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, "Terahertz Spectroscopy," J. Phys. Chem. B 106, 7146-7159 (2002).
[CrossRef]

Turner, G. W.

M. A. Belkin, F. Capasso, A. Belyanin, D.L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, G. W. Turner, "Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation," Nature Photonics 1, 288-292 (2007).
[CrossRef]

van Exter, M.

M. van Exter, D. R. Grischkowsky, "Characterization of an Optoelectronic Terahertz Beam System," IEEE Trans. Microwave Theory Tech. 38, 1684-1691 (1990).
[CrossRef]

Vineis, C. J.

M. A. Belkin, F. Capasso, A. Belyanin, D.L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, G. W. Turner, "Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation," Nature Photonics 1, 288-292 (2007).
[CrossRef]

Vodopyanov, K. L.

Weidner, E.

E. Weidner, S. Combrie, N.-V.-Q, Tran, A. De Rossi, J. Nagle, S. Cassete, A. Talneau, H. Benisty, "Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity," Appl. Phys. Lett. 89, 221104 (2006).
[CrossRef]

Williams, B. S.

Williams, R. L.

M. W. McCutcheon, J. F. Young, G. W. Reiger, D. Dalacu, S. Frederick, P. J. Poole, R. L. Williams "Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers," Phys. Rev. B 76, 245104 (2007).
[CrossRef]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, R. L. Williams, "Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities," Appl. Phys. Lett. 87, 221110 (2005).
[CrossRef]

Winful, H.

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett. 76, 2505-2507 (2000).
[CrossRef]

Wu, Q.

Q. Wu, M. Litz, X. C. Zhang, "Broadband detection capability of ZnTe electro-optic field detectors," Appl. Phys. Lett 68, 2924-2926 (1996).
[CrossRef]

Yee, C.

N. Jukam, C. Yee, M.S. Sherwin, I. Fushman, J. Vuckovic, "Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals," Appl. Phys. Lett. 89, 241112 (2006)
[CrossRef]

Yee, C. M.

C. M. Yee, M. S. Sherwin, "High-Q terahertz microcavities in silicon photonic crystal slabs," Appl. Phys. Lett. 94, 154104 (2009).
[CrossRef]

Young, J. F.

M. W. McCutcheon, J. F. Young, G. W. Reiger, D. Dalacu, S. Frederick, P. J. Poole, R. L. Williams "Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers," Phys. Rev. B 76, 245104 (2007).
[CrossRef]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, R. L. Williams, "Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities," Appl. Phys. Lett. 87, 221110 (2005).
[CrossRef]

Yu, N.

A. B. Matsko, D. V. Strekalov, N. Yu, "Sensitivity of terahertz photonic receivers," Phys. Rev. A. 77, 043812 (2008).
[CrossRef]

Yu, X.

G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, C. Lynch, "High-power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser," Opt. Express 14, 4439-4444 (2006).
[CrossRef] [PubMed]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, C. Lynch, "Terahertz-wave generation in quasi-phase-matched GaAs," Appl. Phys. Lett. 89, 141119 (2006).
[CrossRef]

Yuan, Z. Y.

H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Y. Yuan, N. Kawai, K. Sakoda, K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
[CrossRef]

Zhang, W. L.

Zhang, X. C.

Q. Wu, M. Litz, X. C. Zhang, "Broadband detection capability of ZnTe electro-optic field detectors," Appl. Phys. Lett 68, 2924-2926 (1996).
[CrossRef]

Zhang, Y.

Appl. Phys. B (1)

J. Hebling, A. G. Stepanov, G. Almassi, B. Bartal, J. Kuhl, "Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts," Appl. Phys. B 78, 593-599 (2004).
[CrossRef]

Appl. Phys. Lett (1)

Q. Wu, M. Litz, X. C. Zhang, "Broadband detection capability of ZnTe electro-optic field detectors," Appl. Phys. Lett 68, 2924-2926 (1996).
[CrossRef]

Appl. Phys. Lett. (8)

Y. S. Lee, T. Meade, V. Perlin, H. Winful, T. B. Norris, A. Galvanauskas, "Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate," Appl. Phys. Lett. 76, 2505-2507 (2000).
[CrossRef]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, C. Lynch, "Terahertz-wave generation in quasi-phase-matched GaAs," Appl. Phys. Lett. 89, 141119 (2006).
[CrossRef]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, R. L. Williams, "Resonant scattering and second-harmonic spectroscopy of planar photonic crystal microcavities," Appl. Phys. Lett. 87, 221110 (2005).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. M. Khan, M. Loncar, "High Quality factor photonic crystal nanobeam cavities," Appl. Phys. Lett. 94, 121106 (2009).
[CrossRef]

