Abstract

We theoretically present a highly efficient optical method to obtain slow and fast light in a coupled system consisting of a nanomechanical resonator and quantum dots in terms of mechanically induced coherent population oscillation (MICPO). Turning on or turning off the specific detuning of pump field from exciton resonance, this coupling system can provide us a direct optical way to obtain the slow or fast group velocity without absorption. Our coupling scheme proposed here works as a fast-and slow-light knob and may have potential applications in various domains such as optical communication and biology sensor.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microwave field controlled slow and fast light with a coupled system consisting of a nanomechanical resonator and a Cooper-pair box

Peng-Cheng Ma, Yin Xiao, Ya-Fei Yu, and Zhi-Ming Zhang
Opt. Express 22(3) 3621-3628 (2014)

Optical propagation properties in a quantum dot–DNA coupling system

Yang Li and Ka-Di Zhu
J. Opt. Soc. Am. B 29(12) 3371-3376 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves” Phys. Rev. Lett. 100, 203603(2008).
    [Crossref] [PubMed]
  2. R.W. Boyd and D. J. Gauthier Progress in Optics, edited by E. Wolf (Elsevier, Amsterdam), Vol. 43, pp. 497–530 (2002).
  3. S. Chu and S. Wong, “Linear Pulse Propagation in an Absorbing Medium,” Phys. Rev. Lett. 48, 738(1982).
    [Crossref]
  4. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598(1999).
    [Crossref]
  5. P. -C. Ku, R. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. -W. Chang, and S. -L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293(2004).
    [Crossref] [PubMed]
  6. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673(2005).
    [Crossref]
  7. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229 (1999).
    [Crossref]
  8. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
    [Crossref] [PubMed]
  9. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature Solid,” Science 301, 200–202 (2003).
    [Crossref] [PubMed]
  10. E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V, Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
    [Crossref] [PubMed]
  11. S. Melle, O. G. Calderón, C. E. Caro, E. Cabrera-Granado, M. A. Antón, and F. Carreño, “Modulation-frequencycontrolled change from sub- to superluminal regime in highly doped erbium fibers,” Opt. Lett. 33, 827–829 (2008).
    [Crossref] [PubMed]
  12. A. Shumelyuk, K. Shcherbin, S. Odulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93, 243604 (2004).
    [Crossref]
  13. P. Wu and D. V. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett. 95, 253601 (2005).
    [Crossref] [PubMed]
  14. K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005).
    [Crossref]
  15. Y.J. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
    [Crossref] [PubMed]
  16. Y.T. Yang, C. Callegari, X.L. Feng, K.L. Ekinci, and M.L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano. Lett. 6, 583–586 (2006).
    [Crossref] [PubMed]
  17. I. Wilson-Rae, P. Zoller, and A. Imamoḡlu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004).
    [Crossref] [PubMed]
  18. X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932(2007).
    [Crossref] [PubMed]
  19. R. W. Boyd, Nonlinear Optics (San Diego, CA: Academic) (1992).
  20. G. S. Agarwal, “Electromagnetic-field-induced transparency in high-density exciton systems,” Phys. Rev. A 51, R2711–R2714 (1995).
    [Crossref] [PubMed]
  21. J. F. Lam, S. R. Forrest, and G. L. Tangonan, “Optical nonlinearities in crystalline organic multiple quantum wells,” Phys. Rev. Lett. 66, 1614 (1991).
    [Crossref] [PubMed]
  22. R. S. Bennink, R. W. Boyd, C. R. Stroud, and V. Wong, “Enhanced self-action effects by electromagnetically induced transparency in the two-level atom,” Phys. Rev. A 63, 033804 (2001).
    [Crossref]
  23. S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
    [Crossref] [PubMed]
  24. V. Preisler, T. Grange, R. Ferreira, L.A. de Vaulchier, Y. Guldner, F.J. Teran, M. Potemski, and A. Lemaitre, “Evidence for excitonic polarons in InAs/GaAs quantum dots”, Phys. Rev. B 73, 075320(2006).
    [Crossref]
  25. K.D. Zhu and W.S. Li, ”Electromagnetically induced transparency due to exciton-phonon interaction in an organic quantum well,” J.Phys.B: At. Mol. Opt. Phys. 34, L679–L686(2001).
    [Crossref]
  26. Y.W. Jiang, K.D. Zhu, Z.J. Wu, X.Z. Yuan, and M. Yao,”Electromagnetically induced transparency in quantum dots”, J.Phys.B: At. Mol. Opt. Phys. 39, 2621–2632(2006).
    [Crossref]

