Abstract

We experimentally study, over a dispersion-managed link relying on low chromatic dispersion fibre, the origins of the system benefits provided by temporally interleaving the polarization tributaries of 100Gb/s coherent RZ-PDM-QPSK by half a symbol period. Hence, we demonstrate that the amount of benefits provided by this technique is dependent on the configuration of the WDM transmission system.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, J. Geyer, E. De Man, G.-D. Khoe, and H. de Waardt, “Coherent Equalization and POLMUX-RZ-DQPSK for Robust 100-GE Transmission,” J. Lightwave Technol. 26(1), 64–72 (2008).
    [CrossRef]
  2. G. Charlet, M. Salsi, P. Tran, M. Bertolini, H. Mardoyan, J. Renaudier, O. Bertran-Pardo, and S. Bigo, “72x100Gb/s Transmission over Transocenic Distance, Using Large Effective Area Fiber, Hybrid Raman-Erbium Amplification and Coherent Detection”, in Proc of OFC, San Diego, USA, 2009, Paper PDPB6.
  3. J. Renaudier, G. Charlet, O. Bertran-Pardo, H. Mardoyan, P. Tran, M. Salsi, and S. Bigo, “Experimental Analysis of 100Gb/s Coherent PDM-QPSK Long-Haul Transmission under Constraints of Typical Terrestrial Networks”, in Proc of ECOC, Brussels, Belgium, 2008, Th 2.A.3.
  4. O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Ï. Mardoyan, M. Salsi, and S. É. Bigo, “Experimental Assessment of Interactions Between Nonlinear Impairments and Polarization-Mode Dispersion in 100-Gb/s Coherent Systems Versus Receiver Complexity,” IEEE Photon. Technol. Lett. 21(1Issue 1), 51–53 (2009).
    [CrossRef]
  5. C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express 17(6Iss. 6), 4815–4823 (2009).
    [CrossRef] [PubMed]
  6. M. S. Alfiad, D. van den Borne, S. L. Jansen, T. Wuth, M. Kuschnerov, G. Grosso, A. Napoli, and H. de Waardt, “111-Gb/s POLMUX-RZ-DQPSK Transmission over LEAF: Optical versus Electrical Dispersion Compensation”, in Proc of OFC, San Diego, USA, 2009, Paper OThR4.
  7. O. Bertran-Pardo, J. Renaudier, G. Charlet, M. Salsi, M. Bertolini, P. Tran, H. Mardoyan, C. Koebele, and S. Bigo, “System Benefits of Temporal Polarization Interleaving with 100Gb/s Coherent PDM-QPSK”, in proceedings of ECOC’09, Vienna, Austria, 2009. Paper Th.9.4.1.
  8. J. Renaudier, O. Bertran-Pardo, H. Mardoyan, P. Tran; M. Salsi, G. Charlet, S. Bigo, “Impact of Temporal Interleaving of Polarization Tributaries Onto 100-Gb/s Coherent Transmission Systems With RZ Pulse Carving,” IEEE Photonics Technology Letters, vol: 20, no: 24, pp: 2036–2038, 2008.
    [PubMed]
  9. J.-C. Antona, M. Lefrançois, S. Bigo, and G. Le Meur, “Investigation of Advanced Dispersion Management Techniques for Ultra-Long Haul Transmissions”, in Proc. of ECOC’05, Glasgow, Scotland, 2005, Mo.3.2.6.
  10. G. Charlet, “Coherent detection associated with digital signal processing for fiber optics communication,” C. R. Phys. 9(9-10), 1012–1030 (2008).
    [CrossRef]
  11. D. N. Godard, “Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems,” IEEE Trans. Commun. 28(11), 1867–1875 (1980).
    [CrossRef]
  12. A. J. Viterbi and A. M. Viterbi, “Nonlinear Estimation of PSK-Modulated Carrier Phase with Application to Burst Digital Transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
    [CrossRef]
  13. C. Xie, Z. Wang, S. Chandrasekhar, and X. Liu, “Nonlinear Polarization Scattering Impairments and Mitigation in 10-Gbaud Polarization-Division-Multiplexed WDM Systems”, in Proc. of OFC’09, San Diego, USA, 2009, paper OTuD6.

