Abstract

This work presents the development of a novel micromachined 2x2 optical switch monolithically integrated with variable optical attenuators. The proposed device can be easily realized by a standard manufacturing process with single photo mask. The key to realizing this device by such a simple approach is the employment the split-cross-bar (SCB) configuration. With this configuration, the fabrication challenges and layout constraints for accommodating all the sub-components of this dual-function device can be completely eliminated. The monolithically-integrated system has four movable mirrors, two bi-stable mechanisms and six actuators. The switching of optical signals is achieved by moving the mirrors attached on the bi-stable mechanisms using four of the actuators. The attenuation of optical power is carried out by moving the mirrors using the other two actuators and the bi-stable mechanisms. Also, only simple in-plane motions are needed for these sub-components to achieve all the functionalities. In addition, the adaption of bi-stable mechanisms can reduce the power consumption and simplify the actuation scheme. The measured insertion losses for both channels are about 1.0~1.1 dB, and the cross-talk is less than −60 dB. The attenuation range is about 30 dB for a maximum applied voltage of 20 V. Also, the measured switching time is less than 4 ms.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
    [CrossRef]
  2. M. C. Wu, A. Solgaard, and J. E. Ford, “Optical MEMS for lightwave communication,” J. Lightwave Technol. 24(12), 4433–4454 (2006).
    [CrossRef]
  3. R. Guerre, C. Hibert, Y. Burri, P. Fluckiger, and P. Renaud, “Fabrication of vertical digital silicon optical micromirrors on suspended electrode for guided-wave optical switching applications,” Sens. Actuators A Phys. 123–124, 570–583 (2005).
  4. W. Li, J. Q. Liang, Z. Z. Liang, X. Q. Li, W. B. Wang, Y. C. Zhong, and D. G. Sun, “Design and fabrication of a micro-optic switch,” Opt. Express 16(9), 6324–6330 (2008).
    [CrossRef] [PubMed]
  5. C. Marxer, C. Thio, M. A. Gretillat, N. F. deRooij, R. Battig, O. Anthamatten, B. Valk, and P. Vogel, “Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications,” J. Microelectromech. Syst. 6(3), 277–285 (1997).
    [CrossRef]
  6. A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
    [CrossRef] [PubMed]
  7. X. M. Zhang, Q. W. Zhao, A. Q. Liu, J. Zhang, J. H. Lau, and C. H. Kam, “Asymmetric tuning schemes of MEMS dual-shutter VOA,” J. Lightwave Technol. 26(5), 569–579 (2008).
    [CrossRef]
  8. S. H. Hung, H. T. Hsieh, and G. D. J. Su, “An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation,” J. Micromech. Microeng. 18(7), 075003 (2008).
    [CrossRef]
  9. K. Isamoto, K. Kato, A. Morosawa, C. H. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron. 10(3), 570–578 (2004).
    [CrossRef]
  10. C. Marxer, P. Griss, and N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett. 11(2), 233–235 (1999).
    [CrossRef]
  11. C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” IEEE J. Sel. Top. Quantum Electron. 5(1), 18–25 (1999).
    [CrossRef]
  12. Q. H. Chen, W. G. Wu, G. Z. Yan, Z. Q. Wang, and Y. L. Hao, “Novel multifunctional device for optical power splitting, switching, and attenuating,” IEEE Photon. Technol. Lett. 20(8), 632–634 (2008).
    [CrossRef]
  13. Y. J. Yang, B. T. Liao, and W. C. Kuo, “A novel 2x2 MEMS optical switch using the split cross-bar design,” J. Micromech. Microeng. 17(5), 875–882 (2007).
    [CrossRef]
  14. C. Lee, “A MEMS VOA using electrothermal actuators,” J. Lightwave Technol. 25(2), 490–498 (2007).
    [CrossRef]
  15. D. A. Horsley, W. O. Davis, K. J. Hogan, M. R. Hart, E. C. Ying, M. Chaparala, B. Behin, M. J. Daneman, and M. H. Kiang, “Optical and mechanical performance of a novel magnetically actuated MEMS-based optical switch,” J. Microelectromech. Syst. 14(2), 274–284 (2005).
    [CrossRef]

