Abstract

A novel tunable laser which can achieve mode-hop-free single-electrode tuning based on a ring coupled cavity is proposed. The device comprises of a passive ring resonator coupled to two optical waveguides, two far ends of which are terminated by partially reflecting mirrors to constitute a Fabry-Perot (FP) cavity. The waveguide in the ring resonator is divided into a tuning segment and a bias segment. The FP cavity contains an active gain waveguide and passive waveguide segments. A tuning electrode covers the tuning segment inside the ring resonator and the passive waveguide segments in the FP cavity. Mode-hop-free operation with a single-electrode tuning is achieved by properly designing the tuning electrode lengths within the FP cavity and within the ring resonator. Numerical analysis shows that a large mode-hop-free tuning range (>6nm) with a very high single-mode selectivity can be achieved with an injection current less than 100mA.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wide-bandwidth mode-hop-free tuning of extended-cavity GaN diode lasers

Johan Hult, Iain S. Burns, and Clemens F. Kaminski
Appl. Opt. 44(18) 3675-3685 (2005)

Mode-hop-free fine tuning of an external-cavity diode laser with an intracavity liquid crystal cell

Yu-Ping Lan, Ru-Pin Pan, and Ci-Ling Pan
Opt. Lett. 29(5) 510-512 (2004)

Mode-hop-free electro-optically tuned diode laser

L. Levin
Opt. Lett. 27(4) 237-239 (2002)

References

  • View by:
  • |
  • |
  • |

  1. L. Levin, “Mode-hop-free electro-optically tuned diode laser,” Opt. Lett. 27(4), 237–239 (2002).
    [Crossref]
  2. O. K. Kwon, J. H. Kim, K. H. Kim, and et al.., “Widely tunable multi-channel grating cavity laser,” IEEE Photon. Technol. Lett. 18(16), 1699–1701 (2006).
  3. V. Jayaraman, Z.-M. Chuang, and L. A. Coldren,“Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
    [Crossref]
  4. L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
    [Crossref]
  5. A. Hayakaw, K. Takabayashi, S. Tanaka, and et al.., “Tunable twin-guide distributed feedback laser with 8-nm mode-hop-free tuning range,” CLEO-P R2005, 628–629 (2006).
  6. N. Nunoya, H. Ishii, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Wideband tuning of tunable distributed amplification distributed feedback laser array,” Electron. Lett. 44(3), 205–207 (2008).
    [Crossref]
  7. N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode hop-free Distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
    [Crossref]
  8. H. Ishii, H. Tanobe, Y. Kondo, and Y. Yoshikuni, “A tunable interdigital electrode (TIE) DBR laser for single-current continuous tuning,” IEEE Photon. Technol. Lett. 7(11), 1246–1248 (1995).
    [Crossref]
  9. K. Kudo, P. Delansay, N. Kida, M. Yamaguchi, and M. Kitamura, “Tunable stair-guide (TSG) DBR lasers for single current continuous wavelength tuning,” IEEE Electron. Lett. 31(21), 1843–1844 (1995).
    [Crossref]
  10. D. G. Rabus, “Integrated Ring Resonators”, Springer-Verlag, Berlin (2007).
  11. J. Heebner, R. Grover, and T. Ibrahiml, “Optical microresonators: theory, fabrication, and applications”, Springer-Verlag, Berlin (2007).
  12. B. Liu, A. Shakouri, and J. E. Bowers, “Passive micro-ring resonator coupled lasers,” Appl. Phys. Lett. 79(22), 3561–3563 (2001).
    [Crossref]
  13. J. Weber, “Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable bragg filters,” IEEE J. Quantum Electron. 30(8), 1801–1816 (1994).
    [Crossref]
  14. S. Park, S. Kim, L. Wang, and et al.., “Single-mode lasing operation using a microring resonator as a wavelength selector,” IEEE J. Quantum Electron. 38(3), 270–273 (2002).
    [Crossref]
  15. T. Koch and U. Koren, “Semiconductor Lasers for Coherent Optical Fiber Communications,” IEEE J. Lightwave Technol. 8(3), 274–293 (1990).
    [Crossref]

2008 (1)

N. Nunoya, H. Ishii, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Wideband tuning of tunable distributed amplification distributed feedback laser array,” Electron. Lett. 44(3), 205–207 (2008).
[Crossref]

2006 (2)

O. K. Kwon, J. H. Kim, K. H. Kim, and et al.., “Widely tunable multi-channel grating cavity laser,” IEEE Photon. Technol. Lett. 18(16), 1699–1701 (2006).

A. Hayakaw, K. Takabayashi, S. Tanaka, and et al.., “Tunable twin-guide distributed feedback laser with 8-nm mode-hop-free tuning range,” CLEO-P R2005, 628–629 (2006).

