Abstract

Stimulated Raman scattering of toluene and its mixture with chloroform is studied in liquid-core optical fiber. The results show a remarkably broadened Raman line of the mixture from about 630nm to 650nm by a pumping wavelength at 532nm, which is assigned to the interaction of CH vibrations of the two liquids. The results suggest that interactions between adjacent vibrations can produce strong and wide Raman spectra in liquid-core fiber which may prove a new simple way for supercontinuum generation.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. P. Ippen, “Low-Power Quasi-cw Raman Oscillator,” Appl. Phys. Lett. 16(8), 303–305 (1970).
    [Crossref]
  2. M. Holtz, P. K. Dasgupta, and G. Zhang, “Small-Volume Raman Spectroscopy with a Liquid Core Waveguide,” Anal. Chem. 71(14), 2934–2938 (1999).
    [Crossref]
  3. H. B. Ross and W. M. McClain, “Liquid Core Optical Fibers in Raman Spectroscopy,” Appl. Spectrosc. 35(4), 439–442 (1981).
    [Crossref]
  4. G. S. He, G. C. Xu, Y. Pang, and P. N. Prasad, “Temporal behavior of stimulated Kerr scattering in a CS2 liquid-core hollow-fiber system,” J. Opt. Soc. Am. B 8(9), 1907–1913 (1991).
    [Crossref]
  5. G. S. He and G. C. Xu, “Efficient Amplification of a BroadBand Optical Signal Through Stimulated Kerr Scattering in a CS2 Liquid-Core Fiber System,” J. Quantum Electron. 28(1), 323–329 (1992).
    [Crossref]
  6. Y. Chen, L. Wang, X. Lu, Y. Chen, and M. Qiu, “Stimulated Raman scattering and four-wave mixing from a mixture of carbon disulfide and phenylethanol in a hollow optical fiber,” Opt. Lett. 16(19), 1469–1471 (1991).
    [Crossref] [PubMed]
  7. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. L. Auguste, and J. M. Blondy, “Stimulated Raman scattering in an ethanol core microstructured optical fiber,” Opt. Express 13(12), 4786–4791 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4786 .
    [Crossref] [PubMed]
  8. S. Lebrun, P. Delaye, R. Frey, and G. Roosen, “High-efficiency single-mode Raman generation in a liquid-filled photonic bandgap fiber,” Opt. Lett. 32(4), 337–339 (2007).
    [Crossref] [PubMed]
  9. A. H. Hartog, “A Distributed Temperature Sensor Based on Liquid-Core Optical Fibers,” J. Lightwave Technol. 1(3), 498–509 (1983).
    [Crossref]
  10. Y. Xu, X. Chen, and Y. Zhu, “High Sensitive Temperature Sensor Using a Liquid-core Optical Fiber with Small Refractive Index Difference Between Core and Cladding Materials,” Sensors 8(3), 1872–1878 (2008).
    [Crossref]
  11. M. Kuribara and Y. Takeda, “Liquid-core optical fibre for voltage measurement using Kerr effect,” Electron. Lett. 19(4), 133–135 (1983).
    [Crossref]
  12. R. Zhang, J. Teipel, and H. Giessen, “Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation,” Opt. Express 14(15), 6800–6812 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-15-6800 .
    [Crossref] [PubMed]
  13. S. I. Kablukov, S. A. Babin, D. V. Churkin, A. V. Denisov, and D. S. Kharenko, “Frequency doubling of a broadband Raman fiber laser to 655 nm,” Opt. Express 17(8), 5980–5986 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-8-5980 .
    [Crossref] [PubMed]
  14. I. V. Fedotov, A. B. Fedotov, D. A. Sidorov-Biryukov, K. V. Dukel’skii, V. S. Shevandin, and A. M. Zheltikov, “Spectronanoscopy of photonic wires and supercontinuum generation by parametrically coupled Raman sidebands,” Opt. Lett. 33(8), 800–802 (2008).
    [Crossref] [PubMed]
  15. P. T. Rakich, Y. Fink, and M. Soljacić, “Efficient mid-IR spectral generation via spontaneous fifth-order cascaded-Raman amplification in silica fibers,” Opt. Lett. 33(15), 1690–1692 (2008).
    [Crossref] [PubMed]
  16. T. Katagiri, Y. S. Yamamoto, Y. Ozaki, Y. Matsuura, and H. Sato, “High axial resolution Raman probe made of a single hollow optical fiber,” Appl. Spectrosc. 63(1), 103–107 (2009).
    [Crossref] [PubMed]
  17. A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near infrared,” J. Appl. Phys. 94(9), 6167–6174 (2003).
    [Crossref]
  18. C. E. Foster, B. P. Barham, and P. J. Reid, “Resonance Raman intensity analysis of chlorine dioxide dissolved in chloroform: The role of nonpolar salvation,” J. Chem. Phys. 114(19), 8492–8503 (2001).
    [Crossref]
  19. F. J. McClung and D. Weiner, “Measurement of Raman Scattering Cross Sections for Use in Calculating Stimulated Raman Scattering Effects,” J. Opt. Soc. Am. 54(5), 641–643 (1964).
    [Crossref]
  20. J. Kapitán, L. Hecht, and P. Bouř, “Raman spectral evidence of methyl rotation in liquid toluene,” Phys. Chem. Chem. Phys. 10(7), 1003–1008 (2008).
    [Crossref] [PubMed]
  21. H. Yui, T. Nakajima, K. Hirao, and T. Sawada, “Enhancement of the Stimulated Raman Scattering of Benzene-Toluene Mixtures under Strong Excitation Condition in the Liquid Phase,” J. Phys. Chem. A 107(7), 968–973 (2003).
    [Crossref]
  22. C. Veas and J. L. McHale, “”Intermolecular Resonance Coupling of Solute and Solvent Vibrational Modes,” J. Am. Chem. Soc. 111(18), 7042–7046 (1989).
    [Crossref]
  23. H. J. Marrinan and N. Sheppard, “Relative Intensities of the Raman Lines of Carbon Tetrachloride, Chloroform, and Methylene Chloride,” J. Opt. Soc. Am. 44(10), 815–819 (1954).
    [Crossref]

