Abstract

This study presents an optically controllable fiber-optic attenuator consisting of side-polished fiber (SPF) with a photoresponsive liquid crystal (LC) overlay operating in the telecommunication wavelength. Attenuation is controlled by a photochemical-induced phase transition of photoresponsive LC, which modulates the evanescent field leaked from the polished area. Before optical field illumination, the photoresponsive LCs are in the light-scattering state and attenuation is high. During photoirradiation, the formation of cis-azobenzene LC disrupts the nematic host and generates a light-transparent state in which the optical loss of the SPF attenuator decreases. The photoinduced tuning range is 15 dB at an environmental temperature of 45 °C, and a repeatable and reversible tuning is observed with a response time of less than 5 s. The proposed all-optical controllable attenuator has potential use as an optical signal modulator in an all-fiber telecommunication system.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dziedzic, A. Ashkin, R. H. Stolen, and J. R. Simpson, “Tension-adjusted in-line optical-fiber attenuator,” Opt. Lett. 8(12), 647–649 (1983).
    [CrossRef] [PubMed]
  2. Y. Morishita, E. Matsuyama, K. Nouchi, H. Noro, and K. Tanaka, “Co(2+)-doped flatband optical fiber attenuator,” Opt. Lett. 26(11), 783–785 (2001).
    [CrossRef]
  3. Generic Requirements for Fiber Optic Attenuators, Generic Requirements GR-910-CORE, Issue 2, December 1998 (Telecordia Technologies, Piscataway, N.J., 1998), http://www.telcordia.com .
  4. W. Johnstone, “Side-polished evanescently coupled optical fiber overlay devices: a review,” in Guided wave optical components and devices: basics, technology and applications, B. P. Pal, ed., (Academic Press, Elsevier, Burlington, 2006), Chap. 14 pp. 225–232.
  5. W. Ecke, W. Haubenreisser, H. Lehmann, S. Schroeter, G. Schwotzer, and R. Willsch, “Phase-sensitive fiber -optic monoptodes for chemical sensing,” Sens. Actuators B Chem. 11(1-3), 475–479 (1993).
    [CrossRef]
  6. A. Gastón, F. Pérez, and J. Sevilla, “Optical fiber relative-humidity sensor with polyvinyl alcohol film,” Appl. Opt. 43(21), 4127–4132 (2004).
    [CrossRef] [PubMed]
  7. A. O. Dikovska, P. A. Atanasov, T. R. Stoyanchov, A. T. Andreev, E. I. Karakoleva, and B. S. Zafirova, “Pulsed laser deposited ZnO film on side-polished fiber as a gas sensing element,” Appl. Opt. 46(13), 2481–2485 (2007).
    [CrossRef] [PubMed]
  8. Y. Lin, Y. Tsao, W. Tsai, T. Hung, K. Chen, and S. Liao, “The enhancement method of optical fiber biosensor based on surface plasmon resonance with cold plasma modification,” Sens. Actuators B Chem. 133(2), 370–373 (2008).
    [CrossRef]
  9. C. Tien, H. Chen, W. Liu, S. Jyu, S. Lin, and Y. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
    [CrossRef]
  10. C. Chu and Y. Lo, “A plastic optical fiber sensor for the dual sensing of temperature and oxygen,” IEEE Photon. Technol. Lett. 20(1), 63–65 (2008).
    [CrossRef]
  11. H. S. Jang, K. N. Park, J. P. Kim, S. J. Sim, O. J. Kwon, Y. G. Han, and K. S. Lee, “Sensitive DNA biosensor based on a long-period grating formed on the side-polished fiber surface,” Opt. Express 17(5), 3855–3860 (2009).
    [CrossRef] [PubMed]
  12. A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si:H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films 330(2), 150–156 (1998).
    [CrossRef]
  13. N. K. Chen, S. Chi, and S. M. Tseng, “Wideband tunable fiber short-pass filter based on side-polished fiber with dispersive polymer overlay,” Opt. Lett. 29(19), 2219–2221 (2004).
    [CrossRef] [PubMed]
  14. R. Lausten, P. Rochon, M. Ivanov, P. Cheben, S. Janz, P. Desjardins, J. Ripmeester, T. Siebert, and A. Stolow, “Optically reconfigurable azobenzene polymer-based fiber Bragg filter,” Appl. Opt. 44(33), 7039–7042 (2005).
    [CrossRef] [PubMed]
  15. K. T. Kim, S. Hwangbo, J. P. Mah, and K. R. Sohn, “Widely tunable filter based on coupling between a side-polished fiber and a tapered planar waveguide,” IEEE Photon. Technol. Lett. 17(1), 142–144 (2005).
    [CrossRef]