2003 (1)

N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode hop-free Distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
[Crossref]

2002 (2)

S. Park, S. Kim, L. Wang, and et al.., “Single-mode lasing operation using a microring resonator as a wavelength selector,” IEEE J. Quantum Electron. 38(3), 270–273 (2002).
[Crossref]

L. Levin, “Mode-hop-free electro-optically tuned diode laser,” Opt. Lett. 27(4), 237–239 (2002).
[Crossref]

2001 (1)

B. Liu, A. Shakouri, and J. E. Bowers, “Passive micro-ring resonator coupled lasers,” Appl. Phys. Lett. 79(22), 3561–3563 (2001).
[Crossref]

2000 (1)

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[Crossref]

1995 (2)

H. Ishii, H. Tanobe, Y. Kondo, and Y. Yoshikuni, “A tunable interdigital electrode (TIE) DBR laser for single-current continuous tuning,” IEEE Photon. Technol. Lett. 7(11), 1246–1248 (1995).
[Crossref]

K. Kudo, P. Delansay, N. Kida, M. Yamaguchi, and M. Kitamura, “Tunable stair-guide (TSG) DBR lasers for single current continuous wavelength tuning,” IEEE Electron. Lett. 31(21), 1843–1844 (1995).
[Crossref]

1994 (1)

J. Weber, “Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable bragg filters,” IEEE J. Quantum Electron. 30(8), 1801–1816 (1994).
[Crossref]

1993 (1)

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren,“Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

1990 (1)

T. Koch and U. Koren, “Semiconductor Lasers for Coherent Optical Fiber Communications,” IEEE J. Lightwave Technol. 8(3), 274–293 (1990).
[Crossref]

Bowers, J. E.

B. Liu, A. Shakouri, and J. E. Bowers, “Passive micro-ring resonator coupled lasers,” Appl. Phys. Lett. 79(22), 3561–3563 (2001).
[Crossref]

Chuang, Z.-M.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren,“Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

Coldren, L. A.

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[Crossref]

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren,“Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

Delansay, P.

K. Kudo, P. Delansay, N. Kida, M. Yamaguchi, and M. Kitamura, “Tunable stair-guide (TSG) DBR lasers for single current continuous wavelength tuning,” IEEE Electron. Lett. 31(21), 1843–1844 (1995).
[Crossref]

Fujiwara, N.

N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode hop-free Distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
[Crossref]

Hayakaw, A.

A. Hayakaw, K. Takabayashi, S. Tanaka, and et al.., “Tunable twin-guide distributed feedback laser with 8-nm mode-hop-free tuning range,” CLEO-P R2005, 628–629 (2006).

Ishii, H.

N. Nunoya, H. Ishii, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Wideband tuning of tunable distributed amplification distributed feedback laser array,” Electron. Lett. 44(3), 205–207 (2008).
[Crossref]

H. Ishii, H. Tanobe, Y. Kondo, and Y. Yoshikuni, “A tunable interdigital electrode (TIE) DBR laser for single-current continuous tuning,” IEEE Photon. Technol. Lett. 7(11), 1246–1248 (1995).
[Crossref]

Ishikawa, M.

N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode hop-free Distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
[Crossref]

Jayaraman, V.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren,“Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

Kakitsuka, T.

N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode hop-free Distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
[Crossref]

Kano, F.

N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode hop-free Distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
[Crossref]

Kawaguchi, Y.

N. Nunoya, H. Ishii, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Wideband tuning of tunable distributed amplification distributed feedback laser array,” Electron. Lett. 44(3), 205–207 (2008).
[Crossref]

N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode hop-free Distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
[Crossref]

Kida, N.

K. Kudo, P. Delansay, N. Kida, M. Yamaguchi, and M. Kitamura, “Tunable stair-guide (TSG) DBR lasers for single current continuous wavelength tuning,” IEEE Electron. Lett. 31(21), 1843–1844 (1995).
[Crossref]

Kim, J. H.

O. K. Kwon, J. H. Kim, K. H. Kim, and et al.., “Widely tunable multi-channel grating cavity laser,” IEEE Photon. Technol. Lett. 18(16), 1699–1701 (2006).

Kim, K. H.

O. K. Kwon, J. H. Kim, K. H. Kim, and et al.., “Widely tunable multi-channel grating cavity laser,” IEEE Photon. Technol. Lett. 18(16), 1699–1701 (2006).

Kim, S.

S. Park, S. Kim, L. Wang, and et al.., “Single-mode lasing operation using a microring resonator as a wavelength selector,” IEEE J. Quantum Electron. 38(3), 270–273 (2002).
[Crossref]

Kitamura, M.

