Abstract

The authors report on the achievement of lasing in rolled-up semiconductor microtubes at room temperature, wherein self-organized InGaAs/GaAs quantum dots are incorporated as the gain medium. The free-standing quantum dot microtubes, with a diameter of ~ 5-6 μm and wall thickness of ~ 100 nm, are formed when the coherently strained InGaAs/GaAs quantum dot heterostructure is selectively released from the GaAs substrate. The devices are characterized by an ultralow threshold (~ 4 μW) and a minimum intrinsic linewidth of ~ 0.2 – 0.3 nm at room temperature. The multiple lasing modes are analyzed using both the finite-difference time domain method and also a planar dielectric waveguide model.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
    [CrossRef]
  2. Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009).
    [CrossRef]
  3. S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Munch, A. Loffler, M. Kamp, J. Reithmaier, V. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
    [CrossRef]
  4. P. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today 9(10), 36–45 (2006).
    [CrossRef]
  5. P. Bhattacharya and Z. Mi, “Quantum-dot optoelectronic devices,” Proc. IEEE 95(9), 1723–1740 (2007).
    [CrossRef]
  6. S. Ates, S. Ulrich, P. Michler, S. Reitzenstein, A. Loffler, and A. Forchel, “Coherence properties of high-beta elliptical semiconductor micropillar lasers,” Appl. Phys. Lett. 90(16), 161111 (2007).
    [CrossRef]
  7. S. Chakravarty, P. Bhattacharya, and Z. Mi, “Electrically injected quantum-dot photonic crystal microcavity light-emitting arrays with air-bridge contacts,” IEEE Photon. Technol. Lett. 18(24), 2665–2667 (2006).
    [CrossRef]
  8. S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. Schmidt, “Light emission and wave guiding of quantum dots in a tube,” Appl. Phys. Lett. 88(11), 111120 (2006).
    [CrossRef]
  9. T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96(7), 077403 (2006).
    [CrossRef] [PubMed]
  10. V. Prinz, V. Seleznev, A. Gutakovsky, A. Chehovskiy, V. Preobrazhenskii, M. Putyato, and T. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Phys. E 6(1-4), 828–831 (2000).
    [CrossRef]
  11. S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett. 94(8), 081101 (2009).
    [CrossRef]
  12. M. Hosoda, Y. Kishimoto, M. Sato, S. Nashima, K. Kubota, S. Saravanan, P. Vaccaro, T. Aida, and N. Ohtani, “Quantum-well microtube constructed from a freestanding thin quantum-well layer,” Appl. Phys. Lett. 83(5), 1017–1019 (2003).
    [CrossRef]
  13. R. Songmuang, A. Rastelli, S. Mendach, and O. Schmidt, “SiOx/Si radial superlattices and microtube optical ring resonators,” Appl. Phys. Lett. 90(9), 091905 (2007).
    [CrossRef]
  14. F. Li, Z. Mi, and S. Vicknesh, “Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes,” Opt. Lett. 34(19), 2915–2917 (2009).
    [CrossRef] [PubMed]
  15. Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101(12), 127403 (2008).
    [CrossRef] [PubMed]
  16. F. Li, S. Vicknesh, and Z. Mi, “Optical modes in InGaAs/GaAs quantum dot microtube ring resonators at room temperature,” Electron. Lett. 45(12), 645–U20 (2009).
    [CrossRef]
  17. C. Strelow, H. Rehberg, C. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Spatial emission characteristics of a semiconductor microtube ring resonator,” Phys. E 40(6), 1836–1839 (2008).
    [CrossRef]
  18. M. Hosoda and T. Shigaki, “Degeneracy breaking of optical resonance modes in rolled-up spiral microtubes,” Appl. Phys. Lett. 90(18), 181107 (2007).
    [CrossRef]
  19. J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “Lasing from a circular Bragg nanocavity with an ultrasmall modal volume,” Appl. Phys. Lett. 86(25), 251101 (2005).
    [CrossRef]
  20. G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett. 94(14), 141901 (2009).
    [CrossRef]

