Abstract

We present a novel microfabrication approach for obtaining arrays of planar, polymer-based microlenses of high numerical aperture. The proposed microlenses arrays consist of deformable, elastomeric membranes that are supported by polymer-filled microchambers. Each membrane/microchamber assembly is converted into a solid microlens when the supporting UV–curable polymer is pressurized and cured. By modifying the microlens diameter (40-60 μm) and curing pressure (7.5-30 psi), we demonstrated that it is possible to fabricate microlenses with a wide range of effective focal lengths (100–400 μm) and numerical apertures (0.05-0.3). We obtained a maximum numerical aperture of 0.3 and transverse resolution of 2.8 μm for 60 μm diameter microlenses cured at 30 psi. These values were found to be in agreement with values obtained from opto-mechanical simulations. We envision the use of these high numerical microlenses arrays in optical applications where light collection efficiency is important.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24(4), S465–S477 (1992).
    [CrossRef]
  2. H. Hamam, “A two-way optical interconnection network using a single mode fiber array,” Opt. Commun. 150(1-6), 270–276 (1998).
    [CrossRef]
  3. Y.-P. Huang, H.-P. D. Shieh, and S.-T. Wu, “Applications of Multidirectional Asymmetrical Microlens-Array Light-Control Films on Reflective Liquid-Crystal Displays for Image Quality Enhancement,” Appl. Opt. 43(18), 3656–3663 (2004).
    [CrossRef] [PubMed]
  4. H. Peng, Y. L. Ho, X.-J. Yu, M. Wong, and H.-S. Kwok, “Coupling Efficiency Enhancement in Organic Light-Emitting Devices Using Microlens Array-Theory and Experiment,” J. Display Technol. 1(2), 278–282 (2005).
    [CrossRef]
  5. K. Cai-Jun, Y. Xin-Jian, L. Jian-Jun, and C. Si-Hai, “Fabrication, Testing and Integration Technologies of Polymer Microlens for Pt/Si Schottky-Barrier Infrared Charge Coupled Device Applications,” Chin. Phys. Lett. 22(1), 135–138 (2005).
    [CrossRef]
  6. B. Javidi, S.-H. Hong, and O. Matoba, “Multidimensional optical sensor and imaging system,” Appl. Opt. 45(13), 2986–2994 (2006).
    [CrossRef] [PubMed]
  7. M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, “Fabrication of frequency-selective surfaces using microlens projection photolithography,” Appl. Phys. Lett. 80(19), 3500–3502 (2002).
    [CrossRef]
  8. K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, “High-resolution maskless lithography,” J. Microlitho. Microfab. Microsyst. 2(4), 331–339 (2003).
    [CrossRef]
  9. M. Eisner, N. Lindlein, and J. Schwider, “Confocal microscopy with a refractive microlens-pinhole array,” Opt. Lett. 23(10), 748–749 (1998).
    [CrossRef]
  10. J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
    [CrossRef]
  11. K. Aljasem, D. Mader, A. Werber, H. Zappe, and S. Reichelt, “Pneumatically-actuated tunable microlens for endoscopic optical coherence tomography Transducers 2007 - 2007 International Solid-State Sensors Actuators and Microsystems Conference,” (2007), pp. 2557–2560.
  12. M. H. Wu and G. M. Whitesides, “Fabrication of two-dimensional arrays of microlenses and their applications in photolithography,” J. Micromech. Microeng. 12(6), 747–758 (2002).
    [CrossRef]
  13. D. A. Fletcher, K. B. Crozier, K. W. Guarini, S. C. Minne, G. S. Kino, C. F. Quate, and K. E. Goodson, “Microfabricated silicon solid immersion lens,” Microelectromechanical Systems, Journalism 10, 450–459 (2001).
    [CrossRef]
  14. S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Refractive Microlens Fabrication by Ink-Jet Process,” J. Sol-Gel Sci. Technol. 13(1/3), 177–182 (1998).
    [CrossRef]
  15. N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3-4), 365–379 (2002).
    [CrossRef]
  16. S.-d Moon, S. Kang, and J.-U. Bu, “Fabrication of polymeric microlens of hemispherical shape using micromolding,” Opt. Eng. 41(9), 2267–2270 (2002).
    [CrossRef]
  17. J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
    [CrossRef] [PubMed]
  18. P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998).
    [CrossRef]
  19. M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
    [CrossRef]
  20. X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, “Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO[sub 2]–TiO[sub 2] sol-gel glass,” Appl. Phys. Lett. 86(11), 114102–114103 (2005).
    [CrossRef]
  21. S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU, Int. J. Electron. Commun. 61(3), 163–167 (2007).
    [CrossRef]
  22. F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18(6), 065008 (2008).
    [CrossRef]
  23. K. L. Mills, X. Y. Zhu, S. C. Takayama, and M. D. Thouless, “The mechanical properties of a surface-modified layer on poly(dimethylsiloxane),” J. Mater. Res. 23(1), 37–48 (2008).
    [CrossRef] [PubMed]
  24. X. Yu, Z. Wang, and Y. Han, “Microlenses fabricated by discontinuous dewetting and soft lithography,” Microelectron. Eng. 85(9), 1878–1881 (2008).
    [CrossRef]
  25. N. Chronis, G. Liu, K.-H. Jeong, and L. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003).
    [CrossRef] [PubMed]
  26. X. Cheng, A. Gupta, C. Chen, R. G. Tompkins, W. Rodriguez, and M. Toner, “Enhancing the performance of a point-of-care CD4+ T-cell counting microchip through monocyte depletion for HIV/AIDS diagnostics,” Lab Chip 9(10), 1357–1364 (2009).
    [CrossRef] [PubMed]
  27. D. S. Reichmuth, S. K. Wang, L. M. Barrett, D. J. Throckmorton, W. Einfeld, and A. K. Singh, “Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus,” Lab Chip 8(8), 1319–1324 (2008).
    [CrossRef] [PubMed]
  28. E. Wilder, M. Fasolka, S. Guo, C. Stafford, and S. Lin-Gibson, “Measuring the modulus of soft polymer networks via a buckling-based metrology,” Macromolecules 39(12), 4138–4143 (2006).
    [CrossRef]
  29. M. Oikawa, H. Nemoto, K. Hamanaka, and E. Okuda, “High numerical aperture planar microlens with swelled structure,” Appl. Opt. 29(28), 4077–4080 (1990).
    [CrossRef] [PubMed]
  30. S. Inoue, and K. R. Spring, Video Microscopy The Fundamentals (Plenum Publishing Corporation, New York, 1997).
  31. J. R. Polimeni, D. Granquist-Fraser, R. J. Wood, and E. L. Schwartz, “Physical limits to spatial resolution of optical recording: clarifying the spatial structure of cortical hypercolumns,” Proc. Natl. Acad. Sci. U.S.A. 102(11), 4158–4163 (2005).
    [CrossRef] [PubMed]

