Abstract

Terahertz frequency quantum cascade lasers (THz QCLs) are compact solid-state sources of terahertz radiation that were first demonstrated in 2002. They have a broad range of potential applications ranging from gas sensing and non-destructive testing, through to security and medical imaging, with many polycrystalline compounds having distinct fingerprint spectra in the terahertz frequency range. In this article, we demonstrate an electrically-switchable dual-wavelength THz QCL which will enable spectroscopic information to be obtained within a THz QCL-based imaging system. The device uses the same active region for both emission wavelengths: in forward bias, the laser emits at 2.3 THz; in reverse bias, it emits at 4 THz. The corresponding threshold current densities are 490 A/cm2 and 330 A/cm2, respectively, with maximum operating temperatures of 98K and 120 K.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1(2), 97-105 (2007).
    [CrossRef]
  2. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417(6885), 156-159 (2002).
    [CrossRef]
  3. S. Kumar, Q. Hu, and J. L. Reno, "186 K operation of terahertz quantum-cascade lasers based on a diagonal design," Appl. Phys. Lett. 94(13), 131105 (2009).
    [CrossRef]
  4. B. S. Williams, "THz quantum cascade lasers," Nat. Photonics 1, 517-525 (2007).
    [CrossRef]
  5. G. Scalari, C. Walther, J. Faist, H. Beere, and D. Ritchie, "Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz," Appl. Phys. Lett. 88(14), 141,102 (2006).
  6. J. R. Freeman, O. P. Marshall, H. E. Beere, and D. A. Ritchie, "Electrically switchable emission in terahertz quantum cascade lasers," Opt. Express 16(24), 19,830-19,835 (2008).
  7. C. Gmachl, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, F. Capasso, and A. Y. Cho, "Bidirectional Semiconductor Laser," Science 286(5440), 749-752 (1999).
    [CrossRef]
  8. B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82(7), 1015-1017 (2003).
    [CrossRef]
  9. M. A. Stroscio, M. Kisin, G. Belenky, and S. Luryi, "Phonon enhanced inverse population in asymmetric double quantum wells," Appl. Phys. Lett. 75(21), 3258-3260 (1999).
    [CrossRef]
  10. P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 2nd ed. (Wiley, Chichester, 2005).
    [CrossRef] [PubMed]
  11. Z. Ikonic, P. Harrison, and R.W. Kelsall, "Self-consistent energy balance simulations of hole dynamics in SiGe/Si THz quantum cascade structures," J. Appl. Phys. 96(11), 6803-6811 (2004).
    [CrossRef]
  12. T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, "Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities," J. Appl. Phys. 93(3), 1586-1597 (2003).
    [CrossRef]
  13. P. Harrison, D. Indjin, and R. W. Kelsall, "Electron temperature and mechanisms of hot carrier generation in quantum cascade lasers," J. Appl. Phys. 92(11), 6921-6923 (2002).
    [CrossRef]
  14. V. D. Jovanovic, S. Hofling, D. Indjin, N. Vukmirovic, Z. Ikonic, P. Harrison, J. P. Reithmaier, and A. Forchel, "Influence of doping density on electron dynamics in GaAs/AlGaAs quantum cascade lasers," J. Appl. Phys. 99(10), 103106 (2006).
    [CrossRef]
  15. A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, "Intersubband linewidths in quantum cascade laser designs," Appl. Phys. Lett. 93(14), 141,103 (2008).
  16. S. Kumar, B. Williams, Q. Hu, and J. Reno, "1.9 THz quantum-cascade lasers with one-well injector," Appl. Phys. Lett. 88, 121,123 (2006).
    [CrossRef]
  17. B. S. Williams, S. Kumar, H. Callebaut, H. Qing, and J. L. Reno, "Terahertz quantum-cascade laser atl ¼100 mm using metal waveguide for mode confinement," Appl. Phys. Lett. 83(11), 2124-6 (2003).
    [CrossRef]
  18. M. M. V. Taklo, P. Storas, K. Schjolberg-Henriksen, H. K. Hasting, and H. Jakobsen, "Strong, high-yield and lowtemperature thermocompression silicon wafer-level bonding with gold," J. Micromechanics Microeng. 14(7), 884-90 (2004).
    [CrossRef]
  19. C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, "Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz," Appl. Phys. Lett. 89(23), 231121 (2006).
    [CrossRef]
  20. S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, "1.9 THz quantum-cascade lasers with one-well injector," Appl. Phys. Lett. 88(12), 121-123 (2006).
  21. S. Kumar, B. S. Williams, S. Kohen, Q. Hu, and J. L. Reno, "Continuous-wave operation of terahertz quantumcascade lasers above liquid-nitrogen temperature," Appl. Phys. Lett. 84(14), 2494-2496 (2004).
    [CrossRef]
  22. H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, "Terahertz quantum-cascade lasers based on a three-well active module," Appl. Phys. Lett. 90, 112-141 (2007).
    [CrossRef]
  23. M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, "Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K," Opt. Express 16(5), 3242-3248 (2008).
    [CrossRef]
  24. S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97(5), 053106 (2005).
    [CrossRef]
  25. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, "Determination of Guided and Leaky Modes in Lossless and Lossy Planar Multilayer Optical Waveguides: Reflection Pole Method and Wavevector Density Method," J. Lightwave Technol. 17(5), 929 (1999).
    [CrossRef]