2009 (5)

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009).
[CrossRef]

S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett. 94(8), 081101 (2009).
[CrossRef]

F. Li, S. Vicknesh, and Z. Mi, “Optical modes in InGaAs/GaAs quantum dot microtube ring resonators at room temperature,” Electron. Lett. 45(12), 645–U20 (2009).
[CrossRef]

G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett. 94(14), 141901 (2009).
[CrossRef]

F. Li, Z. Mi, and S. Vicknesh, “Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes,” Opt. Lett. 34(19), 2915–2917 (2009).
[CrossRef] [PubMed]

2008 (2)

C. Strelow, H. Rehberg, C. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Spatial emission characteristics of a semiconductor microtube ring resonator,” Phys. E 40(6), 1836–1839 (2008).
[CrossRef]

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101(12), 127403 (2008).
[CrossRef] [PubMed]

2007 (4)

M. Hosoda and T. Shigaki, “Degeneracy breaking of optical resonance modes in rolled-up spiral microtubes,” Appl. Phys. Lett. 90(18), 181107 (2007).
[CrossRef]

R. Songmuang, A. Rastelli, S. Mendach, and O. Schmidt, “SiOx/Si radial superlattices and microtube optical ring resonators,” Appl. Phys. Lett. 90(9), 091905 (2007).
[CrossRef]

P. Bhattacharya and Z. Mi, “Quantum-dot optoelectronic devices,” Proc. IEEE 95(9), 1723–1740 (2007).
[CrossRef]

S. Ates, S. Ulrich, P. Michler, S. Reitzenstein, A. Loffler, and A. Forchel, “Coherence properties of high-beta elliptical semiconductor micropillar lasers,” Appl. Phys. Lett. 90(16), 161111 (2007).
[CrossRef]

2006 (6)

S. Chakravarty, P. Bhattacharya, and Z. Mi, “Electrically injected quantum-dot photonic crystal microcavity light-emitting arrays with air-bridge contacts,” IEEE Photon. Technol. Lett. 18(24), 2665–2667 (2006).
[CrossRef]

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. Schmidt, “Light emission and wave guiding of quantum dots in a tube,” Appl. Phys. Lett. 88(11), 111120 (2006).
[CrossRef]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96(7), 077403 (2006).
[CrossRef] [PubMed]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Munch, A. Loffler, M. Kamp, J. Reithmaier, V. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[CrossRef]

P. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today 9(10), 36–45 (2006).
[CrossRef]

H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
[CrossRef]

2005 (1)

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “Lasing from a circular Bragg nanocavity with an ultrasmall modal volume,” Appl. Phys. Lett. 86(25), 251101 (2005).
[CrossRef]

2003 (1)

M. Hosoda, Y. Kishimoto, M. Sato, S. Nashima, K. Kubota, S. Saravanan, P. Vaccaro, T. Aida, and N. Ohtani, “Quantum-well microtube constructed from a freestanding thin quantum-well layer,” Appl. Phys. Lett. 83(5), 1017–1019 (2003).
[CrossRef]

2000 (1)

V. Prinz, V. Seleznev, A. Gutakovsky, A. Chehovskiy, V. Preobrazhenskii, M. Putyato, and T. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Phys. E 6(1-4), 828–831 (2000).
[CrossRef]

Aida, T.

M. Hosoda, Y. Kishimoto, M. Sato, S. Nashima, K. Kubota, S. Saravanan, P. Vaccaro, T. Aida, and N. Ohtani, “Quantum-well microtube constructed from a freestanding thin quantum-well layer,” Appl. Phys. Lett. 83(5), 1017–1019 (2003).
[CrossRef]

Altug, H.

H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
[CrossRef]

Ates, S.