2009 (2)

X. Cheng, A. Gupta, C. Chen, R. G. Tompkins, W. Rodriguez, and M. Toner, “Enhancing the performance of a point-of-care CD4+ T-cell counting microchip through monocyte depletion for HIV/AIDS diagnostics,” Lab Chip 9(10), 1357–1364 (2009).
[CrossRef] [PubMed]

J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
[CrossRef] [PubMed]

2008 (4)

D. S. Reichmuth, S. K. Wang, L. M. Barrett, D. J. Throckmorton, W. Einfeld, and A. K. Singh, “Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus,” Lab Chip 8(8), 1319–1324 (2008).
[CrossRef] [PubMed]

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18(6), 065008 (2008).
[CrossRef]

K. L. Mills, X. Y. Zhu, S. C. Takayama, and M. D. Thouless, “The mechanical properties of a surface-modified layer on poly(dimethylsiloxane),” J. Mater. Res. 23(1), 37–48 (2008).
[CrossRef] [PubMed]

X. Yu, Z. Wang, and Y. Han, “Microlenses fabricated by discontinuous dewetting and soft lithography,” Microelectron. Eng. 85(9), 1878–1881 (2008).
[CrossRef]

2007 (1)

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU, Int. J. Electron. Commun. 61(3), 163–167 (2007).
[CrossRef]

2006 (2)

E. Wilder, M. Fasolka, S. Guo, C. Stafford, and S. Lin-Gibson, “Measuring the modulus of soft polymer networks via a buckling-based metrology,” Macromolecules 39(12), 4138–4143 (2006).
[CrossRef]

B. Javidi, S.-H. Hong, and O. Matoba, “Multidimensional optical sensor and imaging system,” Appl. Opt. 45(13), 2986–2994 (2006).
[CrossRef] [PubMed]

2005 (4)

J. R. Polimeni, D. Granquist-Fraser, R. J. Wood, and E. L. Schwartz, “Physical limits to spatial resolution of optical recording: clarifying the spatial structure of cortical hypercolumns,” Proc. Natl. Acad. Sci. U.S.A. 102(11), 4158–4163 (2005).
[CrossRef] [PubMed]

H. Peng, Y. L. Ho, X.-J. Yu, M. Wong, and H.-S. Kwok, “Coupling Efficiency Enhancement in Organic Light-Emitting Devices Using Microlens Array-Theory and Experiment,” J. Display Technol. 1(2), 278–282 (2005).
[CrossRef]

K. Cai-Jun, Y. Xin-Jian, L. Jian-Jun, and C. Si-Hai, “Fabrication, Testing and Integration Technologies of Polymer Microlens for Pt/Si Schottky-Barrier Infrared Charge Coupled Device Applications,” Chin. Phys. Lett. 22(1), 135–138 (2005).
[CrossRef]

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, “Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO[sub 2]–TiO[sub 2] sol-gel glass,” Appl. Phys. Lett. 86(11), 114102–114103 (2005).
[CrossRef]

2004 (1)

2003 (3)

N. Chronis, G. Liu, K.-H. Jeong, and L. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11(19), 2370–2378 (2003).
[CrossRef] [PubMed]

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, “High-resolution maskless lithography,” J. Microlitho. Microfab. Microsyst. 2(4), 331–339 (2003).
[CrossRef]

2002 (4)