2009 (1)

S. Kumar, Q. Hu, and J. L. Reno, "186 K operation of terahertz quantum-cascade lasers based on a diagonal design," Appl. Phys. Lett. 94(13), 131105 (2009).
[CrossRef]

2008 (3)

J. R. Freeman, O. P. Marshall, H. E. Beere, and D. A. Ritchie, "Electrically switchable emission in terahertz quantum cascade lasers," Opt. Express 16(24), 19,830-19,835 (2008).

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, "Intersubband linewidths in quantum cascade laser designs," Appl. Phys. Lett. 93(14), 141,103 (2008).

M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, "Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K," Opt. Express 16(5), 3242-3248 (2008).
[CrossRef]

2007 (3)

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, "Terahertz quantum-cascade lasers based on a three-well active module," Appl. Phys. Lett. 90, 112-141 (2007).
[CrossRef]

B. S. Williams, "THz quantum cascade lasers," Nat. Photonics 1, 517-525 (2007).
[CrossRef]

M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1(2), 97-105 (2007).
[CrossRef]

2006 (5)

G. Scalari, C. Walther, J. Faist, H. Beere, and D. Ritchie, "Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz," Appl. Phys. Lett. 88(14), 141,102 (2006).

S. Kumar, B. Williams, Q. Hu, and J. Reno, "1.9 THz quantum-cascade lasers with one-well injector," Appl. Phys. Lett. 88, 121,123 (2006).
[CrossRef]

V. D. Jovanovic, S. Hofling, D. Indjin, N. Vukmirovic, Z. Ikonic, P. Harrison, J. P. Reithmaier, and A. Forchel, "Influence of doping density on electron dynamics in GaAs/AlGaAs quantum cascade lasers," J. Appl. Phys. 99(10), 103106 (2006).
[CrossRef]

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, "Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz," Appl. Phys. Lett. 89(23), 231121 (2006).
[CrossRef]

S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, "1.9 THz quantum-cascade lasers with one-well injector," Appl. Phys. Lett. 88(12), 121-123 (2006).

2005 (1)

S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97(5), 053106 (2005).
[CrossRef]

2004 (3)

S. Kumar, B. S. Williams, S. Kohen, Q. Hu, and J. L. Reno, "Continuous-wave operation of terahertz quantumcascade lasers above liquid-nitrogen temperature," Appl. Phys. Lett. 84(14), 2494-2496 (2004).
[CrossRef]

M. M. V. Taklo, P. Storas, K. Schjolberg-Henriksen, H. K. Hasting, and H. Jakobsen, "Strong, high-yield and lowtemperature thermocompression silicon wafer-level bonding with gold," J. Micromechanics Microeng. 14(7), 884-90 (2004).
[CrossRef]

Z. Ikonic, P. Harrison, and R.W. Kelsall, "Self-consistent energy balance simulations of hole dynamics in SiGe/Si THz quantum cascade structures," J. Appl. Phys. 96(11), 6803-6811 (2004).
[CrossRef]

2003 (3)

T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, "Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities," J. Appl. Phys. 93(3), 1586-1597 (2003).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, H. Qing, and J. L. Reno, "Terahertz quantum-cascade laser atl ¼100 mm using metal waveguide for mode confinement," Appl. Phys. Lett. 83(11), 2124-6 (2003).
[CrossRef]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82(7), 1015-1017 (2003).
[CrossRef]

2002 (2)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417(6885), 156-159 (2002).
[CrossRef]

P. Harrison, D. Indjin, and R. W. Kelsall, "Electron temperature and mechanisms of hot carrier generation in quantum cascade lasers," J. Appl. Phys. 92(11), 6921-6923 (2002).
[CrossRef]