S. Ates, S. Ulrich, P. Michler, S. Reitzenstein, A. Loffler, and A. Forchel, “Coherence properties of high-beta elliptical semiconductor micropillar lasers,” Appl. Phys. Lett. 90(16), 161111 (2007).
[CrossRef]

Bazhenov, A.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Munch, A. Loffler, M. Kamp, J. Reithmaier, V. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[CrossRef]

Benyoucef, M.

G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett. 94(14), 141901 (2009).
[CrossRef]

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. Schmidt, “Light emission and wave guiding of quantum dots in a tube,” Appl. Phys. Lett. 88(11), 111120 (2006).
[CrossRef]

Bhattacharya, P.

P. Bhattacharya and Z. Mi, “Quantum-dot optoelectronic devices,” Proc. IEEE 95(9), 1723–1740 (2007).
[CrossRef]

S. Chakravarty, P. Bhattacharya, and Z. Mi, “Electrically injected quantum-dot photonic crystal microcavity light-emitting arrays with air-bridge contacts,” IEEE Photon. Technol. Lett. 18(24), 2665–2667 (2006).
[CrossRef]

Bolaños Quiñones, V. A.

G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett. 94(14), 141901 (2009).
[CrossRef]

Cao, H.

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009).
[CrossRef]

Chakravarty, S.

S. Chakravarty, P. Bhattacharya, and Z. Mi, “Electrically injected quantum-dot photonic crystal microcavity light-emitting arrays with air-bridge contacts,” IEEE Photon. Technol. Lett. 18(24), 2665–2667 (2006).
[CrossRef]

Chehovskiy, A.

V. Prinz, V. Seleznev, A. Gutakovsky, A. Chehovskiy, V. Preobrazhenskii, M. Putyato, and T. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Phys. E 6(1-4), 828–831 (2000).
[CrossRef]

DeRose, G. A.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “Lasing from a circular Bragg nanocavity with an ultrasmall modal volume,” Appl. Phys. Lett. 86(25), 251101 (2005).
[CrossRef]

Ding, F.

G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett. 94(14), 141901 (2009).
[CrossRef]

Englund, D.

H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
[CrossRef]

Forchel, A.

S. Ates, S. Ulrich, P. Michler, S. Reitzenstein, A. Loffler, and A. Forchel, “Coherence properties of high-beta elliptical semiconductor micropillar lasers,” Appl. Phys. Lett. 90(16), 161111 (2007).
[CrossRef]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Munch, A. Loffler, M. Kamp, J. Reithmaier, V. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[CrossRef]

Gavrilova, T.

V. Prinz, V. Seleznev, A. Gutakovsky, A. Chehovskiy, V. Preobrazhenskii, M. Putyato, and T. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Phys. E 6(1-4), 828–831 (2000).
[CrossRef]

Gorbunov, A.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Munch, A. Loffler, M. Kamp, J. Reithmaier, V. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[CrossRef]

Green, W. M. J.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “Lasing from a circular Bragg nanocavity with an ultrasmall modal volume,” Appl. Phys. Lett. 86(25), 251101 (2005).
[CrossRef]

Gutakovsky, A.

V. Prinz, V. Seleznev, A. Gutakovsky, A. Chehovskiy, V. Preobrazhenskii, M. Putyato, and T. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Phys. E 6(1-4), 828–831 (2000).
[CrossRef]

Heitmann, D.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101(12), 127403 (2008).
[CrossRef] [PubMed]

C. Strelow, H. Rehberg, C. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Spatial emission characteristics of a semiconductor microtube ring resonator,” Phys. E 40(6), 1836–1839 (2008).
[CrossRef]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96(7), 077403 (2006).
[CrossRef] [PubMed]

Heyn, C.

C. Strelow, H. Rehberg, C. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Spatial emission characteristics of a semiconductor microtube ring resonator,” Phys. E 40(6), 1836–1839 (2008).
[CrossRef]

Heyn, Ch.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101(12), 127403 (2008).
[CrossRef] [PubMed]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96(7), 077403 (2006).
[CrossRef] [PubMed]

Ho, S. T.