E. Weidner, S. Combrie, N.-V.-Q, Tran, A. De Rossi, J. Nagle, S. Cassete, A. Talneau, H. Benisty, "Achievement of ultrahigh quality factors in GaAs photonic crystal membrane nanocavity," Appl. Phys. Lett. 89, 221104 (2006).
[CrossRef]

N. Jukam, C. Yee, M.S. Sherwin, I. Fushman, J. Vuckovic, "Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals," Appl. Phys. Lett. 89, 241112 (2006)
[CrossRef]

N. Jukam, M. S. Sherwin, "Two-dimensional terahertz photonic crystals fabricated by deep reactive ion etching in Si," Appl. Phys. Lett. 83, 21-23 (2003).
[CrossRef]

C. M. Yee, M. S. Sherwin, "High-Q terahertz microcavities in silicon photonic crystal slabs," Appl. Phys. Lett. 94, 154104 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Bieler, "THz generation from resonant excitation of semiconductor nanostructures: Investigation of secondorder nonlinear optical effects," IEEE J. Sel. Top. Quantum Electron. 14, 458-469 (2008).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

M. van Exter, D. R. Grischkowsky, "Characterization of an Optoelectronic Terahertz Beam System," IEEE Trans. Microwave Theory Tech. 38, 1684-1691 (1990).
[CrossRef]

J. Phys. Chem. B (1)

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, "Terahertz Spectroscopy," J. Phys. Chem. B 106, 7146-7159 (2002).
[CrossRef]

Nat. Materials (1)

M. Soljacic, J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Materials 3, 211-219 (2004).
[CrossRef] [PubMed]

Nat. Photonics (1)

M. A. Belkin, F. Capasso, A. Belyanin, D.L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, G. W. Turner, "Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation," Nature Photonics 1, 288-292 (2007).
[CrossRef]

Nature (1)

R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, F. Rossi,"Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
[CrossRef] [PubMed]

Opt. Express (10)

B. S. Williams, S. Kumar, Q. Hu, J. L. Reno, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331-3339 (2005).
[CrossRef] [PubMed]

M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, E. H. Linfield, "Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K," Opt. Express 16, 3242-3248 (2008).
[CrossRef] [PubMed]

R.E. Hamam, M. Ibanescu, E.J. Reed, P. Bernel, S. G. Johnson, E. Ippen, J. D. Joannopoulos, M. Soljacic, "Purcell effect in nonlinear photonic structures: A coupled mode theory analysis," Opt. Express 16, 12523-12537 (2008).
[CrossRef] [PubMed]

G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, C. Lynch, "High-power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser," Opt. Express 14, 4439-4444 (2006).
[CrossRef] [PubMed]

J. Bravo-Abad, A. Rodriguez, P. Bernel, S. G. Johnson, J.D. Joannopoulos, M. Soljacic, "Enhanced nonlinear optics in photonic-crystal microcavities," Opt. Express 15, 16161-16176 (2007).
[CrossRef] [PubMed]

A. Rodriguez, M. Soljacic, J.D. Joannopoulos, S.G. Johnson, "|(2) and |(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities," Opt. Express 15, 7303-7318 (2007).
[CrossRef] [PubMed]

I. B. Burgess, A. W. Rodriguez, M. W. McCutcheon, J. Bravo-Abad, Y. Zhang, S. G. Johnson, M. Loncar "Difference-frequency generation with quantum-limited efficiency in triply-resonant nonlinear cavities," Opt. Express 17, 9241-9251 (2009).
[CrossRef] [PubMed]

Y. Zhang, M. Loncar, "Ultra-high quality factor optical resonators based on semiconductor nanowires," Opt. Express 16, 17400 (2008).
[CrossRef] [PubMed]

M. Notomi, E. Kuramochi, H. Taniyama, "Ultrahigh-Q Nanocavity with 1D Photonic Gap," Opt. Express 16, 11095-11102 (2008).
[CrossRef] [PubMed]

M. W. McCutcheon, M. Loncar, "Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal," Opt. Express 16, 19136-19145 (2008).
[CrossRef]

Opt. Lett. (8)

Phys. Rev. A (1)

H. Hashemi, A. W. Rodriguez, J. D. Joannopoulos, M. Soljacic, S. G. Johnson, "Nonlinear harmonic generation and devices in doubly-resonant Kerr cavities," Phys. Rev. A 79, 013812 (2009).
[CrossRef]

Phys. Rev. A. (1)