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, “Fabrication of frequency-selective surfaces using microlens projection photolithography,” Appl. Phys. Lett. 80(19), 3500–3502 (2002).
[CrossRef]

M. H. Wu and G. M. Whitesides, “Fabrication of two-dimensional arrays of microlenses and their applications in photolithography,” J. Micromech. Microeng. 12(6), 747–758 (2002).
[CrossRef]

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3-4), 365–379 (2002).
[CrossRef]

S.-d Moon, S. Kang, and J.-U. Bu, “Fabrication of polymeric microlens of hemispherical shape using micromolding,” Opt. Eng. 41(9), 2267–2270 (2002).
[CrossRef]

2001 (2)

D. A. Fletcher, K. B. Crozier, K. W. Guarini, S. C. Minne, G. S. Kino, C. F. Quate, and K. E. Goodson, “Microfabricated silicon solid immersion lens,” Microelectromechanical Systems, Journalism 10, 450–459 (2001).
[CrossRef]

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[CrossRef]

1998 (4)

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Refractive Microlens Fabrication by Ink-Jet Process,” J. Sol-Gel Sci. Technol. 13(1/3), 177–182 (1998).
[CrossRef]

H. Hamam, “A two-way optical interconnection network using a single mode fiber array,” Opt. Commun. 150(1-6), 270–276 (1998).
[CrossRef]

P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998).
[CrossRef]

M. Eisner, N. Lindlein, and J. Schwider, “Confocal microscopy with a refractive microlens-pinhole array,” Opt. Lett. 23(10), 748–749 (1998).
[CrossRef]

1992 (1)

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24(4), S465–S477 (1992).
[CrossRef]

1990 (1)

Aegerter, M. A.

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Refractive Microlens Fabrication by Ink-Jet Process,” J. Sol-Gel Sci. Technol. 13(1/3), 177–182 (1998).
[CrossRef]

Albero, J.

Barrett, L. M.

D. S. Reichmuth, S. K. Wang, L. M. Barrett, D. J. Throckmorton, W. Einfeld, and A. K. Singh, “Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus,” Lab Chip 8(8), 1319–1324 (2008).
[CrossRef] [PubMed]

Biehl, S.

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Refractive Microlens Fabrication by Ink-Jet Process,” J. Sol-Gel Sci. Technol. 13(1/3), 177–182 (1998).
[CrossRef]

Bu, J.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, “Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO[sub 2]–TiO[sub 2] sol-gel glass,” Appl. Phys. Lett. 86(11), 114102–114103 (2005).
[CrossRef]

Bu, J.-U.

S.-d Moon, S. Kang, and J.-U. Bu, “Fabrication of polymeric microlens of hemispherical shape using micromolding,” Opt. Eng. 41(9), 2267–2270 (2002).
[CrossRef]

Cai, D.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU, Int. J. Electron. Commun. 61(3), 163–167 (2007).
[CrossRef]

Cai-Jun, K.

K. Cai-Jun, Y. Xin-Jian, L. Jian-Jun, and C. Si-Hai, “Fabrication, Testing and Integration Technologies of Polymer Microlens for Pt/Si Schottky-Barrier Infrared Charge Coupled Device Applications,” Chin. Phys. Lett. 22(1), 135–138 (2005).
[CrossRef]

Chan, K. F.

K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, “High-resolution maskless lithography,” J. Microlitho. Microfab. Microsyst. 2(4), 331–339 (2003).
[CrossRef]

Chen, C.

X. Cheng, A. Gupta, C. Chen, R. G. Tompkins, W. Rodriguez, and M. Toner, “Enhancing the performance of a point-of-care CD4+ T-cell counting microchip through monocyte depletion for HIV/AIDS diagnostics,” Lab Chip 9(10), 1357–1364 (2009).
[CrossRef] [PubMed]

Cheng, X.

X. Cheng, A. Gupta, C. Chen, R. G. Tompkins, W. Rodriguez, and M. Toner, “Enhancing the performance of a point-of-care CD4+ T-cell counting microchip through monocyte depletion for HIV/AIDS diagnostics,” Lab Chip 9(10), 1357–1364 (2009).
[CrossRef] [PubMed]

Cheong, W. C.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, “Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO[sub 2]–TiO[sub 2] sol-gel glass,” Appl. Phys. Lett. 86(11), 114102–114103 (2005).
[CrossRef]

Chronis, N.

Cloonan, T. J.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24(4), S465–S477 (1992).
[CrossRef]

Crozier, K. B.

D. A. Fletcher, K. B. Crozier, K. W. Guarini, S. C. Minne, G. S. Kino, C. F. Quate, and K. E. Goodson, “Microfabricated silicon solid immersion lens,” Microelectromechanical Systems, Journalism 10, 450–459 (2001).
[CrossRef]

Dandliker, R.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[CrossRef]

Danzebrink, R.

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Refractive Microlens Fabrication by Ink-Jet Process,” J. Sol-Gel Sci. Technol. 13(1/3), 177–182 (1998).
[CrossRef]

de Rooij, N. F.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[CrossRef]

Einfeld, W.

