Abstract

The grayscale photomask plays a key role in grayscale lithography for creating 3D microstructures like micro-optical elements and MEMS structures, but how to fabricate grayscale masks in a cost-effective way is still a big challenge. Here we present novel low cost grayscale masks created in a two-step method by laser direct writing on Sn nano-films, which demonstrate continuous-tone gray levels depended on writing powers. The mechanism of the gray levels is due to the coexistence of the metal and the oxides formed in a laser-induced thermal process. The photomasks reveal good technical properties in fabricating 3D microstructures for practical applications.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Rogers, A. H. O. Kärkkäinen, T. Tkaczyk, J. T. Rantala, and M. R. Descour, “Realization of refractive microoptics through grayscale lithographic patterning of photosensitive hybrid glass,” Opt. Express 12(7), 1294–1303 (2004), http://www.osa-jon.org/viewmedia.cfm?id=79451&seq=0 .
    [CrossRef] [PubMed]
  2. K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997), http://www.mp-cc.de/docs/reiphot.pdf .
    [CrossRef]
  3. H. Jiang, X. Yuan, Z. Yun, Y. C. Chan, and Y. L. Lam, “Fabrication of microlens in photosensitive hybrid sol–gel films using a gray scale mask,” Mater. Sci. Eng. C 99, 16 (2001).
  4. M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92(19), 194102 (2008).
    [CrossRef]
  5. C. Gimkiewicz, D. Hagedorn, J. Jahns, E.-B. Kley, and F. Thoma, “Fabrication of microprisms for planar optical interconnections by use of analog gray-scale lithography with high-energy-beam-sensitive glass,” Appl. Opt. 38(14), 2986–2990 (1999).
    [CrossRef]
  6. C. M. Waits, B. Morgan, M. Kastantin, and R. Ghodssi, “Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching,” Sens. Actuators A Phys. 119(1), 245–253 (2005).
    [CrossRef]
  7. C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng. 13(2), 170–177 (2003).
    [CrossRef]
  8. G. Gal, “Method for fabricating microlenses,” U.S. Patent No. 5,310,623, 10, (1994).
  9. C. K. Wu, “Method of making high energy beam sensitive glasses,” U.S. Patent, No. 5,078,771 (1992).
  10. C. Chen, D. Hirdes, and A. Folch, “Gray-scale photolithography using microfluidic photomasks,” Proc. Natl. Acad. Sci. U.S.A. 100(4), 1499–1504 (2003), http://www.pnas.org/cgi/content/full/100/4/1499 .
    [CrossRef] [PubMed]
  11. Z. L. Wang and Z. Pan, “Junctions and networks of SnO nanoribbons,” Adv. Mater. 14(15), 1029–1032 (2002), http://www.nanoscience.gatech.edu/zlwang/paper/2002/02_AM_2.pdf .
    [CrossRef]
  12. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291(5510), 1947–1949 (2001).
    [CrossRef] [PubMed]
  13. A. F. Lee and R. M. Lambert, “Oxidation of Sn overlayers and the structure and stability of Sn oxide films on Pd (111),” Phys. Rev. B 58(7), 4156–4165 (1998).
    [CrossRef]
  14. X. Q. Pan and L. Fu, “Oxidation and phase transitions of epitaxial tin oxide thin films on (10-12) sapphire,” J. Appl. Phys. 89(11), 6048 (2001).
    [CrossRef]
  15. J. Arbiol, E. Comini, G. Faglia, G. Sberveglieri, and J. R. Morante, “Orthorhombic Pbcn SnO2 nanowires for gas sensing applications,” J. Cryst. Growth 310(1), 253–260 (2008).
    [CrossRef]
  16. Y. X. Chen, L. J. Campbell, and W. L. Zhou, “Self-catalytic branch growth of SnO2 nanowire junctions,” J. Cryst. Growth 270(3-4), 505–510 (2004).
    [CrossRef]
  17. A. Kolmakov, Y. Zhang, and M. Moskovits, “Topotactic thermal oxidation of Sn nanowires: Intermediate suboxides and core-shell metastable structures,” Nano Lett. 3(8), 1125–1129 (2003).
    [CrossRef]
  18. M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79(2-4), 47–154 (2005), http://shell.cas.usf.edu/~mbatzill/papers/paper%207.pdf .
    [CrossRef]
  19. E. P. Domashevskaya, O. A. Chuvenkova, V. M. Kashkarov, S. B. Kushev, S. V. Ryabtsev, S. Yu. Turishchev, and Yu. A. Yurakov, “TEM and XANES investigations and optical properties of SnO nanolayers,” Surf. Interface Anal. 38(4), 514–517 (2006).
    [CrossRef]
  20. C. F. Guo, Z. Zhang, S. Cao, and Q. Liu, “Laser direct writing of nanoreliefs in Sn nanofilms,” Opt. Lett. 34(18), 2820–2822 (2009).
    [CrossRef] [PubMed]
  21. J. Zhao, L. H. Huo, S. Gao, H. Zhao, and J. G. Zhao, “Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating,” Sens. Actuators B Chem. 115(1), 460–464 (2006).
    [CrossRef]
  22. F. J. Lamelas and S. A. Reid, “Thin-film synthesis of the orthorhombic phase of SnO2,” Phys. Rev. B 60(13), 9347–9352 (1999).
    [CrossRef]