  16. R. K. Varshney, A. Singh, K. Pande, and B. P. Pal, “Side-polished fiber based gain-flattening filter for erbium doped fiber amplifiers,” Opt. Commun. 271(2), 441–444 (2007).
    [CrossRef]
  17. R. K. Varshney, B. Nagaraju, A. Singh, B. P. Pal, and A. K. Kar, “Design and realization of an all-fiber broadband tunable gain equalization filter for DWDM signals,” Opt. Express 15(21), 13519–13530 (2007).
    [CrossRef] [PubMed]
  18. K. R. Sohn and K. Taek, “Multiwavelength all-fiber ring laser using side-polished fiber comb filter and mechanically formed long-period fiber gratings,” IEEE Photon. Technol. Lett. 17(2), 309–311 (2005).
    [CrossRef]
  19. P. St. J. Russell and R. Ulrich, “Grating-fiber coupler as a high-resolution spectrometer,” Opt. Lett. 10(6), 291–293 (1985).
    [CrossRef] [PubMed]
  20. K. T. Kim, H. K. Kim, S. Hwangbo, S. Choi, B. Lee, and K. Oh, “Characterization of evanescent wave coupling in side-polished hollow optical fiber and its application as a broadband coupler,” Opt. Commun. 245(1-6), 145–151 (2005).
    [CrossRef]
  21. N. K. Chen, C. L. Lee, and S. Chi, “Wideband tunable wavelength-selective coupling in asymmetric side-polished fiber coupler with dispersive interlayer,” Opt. Express 15(26), 17747–17753 (2007).
    [CrossRef] [PubMed]
  22. K. T. Kim, H. W. Kwon, J. W. Song, S. Lee, W. G. Jung, and S. W. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180(1-3), 37–42 (2000).
    [CrossRef]
  23. S. G. Lee, J. P. Sokoloff, B. P. McGinnis, and H. Sasabe, “Fabrication of a side-polished fiber polarizer with a biref ringent polymer overlay,” Opt. Lett. 22(9), 606–608 (1997).
    [CrossRef] [PubMed]
  24. D. G. Moodie and W. Johnstone, “Wavelength tunability of components based on the evanescent coupling from a side-polished fiber to a high-index-overlay waveguide,” Opt. Lett. 18(12), 1025–1027 (1993).
    [CrossRef] [PubMed]
  25. G. Raizada and B. P. Pal, “Refractometers and tunable components based on side-polished fibers with multimode overlay waveguides: role of the superstrate,” Opt. Lett. 21(6), 399–401 (1996).
    [CrossRef] [PubMed]
  26. S. G. Lee, J. P. Sokoloff, B. P. McGinnis, and H. Sasabe, “Polymer waveguide overlays for side-polished fiber devices,” Appl. Opt. 37(3), 453–462 (1998).
    [CrossRef]
  27. I. C. Khoo, Liquid Crystals (Wiley, New York, 1994).
  28. G. Abbate and J. M. Otón, “Liquid crystal based photonic devices: LC Photonet,” Adv. Mater. 12(6), 459–467 (2000).
    [CrossRef]
  29. V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-Driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20(18), 3528–3532 (2008).
    [CrossRef]
  30. Z. Chen, and L. Liu, “Wavelength tuning of fiber Bragg grating based on fiber side polishing,” Proc. SPIE (Advanced Sensor Technologies and Applications) 7157, 71570J/1–71570J/6 (2009).
  31. J. Li, S. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501/1–073501/5 (2005).
  32. T. Ikeda, “Photomodulation of liquid crystal orientations for photonic applications,” J. Mater. Chem. 13(9), 2037–2057 (2003).
    [CrossRef]
  33. S. K. Prasad, S. Krishna, G. G. Nair, K. L. Sandhya, and D. S. S. Rao, “Photoinduced phase transitions in liquid crystalline systems,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 436(1), 1037–1059 (2005).
  34. W. Quevedo, M. Petri, G. Busse, and S. Techert, “On the mechanism of photoinduced phase transitions in ternary liquid crystal systems near thermal equilibrium,” J. Chem. Phys. 129, 024502/1–024502/10 (2008).
  35. J. Garcia-Amorós, A. Szymczyk, and D. Velasco, “Nematic-to-isotropic photo-induced phase transition in azobenzene-doped low-molar liquid crystals,” Phys. Chem. Chem. Phys. 11(21), 4244–4250 (2009).
    [CrossRef] [PubMed]
  36. S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by Means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
    [CrossRef]
  37. Z. Alam, T. Yoshioka, T. Ogata, T. Nonaka, and S. Kurihara, “Influence of helical twisting power on the photoswitching behavior of chiral azobenzene compounds: applications to high-performance switching devices,” Chem. Eur. J. 13(9), 2641–2647 (2007).
    [CrossRef] [PubMed]