1999 (3)

M. A. Stroscio, M. Kisin, G. Belenky, and S. Luryi, "Phonon enhanced inverse population in asymmetric double quantum wells," Appl. Phys. Lett. 75(21), 3258-3260 (1999).
[CrossRef]

C. Gmachl, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, F. Capasso, and A. Y. Cho, "Bidirectional Semiconductor Laser," Science 286(5440), 749-752 (1999).
[CrossRef]

E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, "Determination of Guided and Leaky Modes in Lossless and Lossy Planar Multilayer Optical Waveguides: Reflection Pole Method and Wavevector Density Method," J. Lightwave Technol. 17(5), 929 (1999).
[CrossRef]

Aers, G. C.

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, "Terahertz quantum-cascade lasers based on a three-well active module," Appl. Phys. Lett. 90, 112-141 (2007).
[CrossRef]

Akiyama, H.

T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, "Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities," J. Appl. Phys. 93(3), 1586-1597 (2003).
[CrossRef]

Anemogiannis, E.

Beere, H.

G. Scalari, C. Walther, J. Faist, H. Beere, and D. Ritchie, "Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz," Appl. Phys. Lett. 88(14), 141,102 (2006).

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, "Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz," Appl. Phys. Lett. 89(23), 231121 (2006).
[CrossRef]

Beere, H. E.

J. R. Freeman, O. P. Marshall, H. E. Beere, and D. A. Ritchie, "Electrically switchable emission in terahertz quantum cascade lasers," Opt. Express 16(24), 19,830-19,835 (2008).

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417(6885), 156-159 (2002).
[CrossRef]

Belenky, G.

M. A. Stroscio, M. Kisin, G. Belenky, and S. Luryi, "Phonon enhanced inverse population in asymmetric double quantum wells," Appl. Phys. Lett. 75(21), 3258-3260 (1999).
[CrossRef]

Belkin, M. A.

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417(6885), 156-159 (2002).
[CrossRef]

Bonetti, Y.

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, "Intersubband linewidths in quantum cascade laser designs," Appl. Phys. Lett. 93(14), 141,103 (2008).

Callebaut, H.

B. S. Williams, S. Kumar, H. Callebaut, H. Qing, and J. L. Reno, "Terahertz quantum-cascade laser atl ¼100 mm using metal waveguide for mode confinement," Appl. Phys. Lett. 83(11), 2124-6 (2003).
[CrossRef]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82(7), 1015-1017 (2003).
[CrossRef]

Cao, J. C.

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, "Terahertz quantum-cascade lasers based on a three-well active module," Appl. Phys. Lett. 90, 112-141 (2007).
[CrossRef]

Capasso, F.

Cho, A. Y.

C. Gmachl, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, F. Capasso, and A. Y. Cho, "Bidirectional Semiconductor Laser," Science 286(5440), 749-752 (1999).
[CrossRef]

Davies, A. G.

M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, "Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K," Opt. Express 16(5), 3242-3248 (2008).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417(6885), 156-159 (2002).
[CrossRef]

Faist, J.

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, "Intersubband linewidths in quantum cascade laser designs," Appl. Phys. Lett. 93(14), 141,103 (2008).

G. Scalari, C. Walther, J. Faist, H. Beere, and D. Ritchie, "Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz," Appl. Phys. Lett. 88(14), 141,102 (2006).

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, "Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz," Appl. Phys. Lett. 89(23), 231121 (2006).
[CrossRef]

Fan, J. A.

Forchel, A.

V. D. Jovanovic, S. Hofling, D. Indjin, N. Vukmirovic, Z. Ikonic, P. Harrison, J. P. Reithmaier, and A. Forchel, "Influence of doping density on electron dynamics in GaAs/AlGaAs quantum cascade lasers," J. Appl. Phys. 99(10), 103106 (2006).
[CrossRef]

Freeman, J. R.

J. R. Freeman, O. P. Marshall, H. E. Beere, and D. A. Ritchie, "Electrically switchable emission in terahertz quantum cascade lasers," Opt. Express 16(24), 19,830-19,835 (2008).

Gaylord, T. K.

Gini, E.

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, "Intersubband linewidths in quantum cascade laser designs," Appl. Phys. Lett. 93(14), 141,103 (2008).

Giovannini, M.

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, "Intersubband linewidths in quantum cascade laser designs," Appl. Phys. Lett. 93(14), 141,103 (2008).

Glytsis, E. N.

