Abstract

We experimentally study, over a dispersion-managed link relying on low chromatic dispersion fibre, the origins of the system benefits provided by temporally interleaving the polarization tributaries of 100Gb/s coherent RZ-PDM-QPSK by half a symbol period. Hence, we demonstrate that the amount of benefits provided by this technique is dependent on the configuration of the WDM transmission system.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, J. Geyer, E. De Man, G.-D. Khoe, and H. de Waardt, “Coherent Equalization and POLMUX-RZ-DQPSK for Robust 100-GE Transmission,” J. Lightwave Technol. 26(1), 64–72 (2008).
    [CrossRef]
  2. G. Charlet, M. Salsi, P. Tran, M. Bertolini, H. Mardoyan, J. Renaudier, O. Bertran-Pardo, and S. Bigo, “72x100Gb/s Transmission over Transocenic Distance, Using Large Effective Area Fiber, Hybrid Raman-Erbium Amplification and Coherent Detection”, in Proc of OFC, San Diego, USA, 2009, Paper PDPB6.
  3. J. Renaudier, G. Charlet, O. Bertran-Pardo, H. Mardoyan, P. Tran, M. Salsi, and S. Bigo, “Experimental Analysis of 100Gb/s Coherent PDM-QPSK Long-Haul Transmission under Constraints of Typical Terrestrial Networks”, in Proc of ECOC, Brussels, Belgium, 2008, Th 2.A.3.
  4. O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Ï. Mardoyan, M. Salsi, and S. É. Bigo, “Experimental Assessment of Interactions Between Nonlinear Impairments and Polarization-Mode Dispersion in 100-Gb/s Coherent Systems Versus Receiver Complexity,” IEEE Photon. Technol. Lett. 21(1Issue 1), 51–53 (2009).
    [CrossRef]
  5. C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express 17(6Iss. 6), 4815–4823 (2009).
    [CrossRef] [PubMed]
  6. M. S. Alfiad, D. van den Borne, S. L. Jansen, T. Wuth, M. Kuschnerov, G. Grosso, A. Napoli, and H. de Waardt, “111-Gb/s POLMUX-RZ-DQPSK Transmission over LEAF: Optical versus Electrical Dispersion Compensation”, in Proc of OFC, San Diego, USA, 2009, Paper OThR4.
  7. O. Bertran-Pardo, J. Renaudier, G. Charlet, M. Salsi, M. Bertolini, P. Tran, H. Mardoyan, C. Koebele, and S. Bigo, “System Benefits of Temporal Polarization Interleaving with 100Gb/s Coherent PDM-QPSK”, in proceedings of ECOC’09, Vienna, Austria, 2009. Paper Th.9.4.1.
  8. J. Renaudier, O. Bertran-Pardo, H. Mardoyan, P. Tran; M. Salsi, G. Charlet, S. Bigo, “Impact of Temporal Interleaving of Polarization Tributaries Onto 100-Gb/s Coherent Transmission Systems With RZ Pulse Carving,” IEEE Photonics Technology Letters, vol: 20, no: 24, pp: 2036–2038, 2008.
    [PubMed]
  9. J.-C. Antona, M. Lefrançois, S. Bigo, and G. Le Meur, “Investigation of Advanced Dispersion Management Techniques for Ultra-Long Haul Transmissions”, in Proc. of ECOC’05, Glasgow, Scotland, 2005, Mo.3.2.6.
  10. G. Charlet, “Coherent detection associated with digital signal processing for fiber optics communication,” C. R. Phys. 9(9-10), 1012–1030 (2008).
    [CrossRef]
  11. D. N. Godard, “Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems,” IEEE Trans. Commun. 28(11), 1867–1875 (1980).
    [CrossRef]
  12. A. J. Viterbi and A. M. Viterbi, “Nonlinear Estimation of PSK-Modulated Carrier Phase with Application to Burst Digital Transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
    [CrossRef]
  13. C. Xie, Z. Wang, S. Chandrasekhar, and X. Liu, “Nonlinear Polarization Scattering Impairments and Mitigation in 10-Gbaud Polarization-Division-Multiplexed WDM Systems”, in Proc. of OFC’09, San Diego, USA, 2009, paper OTuD6.