2009 (2)

2008 (4)

I. V. Fedotov, A. B. Fedotov, D. A. Sidorov-Biryukov, K. V. Dukel’skii, V. S. Shevandin, and A. M. Zheltikov, “Spectronanoscopy of photonic wires and supercontinuum generation by parametrically coupled Raman sidebands,” Opt. Lett. 33(8), 800–802 (2008).
[Crossref] [PubMed]

P. T. Rakich, Y. Fink, and M. Soljacić, “Efficient mid-IR spectral generation via spontaneous fifth-order cascaded-Raman amplification in silica fibers,” Opt. Lett. 33(15), 1690–1692 (2008).
[Crossref] [PubMed]

J. Kapitán, L. Hecht, and P. Bouř, “Raman spectral evidence of methyl rotation in liquid toluene,” Phys. Chem. Chem. Phys. 10(7), 1003–1008 (2008).
[Crossref] [PubMed]

Y. Xu, X. Chen, and Y. Zhu, “High Sensitive Temperature Sensor Using a Liquid-core Optical Fiber with Small Refractive Index Difference Between Core and Cladding Materials,” Sensors 8(3), 1872–1878 (2008).
[Crossref]

2007 (1)

2006 (1)

2005 (1)

2003 (2)

A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near infrared,” J. Appl. Phys. 94(9), 6167–6174 (2003).
[Crossref]

H. Yui, T. Nakajima, K. Hirao, and T. Sawada, “Enhancement of the Stimulated Raman Scattering of Benzene-Toluene Mixtures under Strong Excitation Condition in the Liquid Phase,” J. Phys. Chem. A 107(7), 968–973 (2003).
[Crossref]

2001 (1)

C. E. Foster, B. P. Barham, and P. J. Reid, “Resonance Raman intensity analysis of chlorine dioxide dissolved in chloroform: The role of nonpolar salvation,” J. Chem. Phys. 114(19), 8492–8503 (2001).
[Crossref]

1999 (1)

M. Holtz, P. K. Dasgupta, and G. Zhang, “Small-Volume Raman Spectroscopy with a Liquid Core Waveguide,” Anal. Chem. 71(14), 2934–2938 (1999).
[Crossref]