2009

2008

J. Arbiol, E. Comini, G. Faglia, G. Sberveglieri, and J. R. Morante, “Orthorhombic Pbcn SnO2 nanowires for gas sensing applications,” J. Cryst. Growth 310(1), 253–260 (2008).
[CrossRef]

M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92(19), 194102 (2008).
[CrossRef]

2006

J. Zhao, L. H. Huo, S. Gao, H. Zhao, and J. G. Zhao, “Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating,” Sens. Actuators B Chem. 115(1), 460–464 (2006).
[CrossRef]

E. P. Domashevskaya, O. A. Chuvenkova, V. M. Kashkarov, S. B. Kushev, S. V. Ryabtsev, S. Yu. Turishchev, and Yu. A. Yurakov, “TEM and XANES investigations and optical properties of SnO nanolayers,” Surf. Interface Anal. 38(4), 514–517 (2006).
[CrossRef]

2005

M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79(2-4), 47–154 (2005), http://shell.cas.usf.edu/~mbatzill/papers/paper%207.pdf .
[CrossRef]

C. M. Waits, B. Morgan, M. Kastantin, and R. Ghodssi, “Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching,” Sens. Actuators A Phys. 119(1), 245–253 (2005).
[CrossRef]

2004

2003

A. Kolmakov, Y. Zhang, and M. Moskovits, “Topotactic thermal oxidation of Sn nanowires: Intermediate suboxides and core-shell metastable structures,” Nano Lett. 3(8), 1125–1129 (2003).
[CrossRef]

C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng. 13(2), 170–177 (2003).
[CrossRef]

C. Chen, D. Hirdes, and A. Folch, “Gray-scale photolithography using microfluidic photomasks,” Proc. Natl. Acad. Sci. U.S.A. 100(4), 1499–1504 (2003), http://www.pnas.org/cgi/content/full/100/4/1499 .
[CrossRef] [PubMed]

2002

Z. L. Wang and Z. Pan, “Junctions and networks of SnO nanoribbons,” Adv. Mater. 14(15), 1029–1032 (2002), http://www.nanoscience.gatech.edu/zlwang/paper/2002/02_AM_2.pdf .
[CrossRef]

2001

Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291(5510), 1947–1949 (2001).
[CrossRef] [PubMed]

X. Q. Pan and L. Fu, “Oxidation and phase transitions of epitaxial tin oxide thin films on (10-12) sapphire,” J. Appl. Phys. 89(11), 6048 (2001).
[CrossRef]

H. Jiang, X. Yuan, Z. Yun, Y. C. Chan, and Y. L. Lam, “Fabrication of microlens in photosensitive hybrid sol–gel films using a gray scale mask,” Mater. Sci. Eng. C 99, 16 (2001).