D. S. Reichmuth, S. K. Wang, L. M. Barrett, D. J. Throckmorton, W. Einfeld, and A. K. Singh, “Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus,” Lab Chip 8(8), 1319–1324 (2008).
[CrossRef] [PubMed]

Eisner, M.

Fasolka, M.

E. Wilder, M. Fasolka, S. Guo, C. Stafford, and S. Lin-Gibson, “Measuring the modulus of soft polymer networks via a buckling-based metrology,” Macromolecules 39(12), 4138–4143 (2006).
[CrossRef]

Feldblum, A. Y.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24(4), S465–S477 (1992).
[CrossRef]

Fellner, T.

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18(6), 065008 (2008).
[CrossRef]

Feng, Z.

K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, “High-resolution maskless lithography,” J. Microlitho. Microfab. Microsyst. 2(4), 331–339 (2003).
[CrossRef]

Fletcher, D. A.

D. A. Fletcher, K. B. Crozier, K. W. Guarini, S. C. Minne, G. S. Kino, C. F. Quate, and K. E. Goodson, “Microfabricated silicon solid immersion lens,” Microelectromechanical Systems, Journalism 10, 450–459 (2001).
[CrossRef]

Fu, Y. Q.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3-4), 365–379 (2002).
[CrossRef]

Gomez, V.

Goodson, K. E.

D. A. Fletcher, K. B. Crozier, K. W. Guarini, S. C. Minne, G. S. Kino, C. F. Quate, and K. E. Goodson, “Microfabricated silicon solid immersion lens,” Microelectromechanical Systems, Journalism 10, 450–459 (2001).
[CrossRef]

Gorecki, C.

Granquist-Fraser, D.

J. R. Polimeni, D. Granquist-Fraser, R. J. Wood, and E. L. Schwartz, “Physical limits to spatial resolution of optical recording: clarifying the spatial structure of cortical hypercolumns,” Proc. Natl. Acad. Sci. U.S.A. 102(11), 4158–4163 (2005).
[CrossRef] [PubMed]

Guarini, K. W.

D. A. Fletcher, K. B. Crozier, K. W. Guarini, S. C. Minne, G. S. Kino, C. F. Quate, and K. E. Goodson, “Microfabricated silicon solid immersion lens,” Microelectromechanical Systems, Journalism 10, 450–459 (2001).
[CrossRef]

Guo, S.

E. Wilder, M. Fasolka, S. Guo, C. Stafford, and S. Lin-Gibson, “Measuring the modulus of soft polymer networks via a buckling-based metrology,” Macromolecules 39(12), 4138–4143 (2006).
[CrossRef]

Gupta, A.

X. Cheng, A. Gupta, C. Chen, R. G. Tompkins, W. Rodriguez, and M. Toner, “Enhancing the performance of a point-of-care CD4+ T-cell counting microchip through monocyte depletion for HIV/AIDS diagnostics,” Lab Chip 9(10), 1357–1364 (2009).
[CrossRef] [PubMed]

Hamam, H.

H. Hamam, “A two-way optical interconnection network using a single mode fiber array,” Opt. Commun. 150(1-6), 270–276 (1998).
[CrossRef]

Hamanaka, K.

Han, Y.

X. Yu, Z. Wang, and Y. Han, “Microlenses fabricated by discontinuous dewetting and soft lithography,” Microelectron. Eng. 85(9), 1878–1881 (2008).
[CrossRef]

He, M.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, “Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO[sub 2]–TiO[sub 2] sol-gel glass,” Appl. Phys. Lett. 86(11), 114102–114103 (2005).
[CrossRef]

Herzig, H. P.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[CrossRef]

P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998).
[CrossRef]

Hinton, H. S.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24(4), S465–S477 (1992).
[CrossRef]

Ho, Y. L.

Hong, S.-H.

Houlihan, F. M.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

Huang, Y.-P.

Husser, A.

P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998).
[CrossRef]

Ishikawa, A.

K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, “High-resolution maskless lithography,” J. Microlitho. Microfab. Microsyst. 2(4), 331–339 (2003).
[CrossRef]

Javidi, B.

Jeong, K.-H.

Jian-Jun, L.

K. Cai-Jun, Y. Xin-Jian, L. Jian-Jun, and C. Si-Hai, “Fabrication, Testing and Integration Technologies of Polymer Microlens for Pt/Si Schottky-Barrier Infrared Charge Coupled Device Applications,” Chin. Phys. Lett. 22(1), 135–138 (2005).
[CrossRef]

Kang, S.

S.-d Moon, S. Kang, and J.-U. Bu, “Fabrication of polymeric microlens of hemispherical shape using micromolding,” Opt. Eng. 41(9), 2267–2270 (2002).
[CrossRef]

Kino, G. S.

D. A. Fletcher, K. B. Crozier, K. W. Guarini, S. C. Minne, G. S. Kino, C. F. Quate, and K. E. Goodson, “Microfabricated silicon solid immersion lens,” Microelectromechanical Systems, Journalism 10, 450–459 (2001).
[CrossRef]

Koh, Y. H.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3-4), 365–379 (2002).
[CrossRef]

Kolodner, P.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

Kopetz, S.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU, Int. J. Electron. Commun. 61(3), 163–167 (2007).
[CrossRef]

Kunnavakkam, M. V.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

Kwok, H.-S.