1992 (1)

G. S. He and G. C. Xu, “Efficient Amplification of a BroadBand Optical Signal Through Stimulated Kerr Scattering in a CS2 Liquid-Core Fiber System,” J. Quantum Electron. 28(1), 323–329 (1992).
[Crossref]

1991 (2)

1989 (1)

C. Veas and J. L. McHale, “”Intermolecular Resonance Coupling of Solute and Solvent Vibrational Modes,” J. Am. Chem. Soc. 111(18), 7042–7046 (1989).
[Crossref]

1983 (2)

A. H. Hartog, “A Distributed Temperature Sensor Based on Liquid-Core Optical Fibers,” J. Lightwave Technol. 1(3), 498–509 (1983).
[Crossref]

M. Kuribara and Y. Takeda, “Liquid-core optical fibre for voltage measurement using Kerr effect,” Electron. Lett. 19(4), 133–135 (1983).
[Crossref]

1981 (1)

1970 (1)

E. P. Ippen, “Low-Power Quasi-cw Raman Oscillator,” Appl. Phys. Lett. 16(8), 303–305 (1970).
[Crossref]

1964 (1)

1954 (1)

Auguste, J. L.

Babin, S. A.

Barham, B. P.

C. E. Foster, B. P. Barham, and P. J. Reid, “Resonance Raman intensity analysis of chlorine dioxide dissolved in chloroform: The role of nonpolar salvation,” J. Chem. Phys. 114(19), 8492–8503 (2001).
[Crossref]

Blondy, J. M.

Bour, P.

J. Kapitán, L. Hecht, and P. Bouř, “Raman spectral evidence of methyl rotation in liquid toluene,” Phys. Chem. Chem. Phys. 10(7), 1003–1008 (2008).
[Crossref] [PubMed]

Chen, X.

Y. Xu, X. Chen, and Y. Zhu, “High Sensitive Temperature Sensor Using a Liquid-core Optical Fiber with Small Refractive Index Difference Between Core and Cladding Materials,” Sensors 8(3), 1872–1878 (2008).
[Crossref]

Chen, Y.

Chinaud, J.

Churkin, D. V.

Dasgupta, P. K.

M. Holtz, P. K. Dasgupta, and G. Zhang, “Small-Volume Raman Spectroscopy with a Liquid Core Waveguide,” Anal. Chem. 71(14), 2934–2938 (1999).
[Crossref]

Delaye, P.

Denisov, A. V.

Dukel’skii, K. V.

Fedotov, A. B.

Fedotov, I. V.

Février, S.

Fink, Y.

Foster, C. E.

C. E. Foster, B. P. Barham, and P. J. Reid, “Resonance Raman intensity analysis of chlorine dioxide dissolved in chloroform: The role of nonpolar salvation,” J. Chem. Phys. 114(19), 8492–8503 (2001).
[Crossref]

Frey, R.

Giessen, H.

Hartog, A. H.

A. H. Hartog, “A Distributed Temperature Sensor Based on Liquid-Core Optical Fibers,” J. Lightwave Technol. 1(3), 498–509 (1983).
[Crossref]

He, G. S.

G. S. He and G. C. Xu, “Efficient Amplification of a BroadBand Optical Signal Through Stimulated Kerr Scattering in a CS2 Liquid-Core Fiber System,” J. Quantum Electron. 28(1), 323–329 (1992).
[Crossref]

G. S. He, G. C. Xu, Y. Pang, and P. N. Prasad, “Temporal behavior of stimulated Kerr scattering in a CS2 liquid-core hollow-fiber system,” J. Opt. Soc. Am. B 8(9), 1907–1913 (1991).
[Crossref]

Hecht, L.

J. Kapitán, L. Hecht, and P. Bouř, “Raman spectral evidence of methyl rotation in liquid toluene,” Phys. Chem. Chem. Phys. 10(7), 1003–1008 (2008).
[Crossref] [PubMed]

Hirao, K.