A. B. Matsko, D. V. Strekalov, N. Yu, "Sensitivity of terahertz photonic receivers," Phys. Rev. A. 77, 043812 (2008).
[CrossRef]

Phys. Rev. B (3)

M. W. McCutcheon, J. F. Young, G. W. Reiger, D. Dalacu, S. Frederick, P. J. Poole, R. L. Williams "Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers," Phys. Rev. B 76, 245104 (2007).
[CrossRef]

H. Kitahara, N. Tsumura, H. Kondo, M. W. Takeda, J. W. Haus, Z. Y. Yuan, N. Kawai, K. Sakoda, K. Inoue, "Terahertz wave dispersion in two-dimensional photonic crystals," Phys. Rev. B 64, 045202 (2001).
[CrossRef]

K. Srinivasan, P. E. Barclay, M. Borselli, O. Painter, "Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity," Phys. Rev. B 70, 081306 (2004).
[CrossRef]

Other (9)

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

The NIR cavity was included in the THz cavity simulations and it was found to cause a slight decrease in the scattering-limited Q factor (2×106 ?1.4×106), while having a negligible effect on |T.

The effective usable area where the NIR cavity can be fabricated is given by the product of the spacing between the two central holes and the width of the THz cavity.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008).

M. W. McCutcheon, D. E. Chang, Y. Zhang, M. D. Lukin, M. Loncar, "Broad-band spectral control of single photon sources using a nonlinear photonic crystal cavity," arXiv:0903.4706 (2009).

R. W. Boyd, Nonlinear Optics (Academic Press, 2003).

Y. H. Avetisyan, "Cavity-enhanced terahertz region difference-frequency generation in surface-emitting geometry," Proc. SPIE 3795, 501.

At the position of highest THz field that exists above the THz material, the field amplitude has ? 25% of the maximum field amplitude for our THz nanobeam design.

S. Singh, Nonlinear Optical Materials in Handbook of laser science and technology, M. J. Weber, ed., (Optical Materials, Part I, CRC Press 1986) Vol. III .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

(a) Schematic (not to scale) of the triply resonant system of coupled photonic crystal nanobeam cavities for efficient THz generation. A dual-mode NIR cavity is suspended just above the THz cavity near its field maximum. NIR pump and idler waves are coupled into the cavity via a waveguide extending from one end of the NIR cavity. The THz output is also collected via waveguide coupling. (b) Normalized mode profile (E z,T) of the THz mode. (c) Diagram of the NIR dual-mode cavity, showing the spatial profile of the nonlinear mode-product (E y,TE E x,TM, right). The beam width is equal to the lattice period (a) and the spacing of the two central holes is 0.84a. (d) TE- and TM-like mode profiles of the NIR cavity. (e): Nanobeam thickness (black) and lattice period, a, (red) for the NIR PhCNC plotted as a function of the THz difference frequency. The TE-like mode frequency is fixed at 200THz (λTE=1.5µm, λTETM).

Fig. 2.
Fig. 2.

(a) Step-excitable quantum efficiency (E Q ff) for stable CW THz generation, plotted as a function of powers of the pump and idler normalized against the critical powers P k,crit (see Eq. (4)). The solid line denotes the critical relationship between input powers where E Q ff=1 is possible (P 1=4P 1,crit). The black dotted line denotes the onset of bistability. An inset showing the other stable solution is shown in the top right corner [24]. The white dashed line shows the optimal operating conditions for maximum total conversion efficiency (b): Performance parameters of our nested PhCNC design (GaAs) as a function of the THz resonance frequency: nonlinear overlap, β (left), and the Q-factor product required for 1mW of THz power to be generated from a pump at 200THz with quantum limited efficiency (right). (c): Dependence of the input power (solid line) yielding optimal efficiency (P 1=4P 1,crit) and the corresponding THz output power (dashed line) on the cavity Q-factor product (Qˆ), for coupled GaAs THz and dual mode NIR PhCNCs (ω 1/2π, ω 2/2π~200THz, ω T/2π~2.0THz, β~3.5J -1/2). (d): THz output power as a function of input power in this geometry for, Qˆ2.5×1014. The dotted line shows the quantum limit.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

βκTdeff2ε0λT3dd3rETE*,yETM,xd3rεrETE2d3rεrETM2,
κTλT3VTHzEz,T,NIREz,T,max1nT,max,
EffQ=ω1ωTΓ1ΓTPout,TP1.
Pk,critωk16Q˜Γkβ2,
EffTotω1ωTΓ1ΓTPout,TP1+P2=EffQP1P1+P2.

Metrics