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009).
[CrossRef]

Hofmann, C.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Munch, A. Loffler, M. Kamp, J. Reithmaier, V. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[CrossRef]

Hosoda, M.

M. Hosoda and T. Shigaki, “Degeneracy breaking of optical resonance modes in rolled-up spiral microtubes,” Appl. Phys. Lett. 90(18), 181107 (2007).
[CrossRef]

M. Hosoda, Y. Kishimoto, M. Sato, S. Nashima, K. Kubota, S. Saravanan, P. Vaccaro, T. Aida, and N. Ohtani, “Quantum-well microtube constructed from a freestanding thin quantum-well layer,” Appl. Phys. Lett. 83(5), 1017–1019 (2003).
[CrossRef]

Huang, G. S.

G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett. 94(14), 141901 (2009).
[CrossRef]

Kamp, M.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Munch, A. Loffler, M. Kamp, J. Reithmaier, V. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[CrossRef]

Kipp, T.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101(12), 127403 (2008).
[CrossRef] [PubMed]

C. Strelow, H. Rehberg, C. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Spatial emission characteristics of a semiconductor microtube ring resonator,” Phys. E 40(6), 1836–1839 (2008).
[CrossRef]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96(7), 077403 (2006).
[CrossRef] [PubMed]

Kiravittaya, S.

G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett. 94(14), 141901 (2009).
[CrossRef]

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. Schmidt, “Light emission and wave guiding of quantum dots in a tube,” Appl. Phys. Lett. 88(11), 111120 (2006).
[CrossRef]

Kishimoto, Y.

M. Hosoda, Y. Kishimoto, M. Sato, S. Nashima, K. Kubota, S. Saravanan, P. Vaccaro, T. Aida, and N. Ohtani, “Quantum-well microtube constructed from a freestanding thin quantum-well layer,” Appl. Phys. Lett. 83(5), 1017–1019 (2003).
[CrossRef]

Kubota, K.

M. Hosoda, Y. Kishimoto, M. Sato, S. Nashima, K. Kubota, S. Saravanan, P. Vaccaro, T. Aida, and N. Ohtani, “Quantum-well microtube constructed from a freestanding thin quantum-well layer,” Appl. Phys. Lett. 83(5), 1017–1019 (2003).
[CrossRef]

Kulakovskii, V.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Munch, A. Loffler, M. Kamp, J. Reithmaier, V. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[CrossRef]

Li, F.

F. Li, S. Vicknesh, and Z. Mi, “Optical modes in InGaAs/GaAs quantum dot microtube ring resonators at room temperature,” Electron. Lett. 45(12), 645–U20 (2009).
[CrossRef]

S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett. 94(8), 081101 (2009).
[CrossRef]

F. Li, Z. Mi, and S. Vicknesh, “Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes,” Opt. Lett. 34(19), 2915–2917 (2009).
[CrossRef] [PubMed]

Loffler, A.

S. Ates, S. Ulrich, P. Michler, S. Reitzenstein, A. Loffler, and A. Forchel, “Coherence properties of high-beta elliptical semiconductor micropillar lasers,” Appl. Phys. Lett. 90(16), 161111 (2007).
[CrossRef]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Munch, A. Loffler, M. Kamp, J. Reithmaier, V. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[CrossRef]

Mei, Y. F.

G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett. 94(14), 141901 (2009).
[CrossRef]

Mendach, S.

R. Songmuang, A. Rastelli, S. Mendach, and O. Schmidt, “SiOx/Si radial superlattices and microtube optical ring resonators,” Appl. Phys. Lett. 90(9), 091905 (2007).
[CrossRef]

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. Schmidt, “Light emission and wave guiding of quantum dots in a tube,” Appl. Phys. Lett. 88(11), 111120 (2006).
[CrossRef]

Mi, Z.