1999

1998

A. F. Lee and R. M. Lambert, “Oxidation of Sn overlayers and the structure and stability of Sn oxide films on Pd (111),” Phys. Rev. B 58(7), 4156–4165 (1998).
[CrossRef]

1997

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997), http://www.mp-cc.de/docs/reiphot.pdf .
[CrossRef]

Arbiol, J.

J. Arbiol, E. Comini, G. Faglia, G. Sberveglieri, and J. R. Morante, “Orthorhombic Pbcn SnO2 nanowires for gas sensing applications,” J. Cryst. Growth 310(1), 253–260 (2008).
[CrossRef]

Batzill, M.

M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79(2-4), 47–154 (2005), http://shell.cas.usf.edu/~mbatzill/papers/paper%207.pdf .
[CrossRef]

Campbell, L. J.

Y. X. Chen, L. J. Campbell, and W. L. Zhou, “Self-catalytic branch growth of SnO2 nanowire junctions,” J. Cryst. Growth 270(3-4), 505–510 (2004).
[CrossRef]

Cao, S.

Chan, Y. C.

H. Jiang, X. Yuan, Z. Yun, Y. C. Chan, and Y. L. Lam, “Fabrication of microlens in photosensitive hybrid sol–gel films using a gray scale mask,” Mater. Sci. Eng. C 99, 16 (2001).

Chen, C.

C. Chen, D. Hirdes, and A. Folch, “Gray-scale photolithography using microfluidic photomasks,” Proc. Natl. Acad. Sci. U.S.A. 100(4), 1499–1504 (2003), http://www.pnas.org/cgi/content/full/100/4/1499 .
[CrossRef] [PubMed]

Chen, Y. X.

Y. X. Chen, L. J. Campbell, and W. L. Zhou, “Self-catalytic branch growth of SnO2 nanowire junctions,” J. Cryst. Growth 270(3-4), 505–510 (2004).
[CrossRef]

Christophersen, M.

M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92(19), 194102 (2008).
[CrossRef]

Chuvenkova, O. A.

E. P. Domashevskaya, O. A. Chuvenkova, V. M. Kashkarov, S. B. Kushev, S. V. Ryabtsev, S. Yu. Turishchev, and Yu. A. Yurakov, “TEM and XANES investigations and optical properties of SnO nanolayers,” Surf. Interface Anal. 38(4), 514–517 (2006).
[CrossRef]

Comini, E.

J. Arbiol, E. Comini, G. Faglia, G. Sberveglieri, and J. R. Morante, “Orthorhombic Pbcn SnO2 nanowires for gas sensing applications,” J. Cryst. Growth 310(1), 253–260 (2008).
[CrossRef]

Dai, Z. R.

Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291(5510), 1947–1949 (2001).
[CrossRef] [PubMed]

Descour, M. R.

Diebold, U.

M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79(2-4), 47–154 (2005), http://shell.cas.usf.edu/~mbatzill/papers/paper%207.pdf .
[CrossRef]

Domashevskaya, E. P.

E. P. Domashevskaya, O. A. Chuvenkova, V. M. Kashkarov, S. B. Kushev, S. V. Ryabtsev, S. Yu. Turishchev, and Yu. A. Yurakov, “TEM and XANES investigations and optical properties of SnO nanolayers,” Surf. Interface Anal. 38(4), 514–517 (2006).
[CrossRef]

Faglia, G.

J. Arbiol, E. Comini, G. Faglia, G. Sberveglieri, and J. R. Morante, “Orthorhombic Pbcn SnO2 nanowires for gas sensing applications,” J. Cryst. Growth 310(1), 253–260 (2008).
[CrossRef]

Folch, A.

C. Chen, D. Hirdes, and A. Folch, “Gray-scale photolithography using microfluidic photomasks,” Proc. Natl. Acad. Sci. U.S.A. 100(4), 1499–1504 (2003), http://www.pnas.org/cgi/content/full/100/4/1499 .
[CrossRef] [PubMed]

Fu, L.