2008 (5)

S. H. Hung, H. T. Hsieh, and G. D. J. Su, “An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation,” J. Micromech. Microeng. 18(7), 075003 (2008).
[CrossRef]

Q. H. Chen, W. G. Wu, G. Z. Yan, Z. Q. Wang, and Y. L. Hao, “Novel multifunctional device for optical power splitting, switching, and attenuating,” IEEE Photon. Technol. Lett. 20(8), 632–634 (2008).
[CrossRef]

W. Li, J. Q. Liang, Z. Z. Liang, X. Q. Li, W. B. Wang, Y. C. Zhong, and D. G. Sun, “Design and fabrication of a micro-optic switch,” Opt. Express 16(9), 6324–6330 (2008).
[CrossRef] [PubMed]

X. M. Zhang, Q. W. Zhao, A. Q. Liu, J. Zhang, J. H. Lau, and C. H. Kam, “Asymmetric tuning schemes of MEMS dual-shutter VOA,” J. Lightwave Technol. 26(5), 569–579 (2008).
[CrossRef]

A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, “Optofluidic 1x4 switch,” Opt. Express 16(18), 13499–13508 (2008).
[CrossRef] [PubMed]

2007 (2)

C. Lee, “A MEMS VOA using electrothermal actuators,” J. Lightwave Technol. 25(2), 490–498 (2007).
[CrossRef]

Y. J. Yang, B. T. Liao, and W. C. Kuo, “A novel 2x2 MEMS optical switch using the split cross-bar design,” J. Micromech. Microeng. 17(5), 875–882 (2007).
[CrossRef]

2006 (1)

2005 (2)

D. A. Horsley, W. O. Davis, K. J. Hogan, M. R. Hart, E. C. Ying, M. Chaparala, B. Behin, M. J. Daneman, and M. H. Kiang, “Optical and mechanical performance of a novel magnetically actuated MEMS-based optical switch,” J. Microelectromech. Syst. 14(2), 274–284 (2005).
[CrossRef]

R. Guerre, C. Hibert, Y. Burri, P. Fluckiger, and P. Renaud, “Fabrication of vertical digital silicon optical micromirrors on suspended electrode for guided-wave optical switching applications,” Sens. Actuators A Phys. 123–124, 570–583 (2005).

2004 (1)

K. Isamoto, K. Kato, A. Morosawa, C. H. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron. 10(3), 570–578 (2004).
[CrossRef]

2002 (1)

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[CrossRef]

1999 (2)

C. Marxer, P. Griss, and N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett. 11(2), 233–235 (1999).
[CrossRef]

C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” IEEE J. Sel. Top. Quantum Electron. 5(1), 18–25 (1999).
[CrossRef]

1997 (1)

C. Marxer, C. Thio, M. A. Gretillat, N. F. deRooij, R. Battig, O. Anthamatten, B. Valk, and P. Vogel, “Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications,” J. Microelectromech. Syst. 6(3), 277–285 (1997).
[CrossRef]

Aksyuk, V.

C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” IEEE J. Sel. Top. Quantum Electron. 5(1), 18–25 (1999).
[CrossRef]

Anthamatten, O.

C. Marxer, C. Thio, M. A. Gretillat, N. F. deRooij, R. Battig, O. Anthamatten, B. Valk, and P. Vogel, “Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications,” J. Microelectromech. Syst. 6(3), 277–285 (1997).
[CrossRef]

Barber, B.

C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” IEEE J. Sel. Top. Quantum Electron. 5(1), 18–25 (1999).
[CrossRef]

Battig, R.

C. Marxer, C. Thio, M. A. Gretillat, N. F. deRooij, R. Battig, O. Anthamatten, B. Valk, and P. Vogel, “Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications,” J. Microelectromech. Syst. 6(3), 277–285 (1997).
[CrossRef]

Behin, B.

D. A. Horsley, W. O. Davis, K. J. Hogan, M. R. Hart, E. C. Ying, M. Chaparala, B. Behin, M. J. Daneman, and M. H. Kiang, “Optical and mechanical performance of a novel magnetically actuated MEMS-based optical switch,” J. Microelectromech. Syst. 14(2), 274–284 (2005).
[CrossRef]

Bishop, D.