F. Li, Z. Mi, and S. Vicknesh, “Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes,” Opt. Lett. 34(19), 2915–2917 (2009).
[CrossRef] [PubMed]

S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett. 94(8), 081101 (2009).
[CrossRef]

F. Li, S. Vicknesh, and Z. Mi, “Optical modes in InGaAs/GaAs quantum dot microtube ring resonators at room temperature,” Electron. Lett. 45(12), 645–U20 (2009).
[CrossRef]

P. Bhattacharya and Z. Mi, “Quantum-dot optoelectronic devices,” Proc. IEEE 95(9), 1723–1740 (2007).
[CrossRef]

S. Chakravarty, P. Bhattacharya, and Z. Mi, “Electrically injected quantum-dot photonic crystal microcavity light-emitting arrays with air-bridge contacts,” IEEE Photon. Technol. Lett. 18(24), 2665–2667 (2006).
[CrossRef]

Michler, P.

S. Ates, S. Ulrich, P. Michler, S. Reitzenstein, A. Loffler, and A. Forchel, “Coherence properties of high-beta elliptical semiconductor micropillar lasers,” Appl. Phys. Lett. 90(16), 161111 (2007).
[CrossRef]

Munch, S.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Munch, A. Loffler, M. Kamp, J. Reithmaier, V. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[CrossRef]

Nashima, S.

M. Hosoda, Y. Kishimoto, M. Sato, S. Nashima, K. Kubota, S. Saravanan, P. Vaccaro, T. Aida, and N. Ohtani, “Quantum-well microtube constructed from a freestanding thin quantum-well layer,” Appl. Phys. Lett. 83(5), 1017–1019 (2003).
[CrossRef]

Ohtani, N.

M. Hosoda, Y. Kishimoto, M. Sato, S. Nashima, K. Kubota, S. Saravanan, P. Vaccaro, T. Aida, and N. Ohtani, “Quantum-well microtube constructed from a freestanding thin quantum-well layer,” Appl. Phys. Lett. 83(5), 1017–1019 (2003).
[CrossRef]

Pauzauskie, P.

P. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today 9(10), 36–45 (2006).
[CrossRef]

Preobrazhenskii, V.

V. Prinz, V. Seleznev, A. Gutakovsky, A. Chehovskiy, V. Preobrazhenskii, M. Putyato, and T. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Phys. E 6(1-4), 828–831 (2000).
[CrossRef]

Prinz, V.

V. Prinz, V. Seleznev, A. Gutakovsky, A. Chehovskiy, V. Preobrazhenskii, M. Putyato, and T. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Phys. E 6(1-4), 828–831 (2000).
[CrossRef]

Putyato, M.

V. Prinz, V. Seleznev, A. Gutakovsky, A. Chehovskiy, V. Preobrazhenskii, M. Putyato, and T. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Phys. E 6(1-4), 828–831 (2000).
[CrossRef]

Rastelli, A.

G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett. 94(14), 141901 (2009).
[CrossRef]

R. Songmuang, A. Rastelli, S. Mendach, and O. Schmidt, “SiOx/Si radial superlattices and microtube optical ring resonators,” Appl. Phys. Lett. 90(9), 091905 (2007).
[CrossRef]

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. Schmidt, “Light emission and wave guiding of quantum dots in a tube,” Appl. Phys. Lett. 88(11), 111120 (2006).
[CrossRef]

Rehberg, H.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101(12), 127403 (2008).
[CrossRef] [PubMed]

C. Strelow, H. Rehberg, C. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Spatial emission characteristics of a semiconductor microtube ring resonator,” Phys. E 40(6), 1836–1839 (2008).
[CrossRef]

Reithmaier, J.

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Munch, A. Loffler, M. Kamp, J. Reithmaier, V. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[CrossRef]

Reitzenstein, S.