X. Q. Pan and L. Fu, “Oxidation and phase transitions of epitaxial tin oxide thin films on (10-12) sapphire,” J. Appl. Phys. 89(11), 6048 (2001).
[CrossRef]

Gao, S.

J. Zhao, L. H. Huo, S. Gao, H. Zhao, and J. G. Zhao, “Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating,” Sens. Actuators B Chem. 115(1), 460–464 (2006).
[CrossRef]

Ghodssi, R.

C. M. Waits, B. Morgan, M. Kastantin, and R. Ghodssi, “Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching,” Sens. Actuators A Phys. 119(1), 245–253 (2005).
[CrossRef]

C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng. 13(2), 170–177 (2003).
[CrossRef]

Gimkiewicz, C.

Guo, C. F.

Hagedorn, D.

Hirdes, D.

C. Chen, D. Hirdes, and A. Folch, “Gray-scale photolithography using microfluidic photomasks,” Proc. Natl. Acad. Sci. U.S.A. 100(4), 1499–1504 (2003), http://www.pnas.org/cgi/content/full/100/4/1499 .
[CrossRef] [PubMed]

Huo, L. H.

J. Zhao, L. H. Huo, S. Gao, H. Zhao, and J. G. Zhao, “Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating,” Sens. Actuators B Chem. 115(1), 460–464 (2006).
[CrossRef]

Jahns, J.

Jiang, H.

H. Jiang, X. Yuan, Z. Yun, Y. C. Chan, and Y. L. Lam, “Fabrication of microlens in photosensitive hybrid sol–gel films using a gray scale mask,” Mater. Sci. Eng. C 99, 16 (2001).

Jürss, M.

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997), http://www.mp-cc.de/docs/reiphot.pdf .
[CrossRef]

Kärkkäinen, A. H. O.

Kashkarov, V. M.

E. P. Domashevskaya, O. A. Chuvenkova, V. M. Kashkarov, S. B. Kushev, S. V. Ryabtsev, S. Yu. Turishchev, and Yu. A. Yurakov, “TEM and XANES investigations and optical properties of SnO nanolayers,” Surf. Interface Anal. 38(4), 514–517 (2006).
[CrossRef]

Kastantin, M.

C. M. Waits, B. Morgan, M. Kastantin, and R. Ghodssi, “Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching,” Sens. Actuators A Phys. 119(1), 245–253 (2005).
[CrossRef]

Kley, E.-B.

Kolmakov, A.

A. Kolmakov, Y. Zhang, and M. Moskovits, “Topotactic thermal oxidation of Sn nanowires: Intermediate suboxides and core-shell metastable structures,” Nano Lett. 3(8), 1125–1129 (2003).
[CrossRef]

Kushev, S. B.

E. P. Domashevskaya, O. A. Chuvenkova, V. M. Kashkarov, S. B. Kushev, S. V. Ryabtsev, S. Yu. Turishchev, and Yu. A. Yurakov, “TEM and XANES investigations and optical properties of SnO nanolayers,” Surf. Interface Anal. 38(4), 514–517 (2006).
[CrossRef]

Lam, Y. L.

H. Jiang, X. Yuan, Z. Yun, Y. C. Chan, and Y. L. Lam, “Fabrication of microlens in photosensitive hybrid sol–gel films using a gray scale mask,” Mater. Sci. Eng. C 99, 16 (2001).

Lambert, R. M.

A. F. Lee and R. M. Lambert, “Oxidation of Sn overlayers and the structure and stability of Sn oxide films on Pd (111),” Phys. Rev. B 58(7), 4156–4165 (1998).
[CrossRef]

Lamelas, F. J.

F. J. Lamelas and S. A. Reid, “Thin-film synthesis of the orthorhombic phase of SnO2,” Phys. Rev. B 60(13), 9347–9352 (1999).
[CrossRef]

Lee, A. F.