Lee, L.

Liddle, J. A.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

Lindlein, N.

Lin-Gibson, S.

E. Wilder, M. Fasolka, S. Guo, C. Stafford, and S. Lin-Gibson, “Measuring the modulus of soft polymer networks via a buckling-based metrology,” Macromolecules 39(12), 4138–4143 (2006).
[CrossRef]

Liu, G.

Matoba, O.

McCormick, F. B.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24(4), S465–S477 (1992).
[CrossRef]

Mei, W.

K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, “High-resolution maskless lithography,” J. Microlitho. Microfab. Microsyst. 2(4), 331–339 (2003).
[CrossRef]

Mersereau, K. O.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24(4), S465–S477 (1992).
[CrossRef]

Mills, K. L.

K. L. Mills, X. Y. Zhu, S. C. Takayama, and M. D. Thouless, “The mechanical properties of a surface-modified layer on poly(dimethylsiloxane),” J. Mater. Res. 23(1), 37–48 (2008).
[CrossRef] [PubMed]

Minne, S. C.

D. A. Fletcher, K. B. Crozier, K. W. Guarini, S. C. Minne, G. S. Kino, C. F. Quate, and K. E. Goodson, “Microfabricated silicon solid immersion lens,” Microelectromechanical Systems, Journalism 10, 450–459 (2001).
[CrossRef]

Moon, S.-d

S.-d Moon, S. Kang, and J.-U. Bu, “Fabrication of polymeric microlens of hemispherical shape using micromolding,” Opt. Eng. 41(9), 2267–2270 (2002).
[CrossRef]

Nalamasu, O.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

Nemoto, H.

Neyer, A.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU, Int. J. Electron. Commun. 61(3), 163–167 (2007).
[CrossRef]

Nieradko, L.

Niu, H. B.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, “Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO[sub 2]–TiO[sub 2] sol-gel glass,” Appl. Phys. Lett. 86(11), 114102–114103 (2005).
[CrossRef]

Nussbaum, P.

P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998).
[CrossRef]

Oikawa, M.

Okuda, E.

Oliveira, P.

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Refractive Microlens Fabrication by Ink-Jet Process,” J. Sol-Gel Sci. Technol. 13(1/3), 177–182 (1998).
[CrossRef]

Ong, N. S.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3-4), 365–379 (2002).
[CrossRef]

Ottevaere, H.

Päivänranta, B.

Passilly, N.

Paul, K. E.

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, “Fabrication of frequency-selective surfaces using microlens projection photolithography,” Appl. Phys. Lett. 80(19), 3500–3502 (2002).
[CrossRef]

Peng, H.

Peng, X.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, “Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO[sub 2]–TiO[sub 2] sol-gel glass,” Appl. Phys. Lett. 86(11), 114102–114103 (2005).
[CrossRef]

Philipoussis, I.

P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998).
[CrossRef]

Pietarinen, J.

Polimeni, J. R.

J. R. Polimeni, D. Granquist-Fraser, R. J. Wood, and E. L. Schwartz, “Physical limits to spatial resolution of optical recording: clarifying the spatial structure of cortical hypercolumns,” Proc. Natl. Acad. Sci. U.S.A. 102(11), 4158–4163 (2005).
[CrossRef] [PubMed]

Quate, C. F.

D. A. Fletcher, K. B. Crozier, K. W. Guarini, S. C. Minne, G. S. Kino, C. F. Quate, and K. E. Goodson, “Microfabricated silicon solid immersion lens,” Microelectromechanical Systems, Journalism 10, 450–459 (2001).
[CrossRef]

Rabe, E.

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU, Int. J. Electron. Commun. 61(3), 163–167 (2007).
[CrossRef]

Reichmuth, D. S.

D. S. Reichmuth, S. K. Wang, L. M. Barrett, D. J. Throckmorton, W. Einfeld, and A. K. Singh, “Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus,” Lab Chip 8(8), 1319–1324 (2008).
[CrossRef] [PubMed]

Rodriguez, W.

X. Cheng, A. Gupta, C. Chen, R. G. Tompkins, W. Rodriguez, and M. Toner, “Enhancing the performance of a point-of-care CD4+ T-cell counting microchip through monocyte depletion for HIV/AIDS diagnostics,” Lab Chip 9(10), 1357–1364 (2009).
[CrossRef] [PubMed]

Rogers, J. A.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

Roulet, J. C.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[CrossRef]

Sasian, J. M.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24(4), S465–S477 (1992).
[CrossRef]

Schlax, M.

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

Schneider, F.

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18(6), 065008 (2008).
[CrossRef]

Schwartz, E. L.

J. R. Polimeni, D. Granquist-Fraser, R. J. Wood, and E. L. Schwartz, “Physical limits to spatial resolution of optical recording: clarifying the spatial structure of cortical hypercolumns,” Proc. Natl. Acad. Sci. U.S.A. 102(11), 4158–4163 (2005).
[CrossRef] [PubMed]

Schwider, J.

Shieh, H.-P. D.

Si-Hai, C.