C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” IEEE J. Sel. Top. Quantum Electron. 5(1), 18–25 (1999).
[CrossRef]

Burri, Y.

R. Guerre, C. Hibert, Y. Burri, P. Fluckiger, and P. Renaud, “Fabrication of vertical digital silicon optical micromirrors on suspended electrode for guided-wave optical switching applications,” Sens. Actuators A Phys. 123–124, 570–583 (2005).

Campbell, K.

Chaparala, M.

D. A. Horsley, W. O. Davis, K. J. Hogan, M. R. Hart, E. C. Ying, M. Chaparala, B. Behin, M. J. Daneman, and M. H. Kiang, “Optical and mechanical performance of a novel magnetically actuated MEMS-based optical switch,” J. Microelectromech. Syst. 14(2), 274–284 (2005).
[CrossRef]

Chen, Q. H.

Q. H. Chen, W. G. Wu, G. Z. Yan, Z. Q. Wang, and Y. L. Hao, “Novel multifunctional device for optical power splitting, switching, and attenuating,” IEEE Photon. Technol. Lett. 20(8), 632–634 (2008).
[CrossRef]

Chong, C. H.

K. Isamoto, K. Kato, A. Morosawa, C. H. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron. 10(3), 570–578 (2004).
[CrossRef]

Clerc, P. A.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[CrossRef]

Dandliker, R.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[CrossRef]

Daneman, M. J.

D. A. Horsley, W. O. Davis, K. J. Hogan, M. R. Hart, E. C. Ying, M. Chaparala, B. Behin, M. J. Daneman, and M. H. Kiang, “Optical and mechanical performance of a novel magnetically actuated MEMS-based optical switch,” J. Microelectromech. Syst. 14(2), 274–284 (2005).
[CrossRef]

Davis, W. O.

D. A. Horsley, W. O. Davis, K. J. Hogan, M. R. Hart, E. C. Ying, M. Chaparala, B. Behin, M. J. Daneman, and M. H. Kiang, “Optical and mechanical performance of a novel magnetically actuated MEMS-based optical switch,” J. Microelectromech. Syst. 14(2), 274–284 (2005).
[CrossRef]

de Rooij, N.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[CrossRef]

de Rooij, N. F.

C. Marxer, P. Griss, and N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett. 11(2), 233–235 (1999).
[CrossRef]

Dellmann, L.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[CrossRef]

deRooij, N. F.

C. Marxer, C. Thio, M. A. Gretillat, N. F. deRooij, R. Battig, O. Anthamatten, B. Valk, and P. Vogel, “Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications,” J. Microelectromech. Syst. 6(3), 277–285 (1997).
[CrossRef]

Fainman, Y.

Fluckiger, P.

R. Guerre, C. Hibert, Y. Burri, P. Fluckiger, and P. Renaud, “Fabrication of vertical digital silicon optical micromirrors on suspended electrode for guided-wave optical switching applications,” Sens. Actuators A Phys. 123–124, 570–583 (2005).

Ford, J. E.

Fujita, H.

K. Isamoto, K. Kato, A. Morosawa, C. H. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron. 10(3), 570–578 (2004).
[CrossRef]

Giles, C. R.

C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” IEEE J. Sel. Top. Quantum Electron. 5(1), 18–25 (1999).
[CrossRef]

Gretillat, M. A.

C. Marxer, C. Thio, M. A. Gretillat, N. F. deRooij, R. Battig, O. Anthamatten, B. Valk, and P. Vogel, “Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications,” J. Microelectromech. Syst. 6(3), 277–285 (1997).
[CrossRef]

Griss, P.

C. Marxer, P. Griss, and N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett. 11(2), 233–235 (1999).
[CrossRef]

Groisman, A.

Guerre, R.

R. Guerre, C. Hibert, Y. Burri, P. Fluckiger, and P. Renaud, “Fabrication of vertical digital silicon optical micromirrors on suspended electrode for guided-wave optical switching applications,” Sens. Actuators A Phys. 123–124, 570–583 (2005).