Gmachl, C.

C. Gmachl, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, F. Capasso, and A. Y. Cho, "Bidirectional Semiconductor Laser," Science 286(5440), 749-752 (1999).
[CrossRef]

Harrison, P.

V. D. Jovanovic, S. Hofling, D. Indjin, N. Vukmirovic, Z. Ikonic, P. Harrison, J. P. Reithmaier, and A. Forchel, "Influence of doping density on electron dynamics in GaAs/AlGaAs quantum cascade lasers," J. Appl. Phys. 99(10), 103106 (2006).
[CrossRef]

Z. Ikonic, P. Harrison, and R.W. Kelsall, "Self-consistent energy balance simulations of hole dynamics in SiGe/Si THz quantum cascade structures," J. Appl. Phys. 96(11), 6803-6811 (2004).
[CrossRef]

P. Harrison, D. Indjin, and R. W. Kelsall, "Electron temperature and mechanisms of hot carrier generation in quantum cascade lasers," J. Appl. Phys. 92(11), 6921-6923 (2002).
[CrossRef]

Hasting, H. K.

M. M. V. Taklo, P. Storas, K. Schjolberg-Henriksen, H. K. Hasting, and H. Jakobsen, "Strong, high-yield and lowtemperature thermocompression silicon wafer-level bonding with gold," J. Micromechanics Microeng. 14(7), 884-90 (2004).
[CrossRef]

Hofling, S.

V. D. Jovanovic, S. Hofling, D. Indjin, N. Vukmirovic, Z. Ikonic, P. Harrison, J. P. Reithmaier, and A. Forchel, "Influence of doping density on electron dynamics in GaAs/AlGaAs quantum cascade lasers," J. Appl. Phys. 99(10), 103106 (2006).
[CrossRef]

Hormoz, S.

Hu, Q.

S. Kumar, Q. Hu, and J. L. Reno, "186 K operation of terahertz quantum-cascade lasers based on a diagonal design," Appl. Phys. Lett. 94(13), 131105 (2009).
[CrossRef]

S. Kumar, B. Williams, Q. Hu, and J. Reno, "1.9 THz quantum-cascade lasers with one-well injector," Appl. Phys. Lett. 88, 121,123 (2006).
[CrossRef]

S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, "1.9 THz quantum-cascade lasers with one-well injector," Appl. Phys. Lett. 88(12), 121-123 (2006).

S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97(5), 053106 (2005).
[CrossRef]

S. Kumar, B. S. Williams, S. Kohen, Q. Hu, and J. L. Reno, "Continuous-wave operation of terahertz quantumcascade lasers above liquid-nitrogen temperature," Appl. Phys. Lett. 84(14), 2494-2496 (2004).
[CrossRef]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82(7), 1015-1017 (2003).
[CrossRef]

Hutchinson, A. L.

C. Gmachl, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, F. Capasso, and A. Y. Cho, "Bidirectional Semiconductor Laser," Science 286(5440), 749-752 (1999).
[CrossRef]

Ikonic, Z.

V. D. Jovanovic, S. Hofling, D. Indjin, N. Vukmirovic, Z. Ikonic, P. Harrison, J. P. Reithmaier, and A. Forchel, "Influence of doping density on electron dynamics in GaAs/AlGaAs quantum cascade lasers," J. Appl. Phys. 99(10), 103106 (2006).
[CrossRef]

Z. Ikonic, P. Harrison, and R.W. Kelsall, "Self-consistent energy balance simulations of hole dynamics in SiGe/Si THz quantum cascade structures," J. Appl. Phys. 96(11), 6803-6811 (2004).
[CrossRef]

Indjin, D.

V. D. Jovanovic, S. Hofling, D. Indjin, N. Vukmirovic, Z. Ikonic, P. Harrison, J. P. Reithmaier, and A. Forchel, "Influence of doping density on electron dynamics in GaAs/AlGaAs quantum cascade lasers," J. Appl. Phys. 99(10), 103106 (2006).
[CrossRef]

P. Harrison, D. Indjin, and R. W. Kelsall, "Electron temperature and mechanisms of hot carrier generation in quantum cascade lasers," J. Appl. Phys. 92(11), 6921-6923 (2002).
[CrossRef]

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417(6885), 156-159 (2002).
[CrossRef]

Jakobsen, H.

M. M. V. Taklo, P. Storas, K. Schjolberg-Henriksen, H. K. Hasting, and H. Jakobsen, "Strong, high-yield and lowtemperature thermocompression silicon wafer-level bonding with gold," J. Micromechanics Microeng. 14(7), 884-90 (2004).
[CrossRef]

Jovanovic, V. D.