2009 (2)

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Ï. Mardoyan, M. Salsi, and S. É. Bigo, “Experimental Assessment of Interactions Between Nonlinear Impairments and Polarization-Mode Dispersion in 100-Gb/s Coherent Systems Versus Receiver Complexity,” IEEE Photon. Technol. Lett. 21(1Issue 1), 51–53 (2009).
[CrossRef]

C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express 17(6Iss. 6), 4815–4823 (2009).
[CrossRef] [PubMed]

2008 (2)

1983 (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear Estimation of PSK-Modulated Carrier Phase with Application to Burst Digital Transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

1980 (1)

D. N. Godard, “Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems,” IEEE Trans. Commun. 28(11), 1867–1875 (1980).
[CrossRef]

Bertran-Pardo, O.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Ï. Mardoyan, M. Salsi, and S. É. Bigo, “Experimental Assessment of Interactions Between Nonlinear Impairments and Polarization-Mode Dispersion in 100-Gb/s Coherent Systems Versus Receiver Complexity,” IEEE Photon. Technol. Lett. 21(1Issue 1), 51–53 (2009).
[CrossRef]

Bigo, S. É.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Ï. Mardoyan, M. Salsi, and S. É. Bigo, “Experimental Assessment of Interactions Between Nonlinear Impairments and Polarization-Mode Dispersion in 100-Gb/s Coherent Systems Versus Receiver Complexity,” IEEE Photon. Technol. Lett. 21(1Issue 1), 51–53 (2009).
[CrossRef]

Charlet, G.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Ï. Mardoyan, M. Salsi, and S. É. Bigo, “Experimental Assessment of Interactions Between Nonlinear Impairments and Polarization-Mode Dispersion in 100-Gb/s Coherent Systems Versus Receiver Complexity,” IEEE Photon. Technol. Lett. 21(1Issue 1), 51–53 (2009).
[CrossRef]

G. Charlet, “Coherent detection associated with digital signal processing for fiber optics communication,” C. R. Phys. 9(9-10), 1012–1030 (2008).
[CrossRef]

De Man, E.

de Waardt, H.

Duthel, T.

Fludger, C. R. S.

Geyer, J.

Godard, D. N.

D. N. Godard, “Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems,” IEEE Trans. Commun. 28(11), 1867–1875 (1980).
[CrossRef]

Khoe, G.-D.

Mardoyan, H. Ï.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Ï. Mardoyan, M. Salsi, and S. É. Bigo, “Experimental Assessment of Interactions Between Nonlinear Impairments and Polarization-Mode Dispersion in 100-Gb/s Coherent Systems Versus Receiver Complexity,” IEEE Photon. Technol. Lett. 21(1Issue 1), 51–53 (2009).
[CrossRef]

Renaudier, J.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Ï. Mardoyan, M. Salsi, and S. É. Bigo, “Experimental Assessment of Interactions Between Nonlinear Impairments and Polarization-Mode Dispersion in 100-Gb/s Coherent Systems Versus Receiver Complexity,” IEEE Photon. Technol. Lett. 21(1Issue 1), 51–53 (2009).
[CrossRef]

Salsi, M.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Ï. Mardoyan, M. Salsi, and S. É. Bigo, “Experimental Assessment of Interactions Between Nonlinear Impairments and Polarization-Mode Dispersion in 100-Gb/s Coherent Systems Versus Receiver Complexity,” IEEE Photon. Technol. Lett. 21(1Issue 1), 51–53 (2009).
[CrossRef]

Schmidt, E.-D.

Schulien, C.

Tran, P.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Ï. Mardoyan, M. Salsi, and S. É. Bigo, “Experimental Assessment of Interactions Between Nonlinear Impairments and Polarization-Mode Dispersion in 100-Gb/s Coherent Systems Versus Receiver Complexity,” IEEE Photon. Technol. Lett. 21(1Issue 1), 51–53 (2009).
[CrossRef]

van den Borne, D.

Viterbi, A. J.

A. J. Viterbi and A. M. Viterbi, “Nonlinear Estimation of PSK-Modulated Carrier Phase with Application to Burst Digital Transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Viterbi, A. M.