2009

H. S. Jang, K. N. Park, J. P. Kim, S. J. Sim, O. J. Kwon, Y. G. Han, and K. S. Lee, “Sensitive DNA biosensor based on a long-period grating formed on the side-polished fiber surface,” Opt. Express 17(5), 3855–3860 (2009).
[CrossRef] [PubMed]

J. Garcia-Amorós, A. Szymczyk, and D. Velasco, “Nematic-to-isotropic photo-induced phase transition in azobenzene-doped low-molar liquid crystals,” Phys. Chem. Chem. Phys. 11(21), 4244–4250 (2009).
[CrossRef] [PubMed]

2008

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-Driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20(18), 3528–3532 (2008).
[CrossRef]

Y. Lin, Y. Tsao, W. Tsai, T. Hung, K. Chen, and S. Liao, “The enhancement method of optical fiber biosensor based on surface plasmon resonance with cold plasma modification,” Sens. Actuators B Chem. 133(2), 370–373 (2008).
[CrossRef]

C. Tien, H. Chen, W. Liu, S. Jyu, S. Lin, and Y. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

C. Chu and Y. Lo, “A plastic optical fiber sensor for the dual sensing of temperature and oxygen,” IEEE Photon. Technol. Lett. 20(1), 63–65 (2008).
[CrossRef]

2007

2005

K. T. Kim, H. K. Kim, S. Hwangbo, S. Choi, B. Lee, and K. Oh, “Characterization of evanescent wave coupling in side-polished hollow optical fiber and its application as a broadband coupler,” Opt. Commun. 245(1-6), 145–151 (2005).
[CrossRef]

S. K. Prasad, S. Krishna, G. G. Nair, K. L. Sandhya, and D. S. S. Rao, “Photoinduced phase transitions in liquid crystalline systems,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 436(1), 1037–1059 (2005).

K. R. Sohn and K. Taek, “Multiwavelength all-fiber ring laser using side-polished fiber comb filter and mechanically formed long-period fiber gratings,” IEEE Photon. Technol. Lett. 17(2), 309–311 (2005).
[CrossRef]

R. Lausten, P. Rochon, M. Ivanov, P. Cheben, S. Janz, P. Desjardins, J. Ripmeester, T. Siebert, and A. Stolow, “Optically reconfigurable azobenzene polymer-based fiber Bragg filter,” Appl. Opt. 44(33), 7039–7042 (2005).
[CrossRef] [PubMed]

K. T. Kim, S. Hwangbo, J. P. Mah, and K. R. Sohn, “Widely tunable filter based on coupling between a side-polished fiber and a tapered planar waveguide,” IEEE Photon. Technol. Lett. 17(1), 142–144 (2005).
[CrossRef]

2004

2003

T. Ikeda, “Photomodulation of liquid crystal orientations for photonic applications,” J. Mater. Chem. 13(9), 2037–2057 (2003).
[CrossRef]

2001

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by Means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[CrossRef]

Y. Morishita, E. Matsuyama, K. Nouchi, H. Noro, and K. Tanaka, “Co(2+)-doped flatband optical fiber attenuator,” Opt. Lett. 26(11), 783–785 (2001).
[CrossRef]

2000

G. Abbate and J. M. Otón, “Liquid crystal based photonic devices: LC Photonet,” Adv. Mater. 12(6), 459–467 (2000).
[CrossRef]

K. T. Kim, H. W. Kwon, J. W. Song, S. Lee, W. G. Jung, and S. W. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180(1-3), 37–42 (2000).
[CrossRef]

1998

S. G. Lee, J. P. Sokoloff, B. P. McGinnis, and H. Sasabe, “Polymer waveguide overlays for side-polished fiber devices,” Appl. Opt. 37(3), 453–462 (1998).
[CrossRef]

A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si:H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films 330(2), 150–156 (1998).
[CrossRef]

1997

1996

1993

D. G. Moodie and W. Johnstone, “Wavelength tunability of components based on the evanescent coupling from a side-polished fiber to a high-index-overlay waveguide,” Opt. Lett. 18(12), 1025–1027 (1993).
[CrossRef] [PubMed]

W. Ecke, W. Haubenreisser, H. Lehmann, S. Schroeter, G. Schwotzer, and R. Willsch, “Phase-sensitive fiber -optic monoptodes for chemical sensing,” Sens. Actuators B Chem. 11(1-3), 475–479 (1993).
[CrossRef]

1985

1983

Abbate, G.

G. Abbate and J. M. Otón, “Liquid crystal based photonic devices: LC Photonet,” Adv. Mater. 12(6), 459–467 (2000).
[CrossRef]

Alam, Z.