A. F. Lee and R. M. Lambert, “Oxidation of Sn overlayers and the structure and stability of Sn oxide films on Pd (111),” Phys. Rev. B 58(7), 4156–4165 (1998).
[CrossRef]

Liu,, Q.

Modafe, A.

C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng. 13(2), 170–177 (2003).
[CrossRef]

Morante, J. R.

J. Arbiol, E. Comini, G. Faglia, G. Sberveglieri, and J. R. Morante, “Orthorhombic Pbcn SnO2 nanowires for gas sensing applications,” J. Cryst. Growth 310(1), 253–260 (2008).
[CrossRef]

Morgan, B.

C. M. Waits, B. Morgan, M. Kastantin, and R. Ghodssi, “Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching,” Sens. Actuators A Phys. 119(1), 245–253 (2005).
[CrossRef]

Moskovits, M.

A. Kolmakov, Y. Zhang, and M. Moskovits, “Topotactic thermal oxidation of Sn nanowires: Intermediate suboxides and core-shell metastable structures,” Nano Lett. 3(8), 1125–1129 (2003).
[CrossRef]

Pan, X. Q.

X. Q. Pan and L. Fu, “Oxidation and phase transitions of epitaxial tin oxide thin films on (10-12) sapphire,” J. Appl. Phys. 89(11), 6048 (2001).
[CrossRef]

Pan, Z.

Z. L. Wang and Z. Pan, “Junctions and networks of SnO nanoribbons,” Adv. Mater. 14(15), 1029–1032 (2002), http://www.nanoscience.gatech.edu/zlwang/paper/2002/02_AM_2.pdf .
[CrossRef]

Pan, Z. W.

Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291(5510), 1947–1949 (2001).
[CrossRef] [PubMed]

Phlips, B. F.

M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92(19), 194102 (2008).
[CrossRef]

Quenzer, H. J.

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997), http://www.mp-cc.de/docs/reiphot.pdf .
[CrossRef]

Rantala, J. T.

Reid, S. A.

F. J. Lamelas and S. A. Reid, “Thin-film synthesis of the orthorhombic phase of SnO2,” Phys. Rev. B 60(13), 9347–9352 (1999).
[CrossRef]

Reimer, K.

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997), http://www.mp-cc.de/docs/reiphot.pdf .
[CrossRef]

Rogers, J. D.

Ryabtsev, S. V.

E. P. Domashevskaya, O. A. Chuvenkova, V. M. Kashkarov, S. B. Kushev, S. V. Ryabtsev, S. Yu. Turishchev, and Yu. A. Yurakov, “TEM and XANES investigations and optical properties of SnO nanolayers,” Surf. Interface Anal. 38(4), 514–517 (2006).
[CrossRef]

Sberveglieri, G.

J. Arbiol, E. Comini, G. Faglia, G. Sberveglieri, and J. R. Morante, “Orthorhombic Pbcn SnO2 nanowires for gas sensing applications,” J. Cryst. Growth 310(1), 253–260 (2008).
[CrossRef]

Thoma, F.

Tkaczyk, T.

Turishchev, S. Yu.

E. P. Domashevskaya, O. A. Chuvenkova, V. M. Kashkarov, S. B. Kushev, S. V. Ryabtsev, S. Yu. Turishchev, and Yu. A. Yurakov, “TEM and XANES investigations and optical properties of SnO nanolayers,” Surf. Interface Anal. 38(4), 514–517 (2006).
[CrossRef]

Wagner, B.

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997), http://www.mp-cc.de/docs/reiphot.pdf .
[CrossRef]

Waits, C. M.

C. M. Waits, B. Morgan, M. Kastantin, and R. Ghodssi, “Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching,” Sens. Actuators A Phys. 119(1), 245–253 (2005).
[CrossRef]

C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng. 13(2), 170–177 (2003).
[CrossRef]

Wang, Z. L.