K. Cai-Jun, Y. Xin-Jian, L. Jian-Jun, and C. Si-Hai, “Fabrication, Testing and Integration Technologies of Polymer Microlens for Pt/Si Schottky-Barrier Infrared Charge Coupled Device Applications,” Chin. Phys. Lett. 22(1), 135–138 (2005).
[CrossRef]

Singh, A. K.

D. S. Reichmuth, S. K. Wang, L. M. Barrett, D. J. Throckmorton, W. Einfeld, and A. K. Singh, “Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus,” Lab Chip 8(8), 1319–1324 (2008).
[CrossRef] [PubMed]

Stafford, C.

E. Wilder, M. Fasolka, S. Guo, C. Stafford, and S. Lin-Gibson, “Measuring the modulus of soft polymer networks via a buckling-based metrology,” Macromolecules 39(12), 4138–4143 (2006).
[CrossRef]

Takayama, S. C.

K. L. Mills, X. Y. Zhu, S. C. Takayama, and M. D. Thouless, “The mechanical properties of a surface-modified layer on poly(dimethylsiloxane),” J. Mater. Res. 23(1), 37–48 (2008).
[CrossRef] [PubMed]

Thienpont, H.

Thouless, M. D.

K. L. Mills, X. Y. Zhu, S. C. Takayama, and M. D. Thouless, “The mechanical properties of a surface-modified layer on poly(dimethylsiloxane),” J. Mater. Res. 23(1), 37–48 (2008).
[CrossRef] [PubMed]

Throckmorton, D. J.

D. S. Reichmuth, S. K. Wang, L. M. Barrett, D. J. Throckmorton, W. Einfeld, and A. K. Singh, “Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus,” Lab Chip 8(8), 1319–1324 (2008).
[CrossRef] [PubMed]

Tompkins, R. G.

X. Cheng, A. Gupta, C. Chen, R. G. Tompkins, W. Rodriguez, and M. Toner, “Enhancing the performance of a point-of-care CD4+ T-cell counting microchip through monocyte depletion for HIV/AIDS diagnostics,” Lab Chip 9(10), 1357–1364 (2009).
[CrossRef] [PubMed]

Toner, M.

X. Cheng, A. Gupta, C. Chen, R. G. Tompkins, W. Rodriguez, and M. Toner, “Enhancing the performance of a point-of-care CD4+ T-cell counting microchip through monocyte depletion for HIV/AIDS diagnostics,” Lab Chip 9(10), 1357–1364 (2009).
[CrossRef] [PubMed]

Tooley, F. A. P.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24(4), S465–S477 (1992).
[CrossRef]

Verpoorte, E.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[CrossRef]

Volkel, R.

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[CrossRef]

Wallrabe, U.

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18(6), 065008 (2008).
[CrossRef]

Wang, S. K.

D. S. Reichmuth, S. K. Wang, L. M. Barrett, D. J. Throckmorton, W. Einfeld, and A. K. Singh, “Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus,” Lab Chip 8(8), 1319–1324 (2008).
[CrossRef] [PubMed]

Wang, Z.

X. Yu, Z. Wang, and Y. Han, “Microlenses fabricated by discontinuous dewetting and soft lithography,” Microelectron. Eng. 85(9), 1878–1881 (2008).
[CrossRef]

Whitesides, G. M.

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, “Fabrication of frequency-selective surfaces using microlens projection photolithography,” Appl. Phys. Lett. 80(19), 3500–3502 (2002).
[CrossRef]

M. H. Wu and G. M. Whitesides, “Fabrication of two-dimensional arrays of microlenses and their applications in photolithography,” J. Micromech. Microeng. 12(6), 747–758 (2002).
[CrossRef]

Wilde, J.

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18(6), 065008 (2008).
[CrossRef]

Wilder, E.

E. Wilder, M. Fasolka, S. Guo, C. Stafford, and S. Lin-Gibson, “Measuring the modulus of soft polymer networks via a buckling-based metrology,” Macromolecules 39(12), 4138–4143 (2006).
[CrossRef]

Wong, M.

Wood, R. J.

J. R. Polimeni, D. Granquist-Fraser, R. J. Wood, and E. L. Schwartz, “Physical limits to spatial resolution of optical recording: clarifying the spatial structure of cortical hypercolumns,” Proc. Natl. Acad. Sci. U.S.A. 102(11), 4158–4163 (2005).
[CrossRef] [PubMed]

Wu, M. H.

M. H. Wu and G. M. Whitesides, “Fabrication of two-dimensional arrays of microlenses and their applications in photolithography,” J. Micromech. Microeng. 12(6), 747–758 (2002).
[CrossRef]

Wu, M.-H.

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, “Fabrication of frequency-selective surfaces using microlens projection photolithography,” Appl. Phys. Lett. 80(19), 3500–3502 (2002).
[CrossRef]

Wu, S.-T.

Xin-Jian, Y.

K. Cai-Jun, Y. Xin-Jian, L. Jian-Jun, and C. Si-Hai, “Fabrication, Testing and Integration Technologies of Polymer Microlens for Pt/Si Schottky-Barrier Infrared Charge Coupled Device Applications,” Chin. Phys. Lett. 22(1), 135–138 (2005).
[CrossRef]

Yang, J.