2009

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Ï. Mardoyan, M. Salsi, and S. É. Bigo, “Experimental Assessment of Interactions Between Nonlinear Impairments and Polarization-Mode Dispersion in 100-Gb/s Coherent Systems Versus Receiver Complexity,” IEEE Photon. Technol. Lett. 21(1Issue 1), 51–53 (2009).
[CrossRef]

C. Xie, “WDM coherent PDM-QPSK systems with and without inline optical dispersion compensation,” Opt. Express 17(6Iss. 6), 4815–4823 (2009).
[CrossRef] [PubMed]

2008

1983

A. J. Viterbi and A. M. Viterbi, “Nonlinear Estimation of PSK-Modulated Carrier Phase with Application to Burst Digital Transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

1980

D. N. Godard, “Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems,” IEEE Trans. Commun. 28(11), 1867–1875 (1980).
[CrossRef]

Bertran-Pardo, O.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Ï. Mardoyan, M. Salsi, and S. É. Bigo, “Experimental Assessment of Interactions Between Nonlinear Impairments and Polarization-Mode Dispersion in 100-Gb/s Coherent Systems Versus Receiver Complexity,” IEEE Photon. Technol. Lett. 21(1Issue 1), 51–53 (2009).
[CrossRef]

Bigo, S. É.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Ï. Mardoyan, M. Salsi, and S. É. Bigo, “Experimental Assessment of Interactions Between Nonlinear Impairments and Polarization-Mode Dispersion in 100-Gb/s Coherent Systems Versus Receiver Complexity,” IEEE Photon. Technol. Lett. 21(1Issue 1), 51–53 (2009).
[CrossRef]

Charlet, G.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Ï. Mardoyan, M. Salsi, and S. É. Bigo, “Experimental Assessment of Interactions Between Nonlinear Impairments and Polarization-Mode Dispersion in 100-Gb/s Coherent Systems Versus Receiver Complexity,” IEEE Photon. Technol. Lett. 21(1Issue 1), 51–53 (2009).
[CrossRef]

G. Charlet, “Coherent detection associated with digital signal processing for fiber optics communication,” C. R. Phys. 9(9-10), 1012–1030 (2008).
[CrossRef]

De Man, E.

de Waardt, H.

Duthel, T.

Fludger, C. R. S.

Geyer, J.

Godard, D. N.

D. N. Godard, “Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems,” IEEE Trans. Commun. 28(11), 1867–1875 (1980).
[CrossRef]

Khoe, G.-D.

Mardoyan, H. Ï.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Ï. Mardoyan, M. Salsi, and S. É. Bigo, “Experimental Assessment of Interactions Between Nonlinear Impairments and Polarization-Mode Dispersion in 100-Gb/s Coherent Systems Versus Receiver Complexity,” IEEE Photon. Technol. Lett. 21(1Issue 1), 51–53 (2009).
[CrossRef]

Renaudier, J.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Ï. Mardoyan, M. Salsi, and S. É. Bigo, “Experimental Assessment of Interactions Between Nonlinear Impairments and Polarization-Mode Dispersion in 100-Gb/s Coherent Systems Versus Receiver Complexity,” IEEE Photon. Technol. Lett. 21(1Issue 1), 51–53 (2009).
[CrossRef]

Salsi, M.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Ï. Mardoyan, M. Salsi, and S. É. Bigo, “Experimental Assessment of Interactions Between Nonlinear Impairments and Polarization-Mode Dispersion in 100-Gb/s Coherent Systems Versus Receiver Complexity,” IEEE Photon. Technol. Lett. 21(1Issue 1), 51–53 (2009).
[CrossRef]

Schmidt, E.-D.

Schulien, C.

Tran, P.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Ï. Mardoyan, M. Salsi, and S. É. Bigo, “Experimental Assessment of Interactions Between Nonlinear Impairments and Polarization-Mode Dispersion in 100-Gb/s Coherent Systems Versus Receiver Complexity,” IEEE Photon. Technol. Lett. 21(1Issue 1), 51–53 (2009).
[CrossRef]

van den Borne, D.

Viterbi, A. J.

A. J. Viterbi and A. M. Viterbi, “Nonlinear Estimation of PSK-Modulated Carrier Phase with Application to Burst Digital Transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Viterbi, A. M.