Guldimann, B.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[CrossRef]

Hao, Y. L.

Q. H. Chen, W. G. Wu, G. Z. Yan, Z. Q. Wang, and Y. L. Hao, “Novel multifunctional device for optical power splitting, switching, and attenuating,” IEEE Photon. Technol. Lett. 20(8), 632–634 (2008).
[CrossRef]

Hart, M. R.

D. A. Horsley, W. O. Davis, K. J. Hogan, M. R. Hart, E. C. Ying, M. Chaparala, B. Behin, M. J. Daneman, and M. H. Kiang, “Optical and mechanical performance of a novel magnetically actuated MEMS-based optical switch,” J. Microelectromech. Syst. 14(2), 274–284 (2005).
[CrossRef]

Herzig, H. P.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[CrossRef]

Hibert, C.

R. Guerre, C. Hibert, Y. Burri, P. Fluckiger, and P. Renaud, “Fabrication of vertical digital silicon optical micromirrors on suspended electrode for guided-wave optical switching applications,” Sens. Actuators A Phys. 123–124, 570–583 (2005).

Hogan, K. J.

D. A. Horsley, W. O. Davis, K. J. Hogan, M. R. Hart, E. C. Ying, M. Chaparala, B. Behin, M. J. Daneman, and M. H. Kiang, “Optical and mechanical performance of a novel magnetically actuated MEMS-based optical switch,” J. Microelectromech. Syst. 14(2), 274–284 (2005).
[CrossRef]

Horsley, D. A.

D. A. Horsley, W. O. Davis, K. J. Hogan, M. R. Hart, E. C. Ying, M. Chaparala, B. Behin, M. J. Daneman, and M. H. Kiang, “Optical and mechanical performance of a novel magnetically actuated MEMS-based optical switch,” J. Microelectromech. Syst. 14(2), 274–284 (2005).
[CrossRef]

Hsieh, H. T.

S. H. Hung, H. T. Hsieh, and G. D. J. Su, “An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation,” J. Micromech. Microeng. 18(7), 075003 (2008).
[CrossRef]

Hung, S. H.

S. H. Hung, H. T. Hsieh, and G. D. J. Su, “An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation,” J. Micromech. Microeng. 18(7), 075003 (2008).
[CrossRef]

Isamoto, K.

K. Isamoto, K. Kato, A. Morosawa, C. H. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron. 10(3), 570–578 (2004).
[CrossRef]

Kam, C. H.

Kato, K.

K. Isamoto, K. Kato, A. Morosawa, C. H. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron. 10(3), 570–578 (2004).
[CrossRef]

Kiang, M. H.

D. A. Horsley, W. O. Davis, K. J. Hogan, M. R. Hart, E. C. Ying, M. Chaparala, B. Behin, M. J. Daneman, and M. H. Kiang, “Optical and mechanical performance of a novel magnetically actuated MEMS-based optical switch,” J. Microelectromech. Syst. 14(2), 274–284 (2005).
[CrossRef]

Kuo, W. C.

Y. J. Yang, B. T. Liao, and W. C. Kuo, “A novel 2x2 MEMS optical switch using the split cross-bar design,” J. Micromech. Microeng. 17(5), 875–882 (2007).
[CrossRef]

Lau, J. H.

Lee, C.

Levy, U.

Li, W.

Li, X. Q.

Liang, J. Q.

Liang, Z. Z.

Liao, B. T.

Y. J. Yang, B. T. Liao, and W. C. Kuo, “A novel 2x2 MEMS optical switch using the split cross-bar design,” J. Micromech. Microeng. 17(5), 875–882 (2007).
[CrossRef]

Liu, A. Q.

Manzardo, O.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[CrossRef]

Marxer, C.

C. Marxer, P. Griss, and N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett. 11(2), 233–235 (1999).
[CrossRef]

C. Marxer, C. Thio, M. A. Gretillat, N. F. deRooij, R. Battig, O. Anthamatten, B. Valk, and P. Vogel, “Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications,” J. Microelectromech. Syst. 6(3), 277–285 (1997).
[CrossRef]

Marxer, C. R.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[CrossRef]

Morosawa, A.