Z. Alam, T. Yoshioka, T. Ogata, T. Nonaka, and S. Kurihara, “Influence of helical twisting power on the photoswitching behavior of chiral azobenzene compounds: applications to high-performance switching devices,” Chem. Eur. J. 13(9), 2641–2647 (2007).
[CrossRef] [PubMed]

Andreev, A.

A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si:H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films 330(2), 150–156 (1998).
[CrossRef]

Andreev, A. T.

Ashkin, A.

Atanasov, P. A.

Cheben, P.

Chen, H.

C. Tien, H. Chen, W. Liu, S. Jyu, S. Lin, and Y. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Chen, K.

Y. Lin, Y. Tsao, W. Tsai, T. Hung, K. Chen, and S. Liao, “The enhancement method of optical fiber biosensor based on surface plasmon resonance with cold plasma modification,” Sens. Actuators B Chem. 133(2), 370–373 (2008).
[CrossRef]

Chen, N. K.

Chi, S.

Choi, S.

K. T. Kim, H. K. Kim, S. Hwangbo, S. Choi, B. Lee, and K. Oh, “Characterization of evanescent wave coupling in side-polished hollow optical fiber and its application as a broadband coupler,” Opt. Commun. 245(1-6), 145–151 (2005).
[CrossRef]

Chu, C.

C. Chu and Y. Lo, “A plastic optical fiber sensor for the dual sensing of temperature and oxygen,” IEEE Photon. Technol. Lett. 20(1), 63–65 (2008).
[CrossRef]

Danesh, P.

A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si:H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films 330(2), 150–156 (1998).
[CrossRef]

Desjardins, P.

Dikovska, A. O.

Dziedzic, J. M.

Ecke, W.

W. Ecke, W. Haubenreisser, H. Lehmann, S. Schroeter, G. Schwotzer, and R. Willsch, “Phase-sensitive fiber -optic monoptodes for chemical sensing,” Sens. Actuators B Chem. 11(1-3), 475–479 (1993).
[CrossRef]

Garcia-Amorós, J.

J. Garcia-Amorós, A. Szymczyk, and D. Velasco, “Nematic-to-isotropic photo-induced phase transition in azobenzene-doped low-molar liquid crystals,” Phys. Chem. Chem. Phys. 11(21), 4244–4250 (2009).
[CrossRef] [PubMed]

Gastón, A.

Han, Y. G.

Haubenreisser, W.

W. Ecke, W. Haubenreisser, H. Lehmann, S. Schroeter, G. Schwotzer, and R. Willsch, “Phase-sensitive fiber -optic monoptodes for chemical sensing,” Sens. Actuators B Chem. 11(1-3), 475–479 (1993).
[CrossRef]

Hsiao, V. K. S.

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-Driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20(18), 3528–3532 (2008).
[CrossRef]

Huang, T. J.

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-Driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20(18), 3528–3532 (2008).
[CrossRef]

Hung, T.

Y. Lin, Y. Tsao, W. Tsai, T. Hung, K. Chen, and S. Liao, “The enhancement method of optical fiber biosensor based on surface plasmon resonance with cold plasma modification,” Sens. Actuators B Chem. 133(2), 370–373 (2008).
[CrossRef]

Hwangbo, S.

K. T. Kim, S. Hwangbo, J. P. Mah, and K. R. Sohn, “Widely tunable filter based on coupling between a side-polished fiber and a tapered planar waveguide,” IEEE Photon. Technol. Lett. 17(1), 142–144 (2005).
[CrossRef]

K. T. Kim, H. K. Kim, S. Hwangbo, S. Choi, B. Lee, and K. Oh, “Characterization of evanescent wave coupling in side-polished hollow optical fiber and its application as a broadband coupler,” Opt. Commun. 245(1-6), 145–151 (2005).
[CrossRef]

Ikeda, T.

T. Ikeda, “Photomodulation of liquid crystal orientations for photonic applications,” J. Mater. Chem. 13(9), 2037–2057 (2003).
[CrossRef]

Ivanov, M.

Jang, H. S.

Janz, S.

Johnstone, W.

Juluri, B. K.

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-Driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20(18), 3528–3532 (2008).
[CrossRef]

Jung, W. G.

K. T. Kim, H. W. Kwon, J. W. Song, S. Lee, W. G. Jung, and S. W. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180(1-3), 37–42 (2000).
[CrossRef]

Jyu, S.

C. Tien, H. Chen, W. Liu, S. Jyu, S. Lin, and Y. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Kang, S. W.

K. T. Kim, H. W. Kwon, J. W. Song, S. Lee, W. G. Jung, and S. W. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180(1-3), 37–42 (2000).
[CrossRef]

Kar, A. K.

Karakoleva, E.

A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si:H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films 330(2), 150–156 (1998).
[CrossRef]

Karakoleva, E. I.