A. J. Viterbi and A. M. Viterbi, “Nonlinear Estimation of PSK-Modulated Carrier Phase with Application to Burst Digital Transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Wuth, T.

Xie, C.

C. R. Phys. (1)

G. Charlet, “Coherent detection associated with digital signal processing for fiber optics communication,” C. R. Phys. 9(9-10), 1012–1030 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Ï. Mardoyan, M. Salsi, and S. É. Bigo, “Experimental Assessment of Interactions Between Nonlinear Impairments and Polarization-Mode Dispersion in 100-Gb/s Coherent Systems Versus Receiver Complexity,” IEEE Photon. Technol. Lett. 21(1Issue 1), 51–53 (2009).
[CrossRef]

IEEE Trans. Commun. (1)

D. N. Godard, “Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems,” IEEE Trans. Commun. 28(11), 1867–1875 (1980).
[CrossRef]

IEEE Trans. Inf. Theory (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear Estimation of PSK-Modulated Carrier Phase with Application to Burst Digital Transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Other (7)

M. S. Alfiad, D. van den Borne, S. L. Jansen, T. Wuth, M. Kuschnerov, G. Grosso, A. Napoli, and H. de Waardt, “111-Gb/s POLMUX-RZ-DQPSK Transmission over LEAF: Optical versus Electrical Dispersion Compensation”, in Proc of OFC, San Diego, USA, 2009, Paper OThR4.

O. Bertran-Pardo, J. Renaudier, G. Charlet, M. Salsi, M. Bertolini, P. Tran, H. Mardoyan, C. Koebele, and S. Bigo, “System Benefits of Temporal Polarization Interleaving with 100Gb/s Coherent PDM-QPSK”, in proceedings of ECOC’09, Vienna, Austria, 2009. Paper Th.9.4.1.

J. Renaudier, O. Bertran-Pardo, H. Mardoyan, P. Tran; M. Salsi, G. Charlet, S. Bigo, “Impact of Temporal Interleaving of Polarization Tributaries Onto 100-Gb/s Coherent Transmission Systems With RZ Pulse Carving,” IEEE Photonics Technology Letters, vol: 20, no: 24, pp: 2036–2038, 2008.
[PubMed]

J.-C. Antona, M. Lefrançois, S. Bigo, and G. Le Meur, “Investigation of Advanced Dispersion Management Techniques for Ultra-Long Haul Transmissions”, in Proc. of ECOC’05, Glasgow, Scotland, 2005, Mo.3.2.6.

C. Xie, Z. Wang, S. Chandrasekhar, and X. Liu, “Nonlinear Polarization Scattering Impairments and Mitigation in 10-Gbaud Polarization-Division-Multiplexed WDM Systems”, in Proc. of OFC’09, San Diego, USA, 2009, paper OTuD6.

G. Charlet, M. Salsi, P. Tran, M. Bertolini, H. Mardoyan, J. Renaudier, O. Bertran-Pardo, and S. Bigo, “72x100Gb/s Transmission over Transocenic Distance, Using Large Effective Area Fiber, Hybrid Raman-Erbium Amplification and Coherent Detection”, in Proc of OFC, San Diego, USA, 2009, Paper PDPB6.

J. Renaudier, G. Charlet, O. Bertran-Pardo, H. Mardoyan, P. Tran, M. Salsi, and S. Bigo, “Experimental Analysis of 100Gb/s Coherent PDM-QPSK Long-Haul Transmission under Constraints of Typical Terrestrial Networks”, in Proc of ECOC, Brussels, Belgium, 2008, Th 2.A.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental test bed: transmitter set up (top left), eye diagrams at the transmitter side (top right insets) and recirculating loop set-up (lower figure)

Fig. 2
Fig. 2

Tolerance to intrachannel (solid lines) and interchannel (dashed lines) nonlinear effects of iRZ-PDM-QPSK and aRZ-PDM-QPSK after 1,200km. The reference power corresponds to optimum of performance in single channel configuration

Fig. 3
Fig. 3

Performance evolution versus launched power for interleaved and aligned RZ-PDM-QPSK measured after 1,200km with identical interchannel impairments in a WDM configuration with 100GHz spacing. The reference power is the same than in Fig. 2.

Metrics