V. D. Jovanovic, S. Hofling, D. Indjin, N. Vukmirovic, Z. Ikonic, P. Harrison, J. P. Reithmaier, and A. Forchel, "Influence of doping density on electron dynamics in GaAs/AlGaAs quantum cascade lasers," J. Appl. Phys. 99(10), 103106 (2006).
[CrossRef]

Kelsall, R. W.

P. Harrison, D. Indjin, and R. W. Kelsall, "Electron temperature and mechanisms of hot carrier generation in quantum cascade lasers," J. Appl. Phys. 92(11), 6921-6923 (2002).
[CrossRef]

Kelsall, R.W.

Z. Ikonic, P. Harrison, and R.W. Kelsall, "Self-consistent energy balance simulations of hole dynamics in SiGe/Si THz quantum cascade structures," J. Appl. Phys. 96(11), 6803-6811 (2004).
[CrossRef]

Khanna, S. P.

Kisin, M.

M. A. Stroscio, M. Kisin, G. Belenky, and S. Luryi, "Phonon enhanced inverse population in asymmetric double quantum wells," Appl. Phys. Lett. 75(21), 3258-3260 (1999).
[CrossRef]

Kohen, S.

S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97(5), 053106 (2005).
[CrossRef]

S. Kumar, B. S. Williams, S. Kohen, Q. Hu, and J. L. Reno, "Continuous-wave operation of terahertz quantumcascade lasers above liquid-nitrogen temperature," Appl. Phys. Lett. 84(14), 2494-2496 (2004).
[CrossRef]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417(6885), 156-159 (2002).
[CrossRef]

Kumar, S.

S. Kumar, Q. Hu, and J. L. Reno, "186 K operation of terahertz quantum-cascade lasers based on a diagonal design," Appl. Phys. Lett. 94(13), 131105 (2009).
[CrossRef]

S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, "1.9 THz quantum-cascade lasers with one-well injector," Appl. Phys. Lett. 88(12), 121-123 (2006).

S. Kumar, B. Williams, Q. Hu, and J. Reno, "1.9 THz quantum-cascade lasers with one-well injector," Appl. Phys. Lett. 88, 121,123 (2006).
[CrossRef]

S. Kumar, B. S. Williams, S. Kohen, Q. Hu, and J. L. Reno, "Continuous-wave operation of terahertz quantumcascade lasers above liquid-nitrogen temperature," Appl. Phys. Lett. 84(14), 2494-2496 (2004).
[CrossRef]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82(7), 1015-1017 (2003).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, H. Qing, and J. L. Reno, "Terahertz quantum-cascade laser atl ¼100 mm using metal waveguide for mode confinement," Appl. Phys. Lett. 83(11), 2124-6 (2003).
[CrossRef]

Lachab, M.

Laframboise, S. R.

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, "Terahertz quantum-cascade lasers based on a three-well active module," Appl. Phys. Lett. 90, 112-141 (2007).
[CrossRef]

Linfield, E. H.

M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, "Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K," Opt. Express 16(5), 3242-3248 (2008).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417(6885), 156-159 (2002).
[CrossRef]

Liu, H. C.

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, "Terahertz quantum-cascade lasers based on a three-well active module," Appl. Phys. Lett. 90, 112-141 (2007).
[CrossRef]

Luo, H.

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, "Terahertz quantum-cascade lasers based on a three-well active module," Appl. Phys. Lett. 90, 112-141 (2007).
[CrossRef]

Luryi, S.

M. A. Stroscio, M. Kisin, G. Belenky, and S. Luryi, "Phonon enhanced inverse population in asymmetric double quantum wells," Appl. Phys. Lett. 75(21), 3258-3260 (1999).
[CrossRef]

Marshall, O. P.

J. R. Freeman, O. P. Marshall, H. E. Beere, and D. A. Ritchie, "Electrically switchable emission in terahertz quantum cascade lasers," Opt. Express 16(24), 19,830-19,835 (2008).

Noda, T.

T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, "Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities," J. Appl. Phys. 93(3), 1586-1597 (2003).
[CrossRef]

Qing, H.

B. S. Williams, S. Kumar, H. Callebaut, H. Qing, and J. L. Reno, "Terahertz quantum-cascade laser atl ¼100 mm using metal waveguide for mode confinement," Appl. Phys. Lett. 83(11), 2124-6 (2003).
[CrossRef]

Reithmaier, J. P.