Kim, H. K.

K. T. Kim, H. K. Kim, S. Hwangbo, S. Choi, B. Lee, and K. Oh, “Characterization of evanescent wave coupling in side-polished hollow optical fiber and its application as a broadband coupler,” Opt. Commun. 245(1-6), 145–151 (2005).
[CrossRef]

Kim, J. P.

Kim, K. T.

K. T. Kim, S. Hwangbo, J. P. Mah, and K. R. Sohn, “Widely tunable filter based on coupling between a side-polished fiber and a tapered planar waveguide,” IEEE Photon. Technol. Lett. 17(1), 142–144 (2005).
[CrossRef]

K. T. Kim, H. K. Kim, S. Hwangbo, S. Choi, B. Lee, and K. Oh, “Characterization of evanescent wave coupling in side-polished hollow optical fiber and its application as a broadband coupler,” Opt. Commun. 245(1-6), 145–151 (2005).
[CrossRef]

K. T. Kim, H. W. Kwon, J. W. Song, S. Lee, W. G. Jung, and S. W. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180(1-3), 37–42 (2000).
[CrossRef]

Krishna, S.

S. K. Prasad, S. Krishna, G. G. Nair, K. L. Sandhya, and D. S. S. Rao, “Photoinduced phase transitions in liquid crystalline systems,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 436(1), 1037–1059 (2005).

Kurihara, S.

Z. Alam, T. Yoshioka, T. Ogata, T. Nonaka, and S. Kurihara, “Influence of helical twisting power on the photoswitching behavior of chiral azobenzene compounds: applications to high-performance switching devices,” Chem. Eur. J. 13(9), 2641–2647 (2007).
[CrossRef] [PubMed]

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by Means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[CrossRef]

Kwon, H. W.

K. T. Kim, H. W. Kwon, J. W. Song, S. Lee, W. G. Jung, and S. W. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180(1-3), 37–42 (2000).
[CrossRef]

Kwon, O. J.

Lausten, R.

Lee, B.

K. T. Kim, H. K. Kim, S. Hwangbo, S. Choi, B. Lee, and K. Oh, “Characterization of evanescent wave coupling in side-polished hollow optical fiber and its application as a broadband coupler,” Opt. Commun. 245(1-6), 145–151 (2005).
[CrossRef]

Lee, C. L.

Lee, K. S.

Lee, S.

K. T. Kim, H. W. Kwon, J. W. Song, S. Lee, W. G. Jung, and S. W. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180(1-3), 37–42 (2000).
[CrossRef]

Lee, S. G.

Lehmann, H.

W. Ecke, W. Haubenreisser, H. Lehmann, S. Schroeter, G. Schwotzer, and R. Willsch, “Phase-sensitive fiber -optic monoptodes for chemical sensing,” Sens. Actuators B Chem. 11(1-3), 475–479 (1993).
[CrossRef]

Liao, S.

Y. Lin, Y. Tsao, W. Tsai, T. Hung, K. Chen, and S. Liao, “The enhancement method of optical fiber biosensor based on surface plasmon resonance with cold plasma modification,” Sens. Actuators B Chem. 133(2), 370–373 (2008).
[CrossRef]

Lin, S.

C. Tien, H. Chen, W. Liu, S. Jyu, S. Lin, and Y. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Lin, Y.

C. Tien, H. Chen, W. Liu, S. Jyu, S. Lin, and Y. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Y. Lin, Y. Tsao, W. Tsai, T. Hung, K. Chen, and S. Liao, “The enhancement method of optical fiber biosensor based on surface plasmon resonance with cold plasma modification,” Sens. Actuators B Chem. 133(2), 370–373 (2008).
[CrossRef]

Liu, W.

C. Tien, H. Chen, W. Liu, S. Jyu, S. Lin, and Y. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Lo, Y.

C. Chu and Y. Lo, “A plastic optical fiber sensor for the dual sensing of temperature and oxygen,” IEEE Photon. Technol. Lett. 20(1), 63–65 (2008).
[CrossRef]

Mah, J. P.

K. T. Kim, S. Hwangbo, J. P. Mah, and K. R. Sohn, “Widely tunable filter based on coupling between a side-polished fiber and a tapered planar waveguide,” IEEE Photon. Technol. Lett. 17(1), 142–144 (2005).
[CrossRef]

Matsuyama, E.

McGinnis, B. P.

Moodie, D. G.

Morishita, Y.

Nagaraju, B.

Nair, G. G.

S. K. Prasad, S. Krishna, G. G. Nair, K. L. Sandhya, and D. S. S. Rao, “Photoinduced phase transitions in liquid crystalline systems,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 436(1), 1037–1059 (2005).

Nomiyama, S.

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by Means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[CrossRef]

Nonaka, T.