Z. L. Wang and Z. Pan, “Junctions and networks of SnO nanoribbons,” Adv. Mater. 14(15), 1029–1032 (2002), http://www.nanoscience.gatech.edu/zlwang/paper/2002/02_AM_2.pdf .
[CrossRef]

Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291(5510), 1947–1949 (2001).
[CrossRef] [PubMed]

Yuan, X.

H. Jiang, X. Yuan, Z. Yun, Y. C. Chan, and Y. L. Lam, “Fabrication of microlens in photosensitive hybrid sol–gel films using a gray scale mask,” Mater. Sci. Eng. C 99, 16 (2001).

Yun, Z.

H. Jiang, X. Yuan, Z. Yun, Y. C. Chan, and Y. L. Lam, “Fabrication of microlens in photosensitive hybrid sol–gel films using a gray scale mask,” Mater. Sci. Eng. C 99, 16 (2001).

Yurakov, Yu. A.

E. P. Domashevskaya, O. A. Chuvenkova, V. M. Kashkarov, S. B. Kushev, S. V. Ryabtsev, S. Yu. Turishchev, and Yu. A. Yurakov, “TEM and XANES investigations and optical properties of SnO nanolayers,” Surf. Interface Anal. 38(4), 514–517 (2006).
[CrossRef]

Zhang, Y.

A. Kolmakov, Y. Zhang, and M. Moskovits, “Topotactic thermal oxidation of Sn nanowires: Intermediate suboxides and core-shell metastable structures,” Nano Lett. 3(8), 1125–1129 (2003).
[CrossRef]

Zhang, Z.

Zhao, H.

J. Zhao, L. H. Huo, S. Gao, H. Zhao, and J. G. Zhao, “Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating,” Sens. Actuators B Chem. 115(1), 460–464 (2006).
[CrossRef]

Zhao, J.

J. Zhao, L. H. Huo, S. Gao, H. Zhao, and J. G. Zhao, “Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating,” Sens. Actuators B Chem. 115(1), 460–464 (2006).
[CrossRef]

Zhao, J. G.

J. Zhao, L. H. Huo, S. Gao, H. Zhao, and J. G. Zhao, “Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating,” Sens. Actuators B Chem. 115(1), 460–464 (2006).
[CrossRef]

Zhou, W. L.

Y. X. Chen, L. J. Campbell, and W. L. Zhou, “Self-catalytic branch growth of SnO2 nanowire junctions,” J. Cryst. Growth 270(3-4), 505–510 (2004).
[CrossRef]

Adv. Mater.

Z. L. Wang and Z. Pan, “Junctions and networks of SnO nanoribbons,” Adv. Mater. 14(15), 1029–1032 (2002), http://www.nanoscience.gatech.edu/zlwang/paper/2002/02_AM_2.pdf .
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Christophersen and B. F. Phlips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92(19), 194102 (2008).
[CrossRef]

J. Appl. Phys.

X. Q. Pan and L. Fu, “Oxidation and phase transitions of epitaxial tin oxide thin films on (10-12) sapphire,” J. Appl. Phys. 89(11), 6048 (2001).
[CrossRef]

J. Cryst. Growth

J. Arbiol, E. Comini, G. Faglia, G. Sberveglieri, and J. R. Morante, “Orthorhombic Pbcn SnO2 nanowires for gas sensing applications,” J. Cryst. Growth 310(1), 253–260 (2008).
[CrossRef]

Y. X. Chen, L. J. Campbell, and W. L. Zhou, “Self-catalytic branch growth of SnO2 nanowire junctions,” J. Cryst. Growth 270(3-4), 505–510 (2004).
[CrossRef]

J. Micromech. Microeng.

C. M. Waits, A. Modafe, and R. Ghodssi, “Investigation of gray-scale technology for large area 3D silicon MEMS structures,” J. Micromech. Microeng. 13(2), 170–177 (2003).
[CrossRef]

Mater. Sci. Eng. C

H. Jiang, X. Yuan, Z. Yun, Y. C. Chan, and Y. L. Lam, “Fabrication of microlens in photosensitive hybrid sol–gel films using a gray scale mask,” Mater. Sci. Eng. C 99, 16 (2001).