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, “Fabrication of frequency-selective surfaces using microlens projection photolithography,” Appl. Phys. Lett. 80(19), 3500–3502 (2002).
[CrossRef]

Yang, R.

K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, “High-resolution maskless lithography,” J. Microlitho. Microfab. Microsyst. 2(4), 331–339 (2003).
[CrossRef]

Yu, W. X.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, “Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO[sub 2]–TiO[sub 2] sol-gel glass,” Appl. Phys. Lett. 86(11), 114102–114103 (2005).
[CrossRef]

Yu, X.

X. Yu, Z. Wang, and Y. Han, “Microlenses fabricated by discontinuous dewetting and soft lithography,” Microelectron. Eng. 85(9), 1878–1881 (2008).
[CrossRef]

Yu, X.-J.

Yuan, X. C.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, “Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO[sub 2]–TiO[sub 2] sol-gel glass,” Appl. Phys. Lett. 86(11), 114102–114103 (2005).
[CrossRef]

Zhu, X. Y.

K. L. Mills, X. Y. Zhu, S. C. Takayama, and M. D. Thouless, “The mechanical properties of a surface-modified layer on poly(dimethylsiloxane),” J. Mater. Res. 23(1), 37–48 (2008).
[CrossRef] [PubMed]

AEU, Int. J. Electron. Commun. (1)

S. Kopetz, D. Cai, E. Rabe, and A. Neyer, “PDMS-based optical waveguide layer for integration in electrical-optical circuit boards,” AEU, Int. J. Electron. Commun. 61(3), 163–167 (2007).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

M. V. Kunnavakkam, F. M. Houlihan, M. Schlax, J. A. Liddle, P. Kolodner, O. Nalamasu, and J. A. Rogers, “Low-cost, low-loss microlens arrays fabricated by soft-lithography replication process,” Appl. Phys. Lett. 82(8), 1152–1154 (2003).
[CrossRef]

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, “Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO[sub 2]–TiO[sub 2] sol-gel glass,” Appl. Phys. Lett. 86(11), 114102–114103 (2005).
[CrossRef]

M.-H. Wu, K. E. Paul, J. Yang, and G. M. Whitesides, “Fabrication of frequency-selective surfaces using microlens projection photolithography,” Appl. Phys. Lett. 80(19), 3500–3502 (2002).
[CrossRef]

Chin. Phys. Lett. (1)

K. Cai-Jun, Y. Xin-Jian, L. Jian-Jun, and C. Si-Hai, “Fabrication, Testing and Integration Technologies of Polymer Microlens for Pt/Si Schottky-Barrier Infrared Charge Coupled Device Applications,” Chin. Phys. Lett. 22(1), 135–138 (2005).
[CrossRef]

J. Display Technol. (1)

J. Mater. Res. (1)

K. L. Mills, X. Y. Zhu, S. C. Takayama, and M. D. Thouless, “The mechanical properties of a surface-modified layer on poly(dimethylsiloxane),” J. Mater. Res. 23(1), 37–48 (2008).
[CrossRef] [PubMed]

J. Microelectromech. Syst. (1)

J. C. Roulet, R. Volkel, H. P. Herzig, E. Verpoorte, N. F. de Rooij, and R. Dandliker, “Fabrication of multilayer systems combining microfluidic and microoptical elements for fluorescence detection,” J. Microelectromech. Syst. 10(4), 482–491 (2001).
[CrossRef]

J. Microlitho. Microfab. Microsyst. (1)

K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, “High-resolution maskless lithography,” J. Microlitho. Microfab. Microsyst. 2(4), 331–339 (2003).
[CrossRef]

J. Micromech. Microeng. (2)

M. H. Wu and G. M. Whitesides, “Fabrication of two-dimensional arrays of microlenses and their applications in photolithography,” J. Micromech. Microeng. 12(6), 747–758 (2002).
[CrossRef]

F. Schneider, T. Fellner, J. Wilde, and U. Wallrabe, “Mechanical properties of silicones for MEMS,” J. Micromech. Microeng. 18(6), 065008 (2008).
[CrossRef]

J. Sol-Gel Sci. Technol. (1)

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Refractive Microlens Fabrication by Ink-Jet Process,” J. Sol-Gel Sci. Technol. 13(1/3), 177–182 (1998).
[CrossRef]

Lab Chip (2)

X. Cheng, A. Gupta, C. Chen, R. G. Tompkins, W. Rodriguez, and M. Toner, “Enhancing the performance of a point-of-care CD4+ T-cell counting microchip through monocyte depletion for HIV/AIDS diagnostics,” Lab Chip 9(10), 1357–1364 (2009).
[CrossRef] [PubMed]

D. S. Reichmuth, S. K. Wang, L. M. Barrett, D. J. Throckmorton, W. Einfeld, and A. K. Singh, “Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus,” Lab Chip 8(8), 1319–1324 (2008).
[CrossRef] [PubMed]

Macromolecules (1)