2008 (2)

2007 (1)

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932(2007).
[Crossref] [PubMed]

2006 (4)

Y.J. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref] [PubMed]

Y.T. Yang, C. Callegari, X.L. Feng, K.L. Ekinci, and M.L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano. Lett. 6, 583–586 (2006).
[Crossref] [PubMed]

V. Preisler, T. Grange, R. Ferreira, L.A. de Vaulchier, Y. Guldner, F.J. Teran, M. Potemski, and A. Lemaitre, “Evidence for excitonic polarons in InAs/GaAs quantum dots”, Phys. Rev. B 73, 075320(2006).
[Crossref]

Y.W. Jiang, K.D. Zhu, Z.J. Wu, X.Z. Yuan, and M. Yao,”Electromagnetically induced transparency in quantum dots”, J.Phys.B: At. Mol. Opt. Phys. 39, 2621–2632(2006).
[Crossref]

2005 (4)

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V, Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
[Crossref] [PubMed]

P. Wu and D. V. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett. 95, 253601 (2005).
[Crossref] [PubMed]

K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673(2005).
[Crossref]

2004 (3)

P. -C. Ku, R. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. -W. Chang, and S. -L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293(2004).
[Crossref] [PubMed]

A. Shumelyuk, K. Shcherbin, S. Odulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93, 243604 (2004).
[Crossref]

I. Wilson-Rae, P. Zoller, and A. Imamoḡlu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004).
[Crossref] [PubMed]

2003 (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature Solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

2001 (2)

K.D. Zhu and W.S. Li, ”Electromagnetically induced transparency due to exciton-phonon interaction in an organic quantum well,” J.Phys.B: At. Mol. Opt. Phys. 34, L679–L686(2001).
[Crossref]

R. S. Bennink, R. W. Boyd, C. R. Stroud, and V. Wong, “Enhanced self-action effects by electromagnetically induced transparency in the two-level atom,” Phys. Rev. A 63, 033804 (2001).
[Crossref]

1999 (2)

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229 (1999).
[Crossref]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598(1999).
[Crossref]

1995 (1)

G. S. Agarwal, “Electromagnetic-field-induced transparency in high-density exciton systems,” Phys. Rev. A 51, R2711–R2714 (1995).
[Crossref] [PubMed]

1992 (1)

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[Crossref] [PubMed]

1991 (1)

J. F. Lam, S. R. Forrest, and G. L. Tangonan, “Optical nonlinearities in crystalline organic multiple quantum wells,” Phys. Rev. Lett. 66, 1614 (1991).
[Crossref] [PubMed]

1982 (1)

S. Chu and S. Wong, “Linear Pulse Propagation in an Absorbing Medium,” Phys. Rev. Lett. 48, 738(1982).
[Crossref]

Agarwal, G. S.

G. S. Agarwal, “Electromagnetic-field-induced transparency in high-density exciton systems,” Phys. Rev. A 51, R2711–R2714 (1995).
[Crossref] [PubMed]

Antón, M. A.

Baldit, E.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V, Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
[Crossref] [PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598(1999).
[Crossref]

Bencheikh, K.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V, Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
[Crossref] [PubMed]

Bennink, R. S.

R. S. Bennink, R. W. Boyd, C. R. Stroud, and V. Wong, “Enhanced self-action effects by electromagnetically induced transparency in the two-level atom,” Phys. Rev. A 63, 033804 (2001).
[Crossref]

Berman, P. R.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932(2007).
[Crossref] [PubMed]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature Solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

Bortolozzo, U.

S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves” Phys. Rev. Lett. 100, 203603(2008).
[Crossref] [PubMed]

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature Solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

R. S. Bennink, R. W. Boyd, C. R. Stroud, and V. Wong, “Enhanced self-action effects by electromagnetically induced transparency in the two-level atom,” Phys. Rev. A 63, 033804 (2001).
[Crossref]

R. W. Boyd, Nonlinear Optics (San Diego, CA: Academic) (1992).

Boyd, R.W.

R.W. Boyd and D. J. Gauthier Progress in Optics, edited by E. Wolf (Elsevier, Amsterdam), Vol. 43, pp. 497–530 (2002).

Bracker, A. S.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932(2007).
[Crossref] [PubMed]

Buse, K.