A. J. Viterbi and A. M. Viterbi, “Nonlinear Estimation of PSK-Modulated Carrier Phase with Application to Burst Digital Transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Wuth, T.

Xie, C.

C. R. Phys.

G. Charlet, “Coherent detection associated with digital signal processing for fiber optics communication,” C. R. Phys. 9(9-10), 1012–1030 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

O. Bertran-Pardo, J. Renaudier, G. Charlet, P. Tran, H. Ï. Mardoyan, M. Salsi, and S. É. Bigo, “Experimental Assessment of Interactions Between Nonlinear Impairments and Polarization-Mode Dispersion in 100-Gb/s Coherent Systems Versus Receiver Complexity,” IEEE Photon. Technol. Lett. 21(1Issue 1), 51–53 (2009).
[CrossRef]

IEEE Trans. Commun.

D. N. Godard, “Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems,” IEEE Trans. Commun. 28(11), 1867–1875 (1980).
[CrossRef]

IEEE Trans. Inf. Theory

A. J. Viterbi and A. M. Viterbi, “Nonlinear Estimation of PSK-Modulated Carrier Phase with Application to Burst Digital Transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

M. S. Alfiad, D. van den Borne, S. L. Jansen, T. Wuth, M. Kuschnerov, G. Grosso, A. Napoli, and H. de Waardt, “111-Gb/s POLMUX-RZ-DQPSK Transmission over LEAF: Optical versus Electrical Dispersion Compensation”, in Proc of OFC, San Diego, USA, 2009, Paper OThR4.

O. Bertran-Pardo, J. Renaudier, G. Charlet, M. Salsi, M. Bertolini, P. Tran, H. Mardoyan, C. Koebele, and S. Bigo, “System Benefits of Temporal Polarization Interleaving with 100Gb/s Coherent PDM-QPSK”, in proceedings of ECOC’09, Vienna, Austria, 2009. Paper Th.9.4.1.

J. Renaudier, O. Bertran-Pardo, H. Mardoyan, P. Tran; M. Salsi, G. Charlet, S. Bigo, “Impact of Temporal Interleaving of Polarization Tributaries Onto 100-Gb/s Coherent Transmission Systems With RZ Pulse Carving,” IEEE Photonics Technology Letters, vol: 20, no: 24, pp: 2036–2038, 2008.
[PubMed]

J.-C. Antona, M. Lefrançois, S. Bigo, and G. Le Meur, “Investigation of Advanced Dispersion Management Techniques for Ultra-Long Haul Transmissions”, in Proc. of ECOC’05, Glasgow, Scotland, 2005, Mo.3.2.6.

C. Xie, Z. Wang, S. Chandrasekhar, and X. Liu, “Nonlinear Polarization Scattering Impairments and Mitigation in 10-Gbaud Polarization-Division-Multiplexed WDM Systems”, in Proc. of OFC’09, San Diego, USA, 2009, paper OTuD6.

G. Charlet, M. Salsi, P. Tran, M. Bertolini, H. Mardoyan, J. Renaudier, O. Bertran-Pardo, and S. Bigo, “72x100Gb/s Transmission over Transocenic Distance, Using Large Effective Area Fiber, Hybrid Raman-Erbium Amplification and Coherent Detection”, in Proc of OFC, San Diego, USA, 2009, Paper PDPB6.

J. Renaudier, G. Charlet, O. Bertran-Pardo, H. Mardoyan, P. Tran, M. Salsi, and S. Bigo, “Experimental Analysis of 100Gb/s Coherent PDM-QPSK Long-Haul Transmission under Constraints of Typical Terrestrial Networks”, in Proc of ECOC, Brussels, Belgium, 2008, Th 2.A.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental test bed: transmitter set up (top left), eye diagrams at the transmitter side (top right insets) and recirculating loop set-up (lower figure)

Fig. 2
Fig. 2

Tolerance to intrachannel (solid lines) and interchannel (dashed lines) nonlinear effects of iRZ-PDM-QPSK and aRZ-PDM-QPSK after 1,200km. The reference power corresponds to optimum of performance in single channel configuration

Fig. 3
Fig. 3

Performance evolution versus launched power for interleaved and aligned RZ-PDM-QPSK measured after 1,200km with identical interchannel impairments in a WDM configuration with 100GHz spacing. The reference power is the same than in Fig. 2.

Metrics