S. Ates, S. Ulrich, P. Michler, S. Reitzenstein, A. Loffler, and A. Forchel, “Coherence properties of high-beta elliptical semiconductor micropillar lasers,” Appl. Phys. Lett. 90(16), 161111 (2007).
[CrossRef]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Munch, A. Loffler, M. Kamp, J. Reithmaier, V. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[CrossRef]

Saravanan, S.

M. Hosoda, Y. Kishimoto, M. Sato, S. Nashima, K. Kubota, S. Saravanan, P. Vaccaro, T. Aida, and N. Ohtani, “Quantum-well microtube constructed from a freestanding thin quantum-well layer,” Appl. Phys. Lett. 83(5), 1017–1019 (2003).
[CrossRef]

Sato, M.

M. Hosoda, Y. Kishimoto, M. Sato, S. Nashima, K. Kubota, S. Saravanan, P. Vaccaro, T. Aida, and N. Ohtani, “Quantum-well microtube constructed from a freestanding thin quantum-well layer,” Appl. Phys. Lett. 83(5), 1017–1019 (2003).
[CrossRef]

Scheuer, J.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “Lasing from a circular Bragg nanocavity with an ultrasmall modal volume,” Appl. Phys. Lett. 86(25), 251101 (2005).
[CrossRef]

Schmidt, O.

R. Songmuang, A. Rastelli, S. Mendach, and O. Schmidt, “SiOx/Si radial superlattices and microtube optical ring resonators,” Appl. Phys. Lett. 90(9), 091905 (2007).
[CrossRef]

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. Schmidt, “Light emission and wave guiding of quantum dots in a tube,” Appl. Phys. Lett. 88(11), 111120 (2006).
[CrossRef]

Schmidt, O. G.

G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett. 94(14), 141901 (2009).
[CrossRef]

Schultz, C.

C. Strelow, H. Rehberg, C. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Spatial emission characteristics of a semiconductor microtube ring resonator,” Phys. E 40(6), 1836–1839 (2008).
[CrossRef]

Schultz, C. M.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101(12), 127403 (2008).
[CrossRef] [PubMed]

Seleznev, V.

V. Prinz, V. Seleznev, A. Gutakovsky, A. Chehovskiy, V. Preobrazhenskii, M. Putyato, and T. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Phys. E 6(1-4), 828–831 (2000).
[CrossRef]

Shigaki, T.

M. Hosoda and T. Shigaki, “Degeneracy breaking of optical resonance modes in rolled-up spiral microtubes,” Appl. Phys. Lett. 90(18), 181107 (2007).
[CrossRef]

Solomon, G. S.

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009).
[CrossRef]

Song, Q.

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009).
[CrossRef]

Songmuang, R.

R. Songmuang, A. Rastelli, S. Mendach, and O. Schmidt, “SiOx/Si radial superlattices and microtube optical ring resonators,” Appl. Phys. Lett. 90(9), 091905 (2007).
[CrossRef]

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. Schmidt, “Light emission and wave guiding of quantum dots in a tube,” Appl. Phys. Lett. 88(11), 111120 (2006).
[CrossRef]

Strelow, C.

C. Strelow, H. Rehberg, C. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Spatial emission characteristics of a semiconductor microtube ring resonator,” Phys. E 40(6), 1836–1839 (2008).
[CrossRef]

Strelow, Ch.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101(12), 127403 (2008).
[CrossRef] [PubMed]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96(7), 077403 (2006).
[CrossRef] [PubMed]

Ulrich, S.

S. Ates, S. Ulrich, P. Michler, S. Reitzenstein, A. Loffler, and A. Forchel, “Coherence properties of high-beta elliptical semiconductor micropillar lasers,” Appl. Phys. Lett. 90(16), 161111 (2007).
[CrossRef]

Vaccaro, P.