Z. Alam, T. Yoshioka, T. Ogata, T. Nonaka, and S. Kurihara, “Influence of helical twisting power on the photoswitching behavior of chiral azobenzene compounds: applications to high-performance switching devices,” Chem. Eur. J. 13(9), 2641–2647 (2007).
[CrossRef] [PubMed]

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by Means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[CrossRef]

Noro, H.

Nouchi, K.

Ogata, T.

Z. Alam, T. Yoshioka, T. Ogata, T. Nonaka, and S. Kurihara, “Influence of helical twisting power on the photoswitching behavior of chiral azobenzene compounds: applications to high-performance switching devices,” Chem. Eur. J. 13(9), 2641–2647 (2007).
[CrossRef] [PubMed]

Oh, K.

K. T. Kim, H. K. Kim, S. Hwangbo, S. Choi, B. Lee, and K. Oh, “Characterization of evanescent wave coupling in side-polished hollow optical fiber and its application as a broadband coupler,” Opt. Commun. 245(1-6), 145–151 (2005).
[CrossRef]

Otón, J. M.

G. Abbate and J. M. Otón, “Liquid crystal based photonic devices: LC Photonet,” Adv. Mater. 12(6), 459–467 (2000).
[CrossRef]

Pal, B. P.

Pande, K.

R. K. Varshney, A. Singh, K. Pande, and B. P. Pal, “Side-polished fiber based gain-flattening filter for erbium doped fiber amplifiers,” Opt. Commun. 271(2), 441–444 (2007).
[CrossRef]

Pantchev, B.

A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si:H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films 330(2), 150–156 (1998).
[CrossRef]

Park, K. N.

Pérez, F.

Prasad, S. K.

S. K. Prasad, S. Krishna, G. G. Nair, K. L. Sandhya, and D. S. S. Rao, “Photoinduced phase transitions in liquid crystalline systems,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 436(1), 1037–1059 (2005).

Raizada, G.

Rao, D. S. S.

S. K. Prasad, S. Krishna, G. G. Nair, K. L. Sandhya, and D. S. S. Rao, “Photoinduced phase transitions in liquid crystalline systems,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 436(1), 1037–1059 (2005).

Ripmeester, J.

Rochon, P.

Russell, P. St. J.

Sandhya, K. L.

S. K. Prasad, S. Krishna, G. G. Nair, K. L. Sandhya, and D. S. S. Rao, “Photoinduced phase transitions in liquid crystalline systems,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 436(1), 1037–1059 (2005).

Sasabe, H.

Schroeter, S.

W. Ecke, W. Haubenreisser, H. Lehmann, S. Schroeter, G. Schwotzer, and R. Willsch, “Phase-sensitive fiber -optic monoptodes for chemical sensing,” Sens. Actuators B Chem. 11(1-3), 475–479 (1993).
[CrossRef]

Schwotzer, G.

W. Ecke, W. Haubenreisser, H. Lehmann, S. Schroeter, G. Schwotzer, and R. Willsch, “Phase-sensitive fiber -optic monoptodes for chemical sensing,” Sens. Actuators B Chem. 11(1-3), 475–479 (1993).
[CrossRef]

Sevilla, J.

Siebert, T.

Sim, S. J.

Simpson, J. R.

Singh, A.

R. K. Varshney, A. Singh, K. Pande, and B. P. Pal, “Side-polished fiber based gain-flattening filter for erbium doped fiber amplifiers,” Opt. Commun. 271(2), 441–444 (2007).
[CrossRef]

R. K. Varshney, B. Nagaraju, A. Singh, B. P. Pal, and A. K. Kar, “Design and realization of an all-fiber broadband tunable gain equalization filter for DWDM signals,” Opt. Express 15(21), 13519–13530 (2007).
[CrossRef] [PubMed]

Sohn, K. R.

K. R. Sohn and K. Taek, “Multiwavelength all-fiber ring laser using side-polished fiber comb filter and mechanically formed long-period fiber gratings,” IEEE Photon. Technol. Lett. 17(2), 309–311 (2005).
[CrossRef]

K. T. Kim, S. Hwangbo, J. P. Mah, and K. R. Sohn, “Widely tunable filter based on coupling between a side-polished fiber and a tapered planar waveguide,” IEEE Photon. Technol. Lett. 17(1), 142–144 (2005).
[CrossRef]

Sokoloff, J. P.

Song, J. W.

K. T. Kim, H. W. Kwon, J. W. Song, S. Lee, W. G. Jung, and S. W. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180(1-3), 37–42 (2000).
[CrossRef]

Stolen, R. H.

Stolow, A.

Stoyanchov, T. R.

Szymczyk, A.