K. Isamoto, K. Kato, A. Morosawa, C. H. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron. 10(3), 570–578 (2004).
[CrossRef]

Noell, W.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[CrossRef]

Pang, L.

Renaud, P.

R. Guerre, C. Hibert, Y. Burri, P. Fluckiger, and P. Renaud, “Fabrication of vertical digital silicon optical micromirrors on suspended electrode for guided-wave optical switching applications,” Sens. Actuators A Phys. 123–124, 570–583 (2005).

Ruel, R.

C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” IEEE J. Sel. Top. Quantum Electron. 5(1), 18–25 (1999).
[CrossRef]

Solgaard, A.

Stulz, L.

C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” IEEE J. Sel. Top. Quantum Electron. 5(1), 18–25 (1999).
[CrossRef]

Su, G. D. J.

S. H. Hung, H. T. Hsieh, and G. D. J. Su, “An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation,” J. Micromech. Microeng. 18(7), 075003 (2008).
[CrossRef]

Sun, D. G.

Thio, C.

C. Marxer, C. Thio, M. A. Gretillat, N. F. deRooij, R. Battig, O. Anthamatten, B. Valk, and P. Vogel, “Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications,” J. Microelectromech. Syst. 6(3), 277–285 (1997).
[CrossRef]

Toshiyoshi, H.

K. Isamoto, K. Kato, A. Morosawa, C. H. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron. 10(3), 570–578 (2004).
[CrossRef]

Valk, B.

C. Marxer, C. Thio, M. A. Gretillat, N. F. deRooij, R. Battig, O. Anthamatten, B. Valk, and P. Vogel, “Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications,” J. Microelectromech. Syst. 6(3), 277–285 (1997).
[CrossRef]

Vogel, P.

C. Marxer, C. Thio, M. A. Gretillat, N. F. deRooij, R. Battig, O. Anthamatten, B. Valk, and P. Vogel, “Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications,” J. Microelectromech. Syst. 6(3), 277–285 (1997).
[CrossRef]

Wang, W. B.

Wang, Z. Q.

Q. H. Chen, W. G. Wu, G. Z. Yan, Z. Q. Wang, and Y. L. Hao, “Novel multifunctional device for optical power splitting, switching, and attenuating,” IEEE Photon. Technol. Lett. 20(8), 632–634 (2008).
[CrossRef]

Weible, K. J.

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[CrossRef]

Wu, M. C.

Wu, W. G.

Q. H. Chen, W. G. Wu, G. Z. Yan, Z. Q. Wang, and Y. L. Hao, “Novel multifunctional device for optical power splitting, switching, and attenuating,” IEEE Photon. Technol. Lett. 20(8), 632–634 (2008).
[CrossRef]

Yan, G. Z.

Q. H. Chen, W. G. Wu, G. Z. Yan, Z. Q. Wang, and Y. L. Hao, “Novel multifunctional device for optical power splitting, switching, and attenuating,” IEEE Photon. Technol. Lett. 20(8), 632–634 (2008).
[CrossRef]

Yang, Y. J.

Y. J. Yang, B. T. Liao, and W. C. Kuo, “A novel 2x2 MEMS optical switch using the split cross-bar design,” J. Micromech. Microeng. 17(5), 875–882 (2007).
[CrossRef]

Ying, E. C.

D. A. Horsley, W. O. Davis, K. J. Hogan, M. R. Hart, E. C. Ying, M. Chaparala, B. Behin, M. J. Daneman, and M. H. Kiang, “Optical and mechanical performance of a novel magnetically actuated MEMS-based optical switch,” J. Microelectromech. Syst. 14(2), 274–284 (2005).
[CrossRef]

Zamek, S.

Zhang, J.

Zhang, X. M.

Zhao, Q. W.

Zhong, Y. C.