H. Yui, T. Nakajima, K. Hirao, and T. Sawada, “Enhancement of the Stimulated Raman Scattering of Benzene-Toluene Mixtures under Strong Excitation Condition in the Liquid Phase,” J. Phys. Chem. A 107(7), 968–973 (2003).
[Crossref]

Holtz, M.

M. Holtz, P. K. Dasgupta, and G. Zhang, “Small-Volume Raman Spectroscopy with a Liquid Core Waveguide,” Anal. Chem. 71(14), 2934–2938 (1999).
[Crossref]

Ippen, E. P.

E. P. Ippen, “Low-Power Quasi-cw Raman Oscillator,” Appl. Phys. Lett. 16(8), 303–305 (1970).
[Crossref]

Kablukov, S. I.

Kapitán, J.

J. Kapitán, L. Hecht, and P. Bouř, “Raman spectral evidence of methyl rotation in liquid toluene,” Phys. Chem. Chem. Phys. 10(7), 1003–1008 (2008).
[Crossref] [PubMed]

Katagiri, T.

Kharenko, D. S.

Kuribara, M.

M. Kuribara and Y. Takeda, “Liquid-core optical fibre for voltage measurement using Kerr effect,” Electron. Lett. 19(4), 133–135 (1983).
[Crossref]

Lebrun, S.

Lu, X.

Marrinan, H. J.

Matsuura, Y.

McClain, W. M.

McClung, F. J.

McHale, J. L.

C. Veas and J. L. McHale, “”Intermolecular Resonance Coupling of Solute and Solvent Vibrational Modes,” J. Am. Chem. Soc. 111(18), 7042–7046 (1989).
[Crossref]

Nakajima, T.

H. Yui, T. Nakajima, K. Hirao, and T. Sawada, “Enhancement of the Stimulated Raman Scattering of Benzene-Toluene Mixtures under Strong Excitation Condition in the Liquid Phase,” J. Phys. Chem. A 107(7), 968–973 (2003).
[Crossref]

Ozaki, Y.

Pang, Y.

Prasad, P. N.

Qiu, M.

Rakich, P. T.

Reid, P. J.

C. E. Foster, B. P. Barham, and P. J. Reid, “Resonance Raman intensity analysis of chlorine dioxide dissolved in chloroform: The role of nonpolar salvation,” J. Chem. Phys. 114(19), 8492–8503 (2001).
[Crossref]

Roosen, G.

Ross, H. B.

Rouvie, A.

Roy, P.

Samoc, A.

A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near infrared,” J. Appl. Phys. 94(9), 6167–6174 (2003).
[Crossref]

Sato, H.

Sawada, T.

H. Yui, T. Nakajima, K. Hirao, and T. Sawada, “Enhancement of the Stimulated Raman Scattering of Benzene-Toluene Mixtures under Strong Excitation Condition in the Liquid Phase,” J. Phys. Chem. A 107(7), 968–973 (2003).
[Crossref]

Sheppard, N.

Shevandin, V. S.

Sidorov-Biryukov, D. A.

Soljacic, M.

Takeda, Y.

M. Kuribara and Y. Takeda, “Liquid-core optical fibre for voltage measurement using Kerr effect,” Electron. Lett. 19(4), 133–135 (1983).
[Crossref]

Teipel, J.

Veas, C.

C. Veas and J. L. McHale, “”Intermolecular Resonance Coupling of Solute and Solvent Vibrational Modes,” J. Am. Chem. Soc. 111(18), 7042–7046 (1989).
[Crossref]

Viale, P.

Wang, L.

Weiner, D.

Xu, G. C.

G. S. He and G. C. Xu, “Efficient Amplification of a BroadBand Optical Signal Through Stimulated Kerr Scattering in a CS2 Liquid-Core Fiber System,” J. Quantum Electron. 28(1), 323–329 (1992).
[Crossref]

G. S. He, G. C. Xu, Y. Pang, and P. N. Prasad, “Temporal behavior of stimulated Kerr scattering in a CS2 liquid-core hollow-fiber system,” J. Opt. Soc. Am. B 8(9), 1907–1913 (1991).
[Crossref]

Xu, Y.

Y. Xu, X. Chen, and Y. Zhu, “High Sensitive Temperature Sensor Using a Liquid-core Optical Fiber with Small Refractive Index Difference Between Core and Cladding Materials,” Sensors 8(3), 1872–1878 (2008).
[Crossref]

Yamamoto, Y. S.