M. Hosoda, Y. Kishimoto, M. Sato, S. Nashima, K. Kubota, S. Saravanan, P. Vaccaro, T. Aida, and N. Ohtani, “Quantum-well microtube constructed from a freestanding thin quantum-well layer,” Appl. Phys. Lett. 83(5), 1017–1019 (2003).
[CrossRef]

Vicknesh, S.

F. Li, S. Vicknesh, and Z. Mi, “Optical modes in InGaAs/GaAs quantum dot microtube ring resonators at room temperature,” Electron. Lett. 45(12), 645–U20 (2009).
[CrossRef]

S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett. 94(8), 081101 (2009).
[CrossRef]

F. Li, Z. Mi, and S. Vicknesh, “Coherent emission from ultrathin-walled spiral InGaAs/GaAs quantum dot microtubes,” Opt. Lett. 34(19), 2915–2917 (2009).
[CrossRef] [PubMed]

Vuckovic, J.

H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
[CrossRef]

Welsch, H.

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101(12), 127403 (2008).
[CrossRef] [PubMed]

C. Strelow, H. Rehberg, C. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Spatial emission characteristics of a semiconductor microtube ring resonator,” Phys. E 40(6), 1836–1839 (2008).
[CrossRef]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96(7), 077403 (2006).
[CrossRef] [PubMed]

Yang, P.

P. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today 9(10), 36–45 (2006).
[CrossRef]

Yariv, A.

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “Lasing from a circular Bragg nanocavity with an ultrasmall modal volume,” Appl. Phys. Lett. 86(25), 251101 (2005).
[CrossRef]

Appl. Phys. Lett. (10)

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009).
[CrossRef]

S. Reitzenstein, A. Bazhenov, A. Gorbunov, C. Hofmann, S. Munch, A. Loffler, M. Kamp, J. Reithmaier, V. Kulakovskii, and A. Forchel, “Lasing in high-Q quantum-dot micropillar cavities,” Appl. Phys. Lett. 89(5), 051107 (2006).
[CrossRef]

S. Ates, S. Ulrich, P. Michler, S. Reitzenstein, A. Loffler, and A. Forchel, “Coherence properties of high-beta elliptical semiconductor micropillar lasers,” Appl. Phys. Lett. 90(16), 161111 (2007).
[CrossRef]

S. Mendach, R. Songmuang, S. Kiravittaya, A. Rastelli, M. Benyoucef, and O. Schmidt, “Light emission and wave guiding of quantum dots in a tube,” Appl. Phys. Lett. 88(11), 111120 (2006).
[CrossRef]

S. Vicknesh, F. Li, and Z. Mi, “Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes,” Appl. Phys. Lett. 94(8), 081101 (2009).
[CrossRef]

M. Hosoda, Y. Kishimoto, M. Sato, S. Nashima, K. Kubota, S. Saravanan, P. Vaccaro, T. Aida, and N. Ohtani, “Quantum-well microtube constructed from a freestanding thin quantum-well layer,” Appl. Phys. Lett. 83(5), 1017–1019 (2003).
[CrossRef]

R. Songmuang, A. Rastelli, S. Mendach, and O. Schmidt, “SiOx/Si radial superlattices and microtube optical ring resonators,” Appl. Phys. Lett. 90(9), 091905 (2007).
[CrossRef]

M. Hosoda and T. Shigaki, “Degeneracy breaking of optical resonance modes in rolled-up spiral microtubes,” Appl. Phys. Lett. 90(18), 181107 (2007).
[CrossRef]

J. Scheuer, W. M. J. Green, G. A. DeRose, and A. Yariv, “Lasing from a circular Bragg nanocavity with an ultrasmall modal volume,” Appl. Phys. Lett. 86(25), 251101 (2005).
[CrossRef]

G. S. Huang, S. Kiravittaya, V. A. Bolaños Quiñones, F. Ding, M. Benyoucef, A. Rastelli, Y. F. Mei, and O. G. Schmidt, “Optical properties of rolled-up tubular microcavities from shaped nanomembranes,” Appl. Phys. Lett. 94(14), 141901 (2009).
[CrossRef]