IEEE J. Sel. Top. Quantum Electron. (3)

W. Noell, P. A. Clerc, L. Dellmann, B. Guldimann, H. P. Herzig, O. Manzardo, C. R. Marxer, K. J. Weible, R. Dandliker, and N. de Rooij, “Applications of SOI-based optical MEMS,” IEEE J. Sel. Top. Quantum Electron. 8(1), 148–154 (2002).
[CrossRef]

K. Isamoto, K. Kato, A. Morosawa, C. H. Chong, H. Fujita, and H. Toshiyoshi, “A 5-V operated MEMS variable optical attenuator by SOI bulk micromachining,” IEEE J. Sel. Top. Quantum Electron. 10(3), 570–578 (2004).
[CrossRef]

C. R. Giles, V. Aksyuk, B. Barber, R. Ruel, L. Stulz, and D. Bishop, “A silicon MEMS optical switch attenuator and its use in lightwave subsystems,” IEEE J. Sel. Top. Quantum Electron. 5(1), 18–25 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Q. H. Chen, W. G. Wu, G. Z. Yan, Z. Q. Wang, and Y. L. Hao, “Novel multifunctional device for optical power splitting, switching, and attenuating,” IEEE Photon. Technol. Lett. 20(8), 632–634 (2008).
[CrossRef]

C. Marxer, P. Griss, and N. F. de Rooij, “A variable optical attenuator based on silicon micromechanics,” IEEE Photon. Technol. Lett. 11(2), 233–235 (1999).
[CrossRef]

J. Lightwave Technol. (3)

J. Microelectromech. Syst. (2)

C. Marxer, C. Thio, M. A. Gretillat, N. F. deRooij, R. Battig, O. Anthamatten, B. Valk, and P. Vogel, “Vertical mirrors fabricated by deep reactive ion etching for fiber-optic switching applications,” J. Microelectromech. Syst. 6(3), 277–285 (1997).
[CrossRef]

D. A. Horsley, W. O. Davis, K. J. Hogan, M. R. Hart, E. C. Ying, M. Chaparala, B. Behin, M. J. Daneman, and M. H. Kiang, “Optical and mechanical performance of a novel magnetically actuated MEMS-based optical switch,” J. Microelectromech. Syst. 14(2), 274–284 (2005).
[CrossRef]

J. Micromech. Microeng. (2)

Y. J. Yang, B. T. Liao, and W. C. Kuo, “A novel 2x2 MEMS optical switch using the split cross-bar design,” J. Micromech. Microeng. 17(5), 875–882 (2007).
[CrossRef]

S. H. Hung, H. T. Hsieh, and G. D. J. Su, “An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation,” J. Micromech. Microeng. 18(7), 075003 (2008).
[CrossRef]

Opt. Express (2)

Sens. Actuators A Phys. (1)

R. Guerre, C. Hibert, Y. Burri, P. Fluckiger, and P. Renaud, “Fabrication of vertical digital silicon optical micromirrors on suspended electrode for guided-wave optical switching applications,” Sens. Actuators A Phys. 123–124, 570–583 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The operational principle of the device which is operated as an OS (a) OS-State-1: optical signals are reflected by M1 and M3. (b) OS-State-2: M1 and M3 are out of the light path. Optical signals are reflected by M2 and M4.

Fig. 2
Fig. 2

The operational principle of the device which is operated as a VOA (a) VOA @ OS-State-1: Optical signals are attenuated by M1 and M3. (b) VOA @ OS-State-2: M1 and M3 are out of the light path. Optical signals are attenuated by M2 and M4.

Fig. 3
Fig. 3

(a) The schematic drawing of the dual-function optical device. (b) The SEM picture of the bi-stable mechanism and the V-beam actuators (c) The enlarged schematic view of the bi-stable mechanism and the large V-beam actuators that are used for controlling movable mirrors M1 and M3. (d) The enlarged view of the small V-beam actuator which is used for controlling movable mirrors M2 and M4.

Fig. 4
Fig. 4

(a) The SEM picture of the movable mirrors and the grooves for lensed fibers. (b) The CCD picture of the fabricated chip which is assembled with four OptiFocusTM lensed fibers.

Fig. 5
Fig. 5

(a) The measured displacement vs. input voltage of the V-beam actuators with different beam lengths. (b) The measured attenuation ranges versus different driving voltages.

Fig. 6
Fig. 6

The typical dynamic responses of the device (a) Mirrors switch from OS-State-1 to OS-State-2 (b) Mirrors switch from OS-State-2 to OS-State-1.

Metrics