Yiou, S.

Yui, H.

H. Yui, T. Nakajima, K. Hirao, and T. Sawada, “Enhancement of the Stimulated Raman Scattering of Benzene-Toluene Mixtures under Strong Excitation Condition in the Liquid Phase,” J. Phys. Chem. A 107(7), 968–973 (2003).
[Crossref]

Zhang, G.

M. Holtz, P. K. Dasgupta, and G. Zhang, “Small-Volume Raman Spectroscopy with a Liquid Core Waveguide,” Anal. Chem. 71(14), 2934–2938 (1999).
[Crossref]

Zhang, R.

Zheltikov, A. M.

Zhu, Y.

Y. Xu, X. Chen, and Y. Zhu, “High Sensitive Temperature Sensor Using a Liquid-core Optical Fiber with Small Refractive Index Difference Between Core and Cladding Materials,” Sensors 8(3), 1872–1878 (2008).
[Crossref]

Anal. Chem. (1)

M. Holtz, P. K. Dasgupta, and G. Zhang, “Small-Volume Raman Spectroscopy with a Liquid Core Waveguide,” Anal. Chem. 71(14), 2934–2938 (1999).
[Crossref]

Appl. Phys. Lett. (1)

E. P. Ippen, “Low-Power Quasi-cw Raman Oscillator,” Appl. Phys. Lett. 16(8), 303–305 (1970).
[Crossref]

Appl. Spectrosc. (2)

Electron. Lett. (1)

M. Kuribara and Y. Takeda, “Liquid-core optical fibre for voltage measurement using Kerr effect,” Electron. Lett. 19(4), 133–135 (1983).
[Crossref]

J. Am. Chem. Soc. (1)

C. Veas and J. L. McHale, “”Intermolecular Resonance Coupling of Solute and Solvent Vibrational Modes,” J. Am. Chem. Soc. 111(18), 7042–7046 (1989).
[Crossref]

J. Appl. Phys. (1)

A. Samoc, “Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near infrared,” J. Appl. Phys. 94(9), 6167–6174 (2003).
[Crossref]

J. Chem. Phys. (1)

C. E. Foster, B. P. Barham, and P. J. Reid, “Resonance Raman intensity analysis of chlorine dioxide dissolved in chloroform: The role of nonpolar salvation,” J. Chem. Phys. 114(19), 8492–8503 (2001).
[Crossref]

J. Lightwave Technol. (1)

A. H. Hartog, “A Distributed Temperature Sensor Based on Liquid-Core Optical Fibers,” J. Lightwave Technol. 1(3), 498–509 (1983).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

H. Yui, T. Nakajima, K. Hirao, and T. Sawada, “Enhancement of the Stimulated Raman Scattering of Benzene-Toluene Mixtures under Strong Excitation Condition in the Liquid Phase,” J. Phys. Chem. A 107(7), 968–973 (2003).
[Crossref]

J. Quantum Electron. (1)

G. S. He and G. C. Xu, “Efficient Amplification of a BroadBand Optical Signal Through Stimulated Kerr Scattering in a CS2 Liquid-Core Fiber System,” J. Quantum Electron. 28(1), 323–329 (1992).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Phys. Chem. Chem. Phys. (1)

J. Kapitán, L. Hecht, and P. Bouř, “Raman spectral evidence of methyl rotation in liquid toluene,” Phys. Chem. Chem. Phys. 10(7), 1003–1008 (2008).
[Crossref] [PubMed]

Sensors (1)

Y. Xu, X. Chen, and Y. Zhu, “High Sensitive Temperature Sensor Using a Liquid-core Optical Fiber with Small Refractive Index Difference Between Core and Cladding Materials,” Sensors 8(3), 1872–1878 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

(a) SRS spectra of the mixture with concentration of toluene at 80% and 100%. (b) Fitting result of the broadened band around 636nm.

Fig. 3
Fig. 3

(a) SRS spectra of the mixture with concentration of toluene at 60% and 100%. (b) fitting result of the broadened band around 636nm.

Metrics