J. Garcia-Amorós, A. Szymczyk, and D. Velasco, “Nematic-to-isotropic photo-induced phase transition in azobenzene-doped low-molar liquid crystals,” Phys. Chem. Chem. Phys. 11(21), 4244–4250 (2009).
[CrossRef] [PubMed]

Taek, K.

K. R. Sohn and K. Taek, “Multiwavelength all-fiber ring laser using side-polished fiber comb filter and mechanically formed long-period fiber gratings,” IEEE Photon. Technol. Lett. 17(2), 309–311 (2005).
[CrossRef]

Tanaka, K.

Tien, C.

C. Tien, H. Chen, W. Liu, S. Jyu, S. Lin, and Y. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Tsai, W.

Y. Lin, Y. Tsao, W. Tsai, T. Hung, K. Chen, and S. Liao, “The enhancement method of optical fiber biosensor based on surface plasmon resonance with cold plasma modification,” Sens. Actuators B Chem. 133(2), 370–373 (2008).
[CrossRef]

Tsao, Y.

Y. Lin, Y. Tsao, W. Tsai, T. Hung, K. Chen, and S. Liao, “The enhancement method of optical fiber biosensor based on surface plasmon resonance with cold plasma modification,” Sens. Actuators B Chem. 133(2), 370–373 (2008).
[CrossRef]

Tseng, S. M.

Ulrich, R.

Varshney, R. K.

R. K. Varshney, A. Singh, K. Pande, and B. P. Pal, “Side-polished fiber based gain-flattening filter for erbium doped fiber amplifiers,” Opt. Commun. 271(2), 441–444 (2007).
[CrossRef]

R. K. Varshney, B. Nagaraju, A. Singh, B. P. Pal, and A. K. Kar, “Design and realization of an all-fiber broadband tunable gain equalization filter for DWDM signals,” Opt. Express 15(21), 13519–13530 (2007).
[CrossRef] [PubMed]

Velasco, D.

J. Garcia-Amorós, A. Szymczyk, and D. Velasco, “Nematic-to-isotropic photo-induced phase transition in azobenzene-doped low-molar liquid crystals,” Phys. Chem. Chem. Phys. 11(21), 4244–4250 (2009).
[CrossRef] [PubMed]

Willsch, R.

W. Ecke, W. Haubenreisser, H. Lehmann, S. Schroeter, G. Schwotzer, and R. Willsch, “Phase-sensitive fiber -optic monoptodes for chemical sensing,” Sens. Actuators B Chem. 11(1-3), 475–479 (1993).
[CrossRef]

Yoshioka, T.

Z. Alam, T. Yoshioka, T. Ogata, T. Nonaka, and S. Kurihara, “Influence of helical twisting power on the photoswitching behavior of chiral azobenzene compounds: applications to high-performance switching devices,” Chem. Eur. J. 13(9), 2641–2647 (2007).
[CrossRef] [PubMed]

Zafirova, B.

A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si:H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films 330(2), 150–156 (1998).
[CrossRef]

Zafirova, B. S.

Zheng, Y. B.

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-Driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20(18), 3528–3532 (2008).
[CrossRef]

Adv. Mater.

G. Abbate and J. M. Otón, “Liquid crystal based photonic devices: LC Photonet,” Adv. Mater. 12(6), 459–467 (2000).
[CrossRef]

V. K. S. Hsiao, Y. B. Zheng, B. K. Juluri, and T. J. Huang, “Light-Driven plasmonic switches based on Au nanodisk arrays and photoresponsive liquid crystals,” Adv. Mater. 20(18), 3528–3532 (2008).
[CrossRef]

Appl. Opt.

Chem. Eur. J.

Z. Alam, T. Yoshioka, T. Ogata, T. Nonaka, and S. Kurihara, “Influence of helical twisting power on the photoswitching behavior of chiral azobenzene compounds: applications to high-performance switching devices,” Chem. Eur. J. 13(9), 2641–2647 (2007).
[CrossRef] [PubMed]

Chem. Mater.

S. Kurihara, S. Nomiyama, and T. Nonaka, “Photochemical control of the macrostructure of cholesteric liquid crystals by Means of photoisomerization of chiral azobenzene molecules,” Chem. Mater. 13(6), 1992–1997 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

K. T. Kim, S. Hwangbo, J. P. Mah, and K. R. Sohn, “Widely tunable filter based on coupling between a side-polished fiber and a tapered planar waveguide,” IEEE Photon. Technol. Lett. 17(1), 142–144 (2005).
[CrossRef]

C. Chu and Y. Lo, “A plastic optical fiber sensor for the dual sensing of temperature and oxygen,” IEEE Photon. Technol. Lett. 20(1), 63–65 (2008).
[CrossRef]

K. R. Sohn and K. Taek, “Multiwavelength all-fiber ring laser using side-polished fiber comb filter and mechanically formed long-period fiber gratings,” IEEE Photon. Technol. Lett. 17(2), 309–311 (2005).
[CrossRef]

J. Mater. Chem.

T. Ikeda, “Photomodulation of liquid crystal orientations for photonic applications,” J. Mater. Chem. 13(9), 2037–2057 (2003).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.)