V. D. Jovanovic, S. Hofling, D. Indjin, N. Vukmirovic, Z. Ikonic, P. Harrison, J. P. Reithmaier, and A. Forchel, "Influence of doping density on electron dynamics in GaAs/AlGaAs quantum cascade lasers," J. Appl. Phys. 99(10), 103106 (2006).
[CrossRef]

Reno, J.

S. Kumar, B. Williams, Q. Hu, and J. Reno, "1.9 THz quantum-cascade lasers with one-well injector," Appl. Phys. Lett. 88, 121,123 (2006).
[CrossRef]

Reno, J. L.

S. Kumar, Q. Hu, and J. L. Reno, "186 K operation of terahertz quantum-cascade lasers based on a diagonal design," Appl. Phys. Lett. 94(13), 131105 (2009).
[CrossRef]

S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, "1.9 THz quantum-cascade lasers with one-well injector," Appl. Phys. Lett. 88(12), 121-123 (2006).

S. Kumar, B. S. Williams, S. Kohen, Q. Hu, and J. L. Reno, "Continuous-wave operation of terahertz quantumcascade lasers above liquid-nitrogen temperature," Appl. Phys. Lett. 84(14), 2494-2496 (2004).
[CrossRef]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82(7), 1015-1017 (2003).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, H. Qing, and J. L. Reno, "Terahertz quantum-cascade laser atl ¼100 mm using metal waveguide for mode confinement," Appl. Phys. Lett. 83(11), 2124-6 (2003).
[CrossRef]

Ritchie, D.

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, "Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz," Appl. Phys. Lett. 89(23), 231121 (2006).
[CrossRef]

G. Scalari, C. Walther, J. Faist, H. Beere, and D. Ritchie, "Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz," Appl. Phys. Lett. 88(14), 141,102 (2006).

Ritchie, D. A.

J. R. Freeman, O. P. Marshall, H. E. Beere, and D. A. Ritchie, "Electrically switchable emission in terahertz quantum cascade lasers," Opt. Express 16(24), 19,830-19,835 (2008).

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417(6885), 156-159 (2002).
[CrossRef]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417(6885), 156-159 (2002).
[CrossRef]

Sakaki, H.

T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, "Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities," J. Appl. Phys. 93(3), 1586-1597 (2003).
[CrossRef]

Scalari, G.

G. Scalari, C. Walther, J. Faist, H. Beere, and D. Ritchie, "Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz," Appl. Phys. Lett. 88(14), 141,102 (2006).

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, "Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz," Appl. Phys. Lett. 89(23), 231121 (2006).
[CrossRef]

Schjolberg-Henriksen, K.

M. M. V. Taklo, P. Storas, K. Schjolberg-Henriksen, H. K. Hasting, and H. Jakobsen, "Strong, high-yield and lowtemperature thermocompression silicon wafer-level bonding with gold," J. Micromechanics Microeng. 14(7), 884-90 (2004).
[CrossRef]

Sivco, D. L.

C. Gmachl, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, F. Capasso, and A. Y. Cho, "Bidirectional Semiconductor Laser," Science 286(5440), 749-752 (1999).
[CrossRef]

Storas, P.

M. M. V. Taklo, P. Storas, K. Schjolberg-Henriksen, H. K. Hasting, and H. Jakobsen, "Strong, high-yield and lowtemperature thermocompression silicon wafer-level bonding with gold," J. Micromechanics Microeng. 14(7), 884-90 (2004).
[CrossRef]

Stroscio, M. A.

M. A. Stroscio, M. Kisin, G. Belenky, and S. Luryi, "Phonon enhanced inverse population in asymmetric double quantum wells," Appl. Phys. Lett. 75(21), 3258-3260 (1999).
[CrossRef]

Taklo, M. M. V.

M. M. V. Taklo, P. Storas, K. Schjolberg-Henriksen, H. K. Hasting, and H. Jakobsen, "Strong, high-yield and lowtemperature thermocompression silicon wafer-level bonding with gold," J. Micromechanics Microeng. 14(7), 884-90 (2004).
[CrossRef]

Tonouchi, M.

M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1(2), 97-105 (2007).
[CrossRef]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417(6885), 156-159 (2002).
[CrossRef]

C. Gmachl, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, F. Capasso, and A. Y. Cho, "Bidirectional Semiconductor Laser," Science 286(5440), 749-752 (1999).
[CrossRef]

Unuma, T.