Electron. Lett. (1)

F. Li, S. Vicknesh, and Z. Mi, “Optical modes in InGaAs/GaAs quantum dot microtube ring resonators at room temperature,” Electron. Lett. 45(12), 645–U20 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Chakravarty, P. Bhattacharya, and Z. Mi, “Electrically injected quantum-dot photonic crystal microcavity light-emitting arrays with air-bridge contacts,” IEEE Photon. Technol. Lett. 18(24), 2665–2667 (2006).
[CrossRef]

Mater. Today (1)

P. Pauzauskie and P. Yang, “Nanowire photonics,” Mater. Today 9(10), 36–45 (2006).
[CrossRef]

Nat. Phys. (1)

H. Altug, D. Englund, and J. Vuckovic, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2(7), 484–488 (2006).
[CrossRef]

Opt. Lett. (1)

Phys. E (2)

V. Prinz, V. Seleznev, A. Gutakovsky, A. Chehovskiy, V. Preobrazhenskii, M. Putyato, and T. Gavrilova, “Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays,” Phys. E 6(1-4), 828–831 (2000).
[CrossRef]

C. Strelow, H. Rehberg, C. Schultz, H. Welsch, C. Heyn, D. Heitmann, and T. Kipp, “Spatial emission characteristics of a semiconductor microtube ring resonator,” Phys. E 40(6), 1836–1839 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

Ch. Strelow, H. Rehberg, C. M. Schultz, H. Welsch, Ch. Heyn, D. Heitmann, and T. Kipp, “Optical microcavities formed by semiconductor microtubes using a bottlelike geometry,” Phys. Rev. Lett. 101(12), 127403 (2008).
[CrossRef] [PubMed]

T. Kipp, H. Welsch, Ch. Strelow, Ch. Heyn, and D. Heitmann, “Optical modes in semiconductor microtube ring resonators,” Phys. Rev. Lett. 96(7), 077403 (2006).
[CrossRef] [PubMed]

Proc. IEEE (1)

P. Bhattacharya and Z. Mi, “Quantum-dot optoelectronic devices,” Proc. IEEE 95(9), 1723–1740 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic illustration of the fabrication of rolled-up free-standing InGaAs/GaAs quantum dot microtubes and the InGaAs/GaAs quantum dot microtube laser heterostructure on GaAs (inset); (b) SEM image of a rolled-up quantum dot microtube with a modified surface geometry; (c) SEM image of a rolled-up quantum dot microtube fabricated on an etched region on GaAs.

Fig. 2
Fig. 2

(a) Emission spectrum of InGaAs/GaAs quantum dot microtube lasers measured at an absorbed pump power of ~23 μW (above threshold). The emission spectrum measured at an absorbed pump power of ~3 μW (below threshold) is shown in the inset. (b) The integrated light intensity for lasing mode at 1240.7 nm versus absorbed pump power at room temperature. Variation of the linewidth of the mode versus absorbed pump power is shown in the upper inset. A detailed view of the optical resonance mode at ~ 1240.7 nm above threshold and the fit with two Lorentzian curves are shown in the lower inset.

Fig. 3
Fig. 3

Variation of the intensity of the lasing mode at 1240.7 nm versus polarization angle, with the angles of 0° and 90° corresponding to the TE and TM polarizations, respectively. The definitions of TE and TM modes are shown in the inset for photons circulating around the periphery of the tube.

Fig. 4
Fig. 4

(a) Distribution of the simulated optical resonance mode at m=37 by the finite-difference time domain method for a rolled-up microtube with a diameter of 5.6 μm and wall thickness of ~100 nm; (b) Schematic illustrations of the first two axial field distributions associated with each azimuthal mode, due to the optical confinement along this direction.

Metrics