Nano Lett.

A. Kolmakov, Y. Zhang, and M. Moskovits, “Topotactic thermal oxidation of Sn nanowires: Intermediate suboxides and core-shell metastable structures,” Nano Lett. 3(8), 1125–1129 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

F. J. Lamelas and S. A. Reid, “Thin-film synthesis of the orthorhombic phase of SnO2,” Phys. Rev. B 60(13), 9347–9352 (1999).
[CrossRef]

A. F. Lee and R. M. Lambert, “Oxidation of Sn overlayers and the structure and stability of Sn oxide films on Pd (111),” Phys. Rev. B 58(7), 4156–4165 (1998).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

C. Chen, D. Hirdes, and A. Folch, “Gray-scale photolithography using microfluidic photomasks,” Proc. Natl. Acad. Sci. U.S.A. 100(4), 1499–1504 (2003), http://www.pnas.org/cgi/content/full/100/4/1499 .
[CrossRef] [PubMed]

Proc. SPIE

K. Reimer, H. J. Quenzer, M. Jürss, and B. Wagner, “Micro-optic fabrication using one-level gray-tone lithography,” Proc. SPIE 3008, 279–288 (1997), http://www.mp-cc.de/docs/reiphot.pdf .
[CrossRef]

Prog. Surf. Sci.

M. Batzill and U. Diebold, “The surface and materials science of tin oxide,” Prog. Surf. Sci. 79(2-4), 47–154 (2005), http://shell.cas.usf.edu/~mbatzill/papers/paper%207.pdf .
[CrossRef]

Science

Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291(5510), 1947–1949 (2001).
[CrossRef] [PubMed]

Sens. Actuators A Phys.

C. M. Waits, B. Morgan, M. Kastantin, and R. Ghodssi, “Microfabrication of 3D silicon MEMS structures using gray-scale lithography and deep reactive ion etching,” Sens. Actuators A Phys. 119(1), 245–253 (2005).
[CrossRef]

Sens. Actuators B Chem.

J. Zhao, L. H. Huo, S. Gao, H. Zhao, and J. G. Zhao, “Alcohols and acetone sensing properties of SnO2 thin films deposited by dip-coating,” Sens. Actuators B Chem. 115(1), 460–464 (2006).
[CrossRef]

Surf. Interface Anal.

E. P. Domashevskaya, O. A. Chuvenkova, V. M. Kashkarov, S. B. Kushev, S. V. Ryabtsev, S. Yu. Turishchev, and Yu. A. Yurakov, “TEM and XANES investigations and optical properties of SnO nanolayers,” Surf. Interface Anal. 38(4), 514–517 (2006).
[CrossRef]

Other

G. Gal, “Method for fabricating microlenses,” U.S. Patent No. 5,310,623, 10, (1994).

C. K. Wu, “Method of making high energy beam sensitive glasses,” U.S. Patent, No. 5,078,771 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical microscopy (OM) images of a set of typical grayscale masks.

Fig. 2
Fig. 2

(a) A grayscale bar on carbon membrane; (b)-(g) SAED patterns at different laser powers, showing the phase evolution dependence on laser powers.

Fig. 3
Fig. 3

Structural and amorphous evolution of Sn films under various laser powers. HRTEM images of: (a) 0 mW, (b) 0.4 mW, (c) 0.5 mW, (d) 0.6 mW and (f) 0.8 mW. (e) Bright-field TEM image of 0.8 mW laser exposed Sn film, showing grains composed of several sub-grains.

Fig. 4
Fig. 4

OD versus laser power with a pulse width of 1 ms. The inset is five-level grayscale bars before (the upper) and after grayscale calibration (the bottom) using the OD-laser power curve.

Fig. 5
Fig. 5

3D microstructures fabricated in SU-8 photoresist: (a) 60° and (b) 85° tilt-view images.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2SnO(t)Sn+SnO2(t)

Metrics