T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, "Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities," J. Appl. Phys. 93(3), 1586-1597 (2003).
[CrossRef]

Vukmirovic, N.

V. D. Jovanovic, S. Hofling, D. Indjin, N. Vukmirovic, Z. Ikonic, P. Harrison, J. P. Reithmaier, and A. Forchel, "Influence of doping density on electron dynamics in GaAs/AlGaAs quantum cascade lasers," J. Appl. Phys. 99(10), 103106 (2006).
[CrossRef]

Walther, C.

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, "Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz," Appl. Phys. Lett. 89(23), 231121 (2006).
[CrossRef]

G. Scalari, C. Walther, J. Faist, H. Beere, and D. Ritchie, "Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz," Appl. Phys. Lett. 88(14), 141,102 (2006).

Wasilewski, Z. R.

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, "Terahertz quantum-cascade lasers based on a three-well active module," Appl. Phys. Lett. 90, 112-141 (2007).
[CrossRef]

Williams, B.

S. Kumar, B. Williams, Q. Hu, and J. Reno, "1.9 THz quantum-cascade lasers with one-well injector," Appl. Phys. Lett. 88, 121,123 (2006).
[CrossRef]

Williams, B. S.

B. S. Williams, "THz quantum cascade lasers," Nat. Photonics 1, 517-525 (2007).
[CrossRef]

S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, "1.9 THz quantum-cascade lasers with one-well injector," Appl. Phys. Lett. 88(12), 121-123 (2006).

S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97(5), 053106 (2005).
[CrossRef]

S. Kumar, B. S. Williams, S. Kohen, Q. Hu, and J. L. Reno, "Continuous-wave operation of terahertz quantumcascade lasers above liquid-nitrogen temperature," Appl. Phys. Lett. 84(14), 2494-2496 (2004).
[CrossRef]

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82(7), 1015-1017 (2003).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, H. Qing, and J. L. Reno, "Terahertz quantum-cascade laser atl ¼100 mm using metal waveguide for mode confinement," Appl. Phys. Lett. 83(11), 2124-6 (2003).
[CrossRef]

Wittmann, A.

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, "Intersubband linewidths in quantum cascade laser designs," Appl. Phys. Lett. 93(14), 141,103 (2008).

Yoshita, M.

T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, "Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities," J. Appl. Phys. 93(3), 1586-1597 (2003).
[CrossRef]

Appl. Phys. Lett. (11)

S. Kumar, Q. Hu, and J. L. Reno, "186 K operation of terahertz quantum-cascade lasers based on a diagonal design," Appl. Phys. Lett. 94(13), 131105 (2009).
[CrossRef]

G. Scalari, C. Walther, J. Faist, H. Beere, and D. Ritchie, "Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz," Appl. Phys. Lett. 88(14), 141,102 (2006).

B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, "3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation," Appl. Phys. Lett. 82(7), 1015-1017 (2003).
[CrossRef]

M. A. Stroscio, M. Kisin, G. Belenky, and S. Luryi, "Phonon enhanced inverse population in asymmetric double quantum wells," Appl. Phys. Lett. 75(21), 3258-3260 (1999).
[CrossRef]

A. Wittmann, Y. Bonetti, J. Faist, E. Gini, and M. Giovannini, "Intersubband linewidths in quantum cascade laser designs," Appl. Phys. Lett. 93(14), 141,103 (2008).

S. Kumar, B. Williams, Q. Hu, and J. Reno, "1.9 THz quantum-cascade lasers with one-well injector," Appl. Phys. Lett. 88, 121,123 (2006).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, H. Qing, and J. L. Reno, "Terahertz quantum-cascade laser atl ¼100 mm using metal waveguide for mode confinement," Appl. Phys. Lett. 83(11), 2124-6 (2003).
[CrossRef]

C. Walther, G. Scalari, J. Faist, H. Beere, and D. Ritchie, "Low frequency terahertz quantum cascade laser operating from 1.6 to 1.8 THz," Appl. Phys. Lett. 89(23), 231121 (2006).
[CrossRef]

S. Kumar, B. S. Williams, Q. Hu, and J. L. Reno, "1.9 THz quantum-cascade lasers with one-well injector," Appl. Phys. Lett. 88(12), 121-123 (2006).