E. Wilder, M. Fasolka, S. Guo, C. Stafford, and S. Lin-Gibson, “Measuring the modulus of soft polymer networks via a buckling-based metrology,” Macromolecules 39(12), 4138–4143 (2006).
[CrossRef]

Microelectromechanical Systems, Journalism (1)

D. A. Fletcher, K. B. Crozier, K. W. Guarini, S. C. Minne, G. S. Kino, C. F. Quate, and K. E. Goodson, “Microfabricated silicon solid immersion lens,” Microelectromechanical Systems, Journalism 10, 450–459 (2001).
[CrossRef]

Microelectron. Eng. (2)

N. S. Ong, Y. H. Koh, and Y. Q. Fu, “Microlens array produced using hot embossing process,” Microelectron. Eng. 60(3-4), 365–379 (2002).
[CrossRef]

X. Yu, Z. Wang, and Y. Han, “Microlenses fabricated by discontinuous dewetting and soft lithography,” Microelectron. Eng. 85(9), 1878–1881 (2008).
[CrossRef]

Opt. Commun. (1)

H. Hamam, “A two-way optical interconnection network using a single mode fiber array,” Opt. Commun. 150(1-6), 270–276 (1998).
[CrossRef]

Opt. Eng. (2)

S.-d Moon, S. Kang, and J.-U. Bu, “Fabrication of polymeric microlens of hemispherical shape using micromolding,” Opt. Eng. 41(9), 2267–2270 (2002).
[CrossRef]

P. Nussbaum, I. Philipoussis, A. Husser, and H. P. Herzig, “Simple technique for replication of micro-optical elements,” Opt. Eng. 37(6), 1804–1808 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, and A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24(4), S465–S477 (1992).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. R. Polimeni, D. Granquist-Fraser, R. J. Wood, and E. L. Schwartz, “Physical limits to spatial resolution of optical recording: clarifying the spatial structure of cortical hypercolumns,” Proc. Natl. Acad. Sci. U.S.A. 102(11), 4158–4163 (2005).
[CrossRef] [PubMed]

Other (2)

S. Inoue, and K. R. Spring, Video Microscopy The Fundamentals (Plenum Publishing Corporation, New York, 1997).

K. Aljasem, D. Mader, A. Werber, H. Zappe, and S. Reichelt, “Pneumatically-actuated tunable microlens for endoscopic optical coherence tomography Transducers 2007 - 2007 International Solid-State Sensors Actuators and Microsystems Conference,” (2007), pp. 2557–2560.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(A) A picture of a 9x11 PDMS-based, planar microlens array. The right inlet is used to fill up the microfluidic network with the UV curable polymer (the left inlet is not used in the depicted design). Scale bar, 1.5 mm. (B) A close-up view of 16 cured microlenses of different diameters. Each microlens sits beneath a square microwell. Scale bar, 200 µm. A magnified top view of a 60 µm in diameter microlens cured at 30 psi and a schematic diagram of its cross section are shown on the right (I and II respectively). Scale bar, 50 µm.

Fig. 2
Fig. 2

The microfabrication process of the microlens device.

Fig. 8
Fig. 8

Schematic of the experimental setup for characterizing the optical propereties (effective focal length (EFL), point spread function (PSF)) of the microlens device. A laser (532 nm) was used to obtain the EFL while a white light source was used to obtain the PSF.

Fig. 3
Fig. 3

Effective Focal Length (EFL) versus curing pressure for (A) 40 µm and (B) 60 µm diameter microlenses. Experimental and opto-mechanically simulated EFL values are obtained for a pressure range of 7.5-30 psi. Each data point is the average of 16 measurements from 2 microlens devices (8 microlenses/device). The measured EFL values have standard deviation of 4.31% and 4.10% for 40 µm and 60 µm diameter microlenses respectively.

Fig. 4
Fig. 4

Numerical Aperture (NA) versus curing pressure for (A) 40 µm and (B) 60 µm diameter microlenses. NA values are calculated using the EFL values presented in Fig. 3. 60 µm diameter microlenses (with lower EFL) have higher NA than 40 µm diameter microlenses (with higher EFL).

Fig. 5
Fig. 5

(A) Surface profile of a 60 µm diameter microlens (cured at 30 psi) obtained using a white light interferometer. (B) A 2D microlens profile measured along its midline (cross section A-A’ in A). The profile has been curve fitted with a sixth order polynomial.

Fig. 6
Fig. 6

(A) Relative intensity (maximum intensity for a given axial plane normalized with the maximum intensity measured at the best focused plane) along the optical axis of a 60 µm diameter microlens as a function of the distance from the best-focused plane. The pictures depict the focused laser beam as imaged at the focal plane and at two out-of focus planes. Scale bar, 10 µm. (B) The PSF of the same microlens represented as the in-plane intensity distribution (I[x,y] – I0) at the best-focused plane, normalized with respect to the background intensity I0.

Fig. 7
Fig. 7

Micron-size resolution patterns imaged: (A) without using a microlens, and (B) through a 60 µm diameter microlens (NA ~0.3). Equally-spaced, 3 µm wide lines are magnified by a factor of ~2 and are clearly visible. Scale bar, 50 µm (A) and 25 µm (B).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

NA=sin[tan1(aF)]

Metrics