K. Kudo, P. Delansay, N. Kida, M. Yamaguchi, and M. Kitamura, “Tunable stair-guide (TSG) DBR lasers for single current continuous wavelength tuning,” IEEE Electron. Lett. 31(21), 1843–1844 (1995).
[Crossref]

Koch, T.

T. Koch and U. Koren, “Semiconductor Lasers for Coherent Optical Fiber Communications,” IEEE J. Lightwave Technol. 8(3), 274–293 (1990).
[Crossref]

Kondo, Y.

N. Nunoya, H. Ishii, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Wideband tuning of tunable distributed amplification distributed feedback laser array,” Electron. Lett. 44(3), 205–207 (2008).
[Crossref]

N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode hop-free Distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
[Crossref]

H. Ishii, H. Tanobe, Y. Kondo, and Y. Yoshikuni, “A tunable interdigital electrode (TIE) DBR laser for single-current continuous tuning,” IEEE Photon. Technol. Lett. 7(11), 1246–1248 (1995).
[Crossref]

Koren, U.

T. Koch and U. Koren, “Semiconductor Lasers for Coherent Optical Fiber Communications,” IEEE J. Lightwave Technol. 8(3), 274–293 (1990).
[Crossref]

Kudo, K.

K. Kudo, P. Delansay, N. Kida, M. Yamaguchi, and M. Kitamura, “Tunable stair-guide (TSG) DBR lasers for single current continuous wavelength tuning,” IEEE Electron. Lett. 31(21), 1843–1844 (1995).
[Crossref]

Kwon, O. K.

O. K. Kwon, J. H. Kim, K. H. Kim, and et al.., “Widely tunable multi-channel grating cavity laser,” IEEE Photon. Technol. Lett. 18(16), 1699–1701 (2006).

Levin, L.

Liu, B.

B. Liu, A. Shakouri, and J. E. Bowers, “Passive micro-ring resonator coupled lasers,” Appl. Phys. Lett. 79(22), 3561–3563 (2001).
[Crossref]

Nunoya, N.

N. Nunoya, H. Ishii, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Wideband tuning of tunable distributed amplification distributed feedback laser array,” Electron. Lett. 44(3), 205–207 (2008).
[Crossref]

Okamoto, H.

N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode hop-free Distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
[Crossref]

Oohashi, H.

N. Nunoya, H. Ishii, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Wideband tuning of tunable distributed amplification distributed feedback laser array,” Electron. Lett. 44(3), 205–207 (2008).
[Crossref]

Park, S.

S. Park, S. Kim, L. Wang, and et al.., “Single-mode lasing operation using a microring resonator as a wavelength selector,” IEEE J. Quantum Electron. 38(3), 270–273 (2002).
[Crossref]

Shakouri, A.

B. Liu, A. Shakouri, and J. E. Bowers, “Passive micro-ring resonator coupled lasers,” Appl. Phys. Lett. 79(22), 3561–3563 (2001).
[Crossref]

Takabayashi, K.

A. Hayakaw, K. Takabayashi, S. Tanaka, and et al.., “Tunable twin-guide distributed feedback laser with 8-nm mode-hop-free tuning range,” CLEO-P R2005, 628–629 (2006).

Tanaka, S.

A. Hayakaw, K. Takabayashi, S. Tanaka, and et al.., “Tunable twin-guide distributed feedback laser with 8-nm mode-hop-free tuning range,” CLEO-P R2005, 628–629 (2006).

Tanobe, H.

H. Ishii, H. Tanobe, Y. Kondo, and Y. Yoshikuni, “A tunable interdigital electrode (TIE) DBR laser for single-current continuous tuning,” IEEE Photon. Technol. Lett. 7(11), 1246–1248 (1995).
[Crossref]

Tohmori, Y.

N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode hop-free Distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
[Crossref]

Wang, L.

S. Park, S. Kim, L. Wang, and et al.., “Single-mode lasing operation using a microring resonator as a wavelength selector,” IEEE J. Quantum Electron. 38(3), 270–273 (2002).
[Crossref]

Weber, J.

J. Weber, “Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable bragg filters,” IEEE J. Quantum Electron. 30(8), 1801–1816 (1994).
[Crossref]

Yamaguchi, M.

K. Kudo, P. Delansay, N. Kida, M. Yamaguchi, and M. Kitamura, “Tunable stair-guide (TSG) DBR lasers for single current continuous wavelength tuning,” IEEE Electron. Lett. 31(21), 1843–1844 (1995).
[Crossref]

Yoshikuni, Y.