S. Kumar, B. S. Williams, S. Kohen, Q. Hu, and J. L. Reno, "Continuous-wave operation of terahertz quantumcascade lasers above liquid-nitrogen temperature," Appl. Phys. Lett. 84(14), 2494-2496 (2004).
[CrossRef]

H. Luo, S. R. Laframboise, Z. R. Wasilewski, G. C. Aers, H. C. Liu, and J. C. Cao, "Terahertz quantum-cascade lasers based on a three-well active module," Appl. Phys. Lett. 90, 112-141 (2007).
[CrossRef]

J. Appl. Phys. (5)

S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97(5), 053106 (2005).
[CrossRef]

Z. Ikonic, P. Harrison, and R.W. Kelsall, "Self-consistent energy balance simulations of hole dynamics in SiGe/Si THz quantum cascade structures," J. Appl. Phys. 96(11), 6803-6811 (2004).
[CrossRef]

T. Unuma, M. Yoshita, T. Noda, H. Sakaki, and H. Akiyama, "Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities," J. Appl. Phys. 93(3), 1586-1597 (2003).
[CrossRef]

P. Harrison, D. Indjin, and R. W. Kelsall, "Electron temperature and mechanisms of hot carrier generation in quantum cascade lasers," J. Appl. Phys. 92(11), 6921-6923 (2002).
[CrossRef]

V. D. Jovanovic, S. Hofling, D. Indjin, N. Vukmirovic, Z. Ikonic, P. Harrison, J. P. Reithmaier, and A. Forchel, "Influence of doping density on electron dynamics in GaAs/AlGaAs quantum cascade lasers," J. Appl. Phys. 99(10), 103106 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Micromechanics Microeng. (1)

M. M. V. Taklo, P. Storas, K. Schjolberg-Henriksen, H. K. Hasting, and H. Jakobsen, "Strong, high-yield and lowtemperature thermocompression silicon wafer-level bonding with gold," J. Micromechanics Microeng. 14(7), 884-90 (2004).
[CrossRef]

Nat. Photonics (2)

B. S. Williams, "THz quantum cascade lasers," Nat. Photonics 1, 517-525 (2007).
[CrossRef]

M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1(2), 97-105 (2007).
[CrossRef]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417(6885), 156-159 (2002).
[CrossRef]

Opt. Express (2)

J. R. Freeman, O. P. Marshall, H. E. Beere, and D. A. Ritchie, "Electrically switchable emission in terahertz quantum cascade lasers," Opt. Express 16(24), 19,830-19,835 (2008).

M. A. Belkin, J. A. Fan, S. Hormoz, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, "Terahertz quantum cascade lasers with copper metal-metal waveguides operating up to 178 K," Opt. Express 16(5), 3242-3248 (2008).
[CrossRef]

Science (1)

C. Gmachl, A. Tredicucci, D. L. Sivco, A. L. Hutchinson, F. Capasso, and A. Y. Cho, "Bidirectional Semiconductor Laser," Science 286(5440), 749-752 (1999).
[CrossRef]

Other (1)

P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 2nd ed. (Wiley, Chichester, 2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Conduction band diagrams under (a) forward bias of 8.8 kV/cm and (b) reverse bias of 10.0 kV/cm, with the squared magnitude of the wavefunctions illustrated. The radiative transition is from state 4 into state 3 under both biases. The epitaxial layer thicknesses, in nm, are: 4.6, 17.0, 4.4, 7.5, 2.3, 8.0, 1.7 & 7.0, where the Al0:15Ga0:85As barriers are shown in bold font, the GaAs wells are in plain font, and the central 5.6 nm of the underlined well is doped at 5×1016 cm-3 to provide a sheet doping density of 2.8×1010 cm-2.

Fig. 2.
Fig. 2.

Simulated gain (or negative absorption) at 25 K. (a) Under a forward bias of 8.8 kV/cm, the gain peak at 2.5 THz from the radiative transition 4→3 is far from the absorbing transition 4→5. (b) Under a reverse bias of 10.0 kV/cm, the gain peak is at 4.0 THz, and the 4→5 absorption peak is at 3.2 THz. These peaks are sufficiently separated to be clearly resolved, and hence avoid the emitted radiation being re-absorbed.

Fig. 3.
Fig. 3.

Current-voltage characteristics and optical power for a range of heatsink temperatures, under (a) forward bias, and (b) reverse bias. The device was 1.66mm long and 175 µm wide.

Fig. 4.
Fig. 4.

Emission spectra at 25 K. (a) Forward bias emission centered at 2.3 THz, and (b) reverse bias emission centered at 4.0 THz. Very little Stark shift is observed in the emission frequencies, which is characteristic of vertical intersubband transitions.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γi,j= (1τi+1τj)

Metrics