S. K. Prasad, S. Krishna, G. G. Nair, K. L. Sandhya, and D. S. S. Rao, “Photoinduced phase transitions in liquid crystalline systems,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 436(1), 1037–1059 (2005).

Opt. Commun.

K. T. Kim, H. K. Kim, S. Hwangbo, S. Choi, B. Lee, and K. Oh, “Characterization of evanescent wave coupling in side-polished hollow optical fiber and its application as a broadband coupler,” Opt. Commun. 245(1-6), 145–151 (2005).
[CrossRef]

K. T. Kim, H. W. Kwon, J. W. Song, S. Lee, W. G. Jung, and S. W. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180(1-3), 37–42 (2000).
[CrossRef]

R. K. Varshney, A. Singh, K. Pande, and B. P. Pal, “Side-polished fiber based gain-flattening filter for erbium doped fiber amplifiers,” Opt. Commun. 271(2), 441–444 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Chem. Chem. Phys.

J. Garcia-Amorós, A. Szymczyk, and D. Velasco, “Nematic-to-isotropic photo-induced phase transition in azobenzene-doped low-molar liquid crystals,” Phys. Chem. Chem. Phys. 11(21), 4244–4250 (2009).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

Y. Lin, Y. Tsao, W. Tsai, T. Hung, K. Chen, and S. Liao, “The enhancement method of optical fiber biosensor based on surface plasmon resonance with cold plasma modification,” Sens. Actuators B Chem. 133(2), 370–373 (2008).
[CrossRef]

W. Ecke, W. Haubenreisser, H. Lehmann, S. Schroeter, G. Schwotzer, and R. Willsch, “Phase-sensitive fiber -optic monoptodes for chemical sensing,” Sens. Actuators B Chem. 11(1-3), 475–479 (1993).
[CrossRef]

Thin Solid Films

A. Andreev, B. Pantchev, P. Danesh, B. Zafirova, and E. Karakoleva, “a-Si:H film on side-polished fiber as optical polarizer and narrow-band filter,” Thin Solid Films 330(2), 150–156 (1998).
[CrossRef]

C. Tien, H. Chen, W. Liu, S. Jyu, S. Lin, and Y. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[CrossRef]

Other

Generic Requirements for Fiber Optic Attenuators, Generic Requirements GR-910-CORE, Issue 2, December 1998 (Telecordia Technologies, Piscataway, N.J., 1998), http://www.telcordia.com .

W. Johnstone, “Side-polished evanescently coupled optical fiber overlay devices: a review,” in Guided wave optical components and devices: basics, technology and applications, B. P. Pal, ed., (Academic Press, Elsevier, Burlington, 2006), Chap. 14 pp. 225–232.

W. Quevedo, M. Petri, G. Busse, and S. Techert, “On the mechanism of photoinduced phase transitions in ternary liquid crystal systems near thermal equilibrium,” J. Chem. Phys. 129, 024502/1–024502/10 (2008).

I. C. Khoo, Liquid Crystals (Wiley, New York, 1994).

Z. Chen, and L. Liu, “Wavelength tuning of fiber Bragg grating based on fiber side polishing,” Proc. SPIE (Advanced Sensor Technologies and Applications) 7157, 71570J/1–71570J/6 (2009).

J. Li, S. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501/1–073501/5 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for characterizing the optical tuning of the photoresponsive LC-overlaid SPF.

Fig. 2
Fig. 2

The attenuation of the photoresponsive LC-overlaid SPF under different environmental temperatures with an unpolarized (a) and polarized (b) laser probe beam.

Fig. 3
Fig. 3

The attenuation (a) and tunability (b) of a photoresponsive LC-overlaid SPF attenuator at different pumped optical fields and environmental temperatures.

Fig. 4
Fig. 4

The attenuation of the photoresponsive LC-overlaid SPF attenuator is dependent upon the optical field of the pumping laser for a polarized laser beam probe at the environmental temperature of 45°C.

Fig. 5
Fig. 5

Optical micrographs and schematic representation of photoinduced phase transition between a cholesteric phase (light scattering) and a compensated nematic phase (light transparent).

Fig. 6
Fig. 6

(a) The optical spectrum of a probe laser from the photoresponsive LC-overalid SPF attenuator before (dash line) and after (solid line) irradiating the optical field of 15 mW and (b) reversible modulation at the output power of the photoresponsive LC-overlaid SPF.

Metrics