N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode hop-free Distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
[Crossref]

H. Ishii, H. Tanobe, Y. Kondo, and Y. Yoshikuni, “A tunable interdigital electrode (TIE) DBR laser for single-current continuous tuning,” IEEE Photon. Technol. Lett. 7(11), 1246–1248 (1995).
[Crossref]

Appl. Phys. Lett. (1)

B. Liu, A. Shakouri, and J. E. Bowers, “Passive micro-ring resonator coupled lasers,” Appl. Phys. Lett. 79(22), 3561–3563 (2001).
[Crossref]

CLEO-P (1)

A. Hayakaw, K. Takabayashi, S. Tanaka, and et al.., “Tunable twin-guide distributed feedback laser with 8-nm mode-hop-free tuning range,” CLEO-P R2005, 628–629 (2006).

Electron. Lett. (1)

N. Nunoya, H. Ishii, Y. Kawaguchi, Y. Kondo, and H. Oohashi, “Wideband tuning of tunable distributed amplification distributed feedback laser array,” Electron. Lett. 44(3), 205–207 (2008).
[Crossref]

IEEE Electron. Lett. (1)

K. Kudo, P. Delansay, N. Kida, M. Yamaguchi, and M. Kitamura, “Tunable stair-guide (TSG) DBR lasers for single current continuous wavelength tuning,” IEEE Electron. Lett. 31(21), 1843–1844 (1995).
[Crossref]

IEEE J. Lightwave Technol. (1)

T. Koch and U. Koren, “Semiconductor Lasers for Coherent Optical Fiber Communications,” IEEE J. Lightwave Technol. 8(3), 274–293 (1990).
[Crossref]

IEEE J. Quantum Electron. (3)

J. Weber, “Optimization of the carrier-induced effective index change in InGaAsP waveguides-application to tunable bragg filters,” IEEE J. Quantum Electron. 30(8), 1801–1816 (1994).
[Crossref]

S. Park, S. Kim, L. Wang, and et al.., “Single-mode lasing operation using a microring resonator as a wavelength selector,” IEEE J. Quantum Electron. 38(3), 270–273 (2002).
[Crossref]

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren,“Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

L. A. Coldren, “Monolithic tunable diode lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 988–999 (2000).
[Crossref]

N. Fujiwara, T. Kakitsuka, M. Ishikawa, F. Kano, H. Okamoto, Y. Kawaguchi, Y. Kondo, Y. Yoshikuni, and Y. Tohmori, “Inherently mode hop-free Distributed Bragg reflector (DBR) laser array,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1132–1137 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (2)

H. Ishii, H. Tanobe, Y. Kondo, and Y. Yoshikuni, “A tunable interdigital electrode (TIE) DBR laser for single-current continuous tuning,” IEEE Photon. Technol. Lett. 7(11), 1246–1248 (1995).
[Crossref]

O. K. Kwon, J. H. Kim, K. H. Kim, and et al.., “Widely tunable multi-channel grating cavity laser,” IEEE Photon. Technol. Lett. 18(16), 1699–1701 (2006).

Opt. Lett. (1)

Other (2)

J. Heebner, R. Grover, and T. Ibrahiml, “Optical microresonators: theory, fabrication, and applications”, Springer-Verlag, Berlin (2007).

D. G. Rabus, “Integrated Ring Resonators”, Springer-Verlag, Berlin (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the mode-hop-free tunable ring coupled laser. The shaded region is the tuning section under a common tuning electrode.

Fig. 2
Fig. 2

(a) Absolute value of the effective refractive index variation as a function of the injection current density. (b) Threshold gain of the FP modes (circles).

Fig. 3
Fig. 3

(a) Threshold gain margin as a function of the absolute value of the refractive index change |Δ n| with Lp equal to 767.67μm (solid line), 514.19(dashed line) and 260.43(dash dot line). The corresponding lasing wavelength is plotted in (b), (c) and (d), respectively.

Fig. 4
Fig. 4

Main mode threshold gain (a) and side-mode threshold margin (b) as a function of the refractive index variation in the tuning section when the misalignment of the cleaved facet are 10μm with (dashed line) and without (solid line) the bias current compensation.

Fig. 5
Fig. 5

(a)Threshold gain margin and (b) SMSR as a function of the tuning current with the optical loss coefficients γ of 1.06 × 10−21cm2 (dash-dotted line), and 2.12 × 10−21cm2(solid line)

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

t=κ1κ2ejk0nL1'11κ221κ12ejk0(nL1+n2L2)
2(naLa+nLp+λΦt/2π)=mcλ
gth=1Lalog1r1r2|t2|
(nL1+n2L2)=mλ
2(naLa+nLp+nL1')=(mc-1)λ
dλdn=λL1nL1+n2L2
dλdn=λ(Lp+L1')(naLa+nLp+nL1')
n2L2L1=naLaLp+L1'
ΔλMHF=|λ22[naLa-n2(Lp+L1')L2/L1]|

Metrics