A. Shumelyuk, K. Shcherbin, S. Odulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93, 243604 (2004).
[Crossref]

Cabrera-Granado, E.

Calderón, O. G.

Callegari, C.

Y.T. Yang, C. Callegari, X.L. Feng, K.L. Ekinci, and M.L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano. Lett. 6, 583–586 (2006).
[Crossref] [PubMed]

Caro, C. E.

Carreño, F.

Chang, S. -W.

Chang-Hasnain, C. J.

Chu, S.

S. Chu and S. Wong, “Linear Pulse Propagation in an Absorbing Medium,” Phys. Rev. Lett. 48, 738(1982).
[Crossref]

Chuang, S. -L.

de Vaulchier, L.A.

V. Preisler, T. Grange, R. Ferreira, L.A. de Vaulchier, Y. Guldner, F.J. Teran, M. Potemski, and A. Lemaitre, “Evidence for excitonic polarons in InAs/GaAs quantum dots”, Phys. Rev. B 73, 075320(2006).
[Crossref]

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598(1999).
[Crossref]

Eardley, M.

Y.J. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref] [PubMed]

Ekinci, K.L.

Y.T. Yang, C. Callegari, X.L. Feng, K.L. Ekinci, and M.L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano. Lett. 6, 583–586 (2006).
[Crossref] [PubMed]

Feng, X.L.

Y.T. Yang, C. Callegari, X.L. Feng, K.L. Ekinci, and M.L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano. Lett. 6, 583–586 (2006).
[Crossref] [PubMed]

Ferreira, R.

V. Preisler, T. Grange, R. Ferreira, L.A. de Vaulchier, Y. Guldner, F.J. Teran, M. Potemski, and A. Lemaitre, “Evidence for excitonic polarons in InAs/GaAs quantum dots”, Phys. Rev. B 73, 075320(2006).
[Crossref]

Field, J. E.

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[Crossref] [PubMed]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673(2005).
[Crossref]

Forrest, S. R.

J. F. Lam, S. R. Forrest, and G. L. Tangonan, “Optical nonlinearities in crystalline organic multiple quantum wells,” Phys. Rev. Lett. 66, 1614 (1991).
[Crossref] [PubMed]

Fry, E. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229 (1999).
[Crossref]

Gammon, D.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932(2007).
[Crossref] [PubMed]

Gauthier, D. J.

R.W. Boyd and D. J. Gauthier Progress in Optics, edited by E. Wolf (Elsevier, Amsterdam), Vol. 43, pp. 497–530 (2002).

Grange, T.

V. Preisler, T. Grange, R. Ferreira, L.A. de Vaulchier, Y. Guldner, F.J. Teran, M. Potemski, and A. Lemaitre, “Evidence for excitonic polarons in InAs/GaAs quantum dots”, Phys. Rev. B 73, 075320(2006).
[Crossref]

Guldner, Y.

V. Preisler, T. Grange, R. Ferreira, L.A. de Vaulchier, Y. Guldner, F.J. Teran, M. Potemski, and A. Lemaitre, “Evidence for excitonic polarons in InAs/GaAs quantum dots”, Phys. Rev. B 73, 075320(2006).
[Crossref]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598(1999).
[Crossref]

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[Crossref] [PubMed]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598(1999).
[Crossref]

Hollberg, L.

Y.J. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229 (1999).
[Crossref]

Huignard, J. P.

S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves” Phys. Rev. Lett. 100, 203603(2008).
[Crossref] [PubMed]

Imamo?lu, A.

I. Wilson-Rae, P. Zoller, and A. Imamoḡlu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004).
[Crossref] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673(2005).
[Crossref]

Jiang, Y.W.

Y.W. Jiang, K.D. Zhu, Z.J. Wu, X.Z. Yuan, and M. Yao,”Electromagnetically induced transparency in quantum dots”, J.Phys.B: At. Mol. Opt. Phys. 39, 2621–2632(2006).
[Crossref]

Kasapi, A.

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[Crossref] [PubMed]

Kash, M. M.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229 (1999).
[Crossref]

Kitching, J.

Y.J. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref] [PubMed]

Knappe, S.

Y.J. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref] [PubMed]

Ku, P. -C.

Lam, J. F.

J. F. Lam, S. R. Forrest, and G. L. Tangonan, “Optical nonlinearities in crystalline organic multiple quantum wells,” Phys. Rev. Lett. 66, 1614 (1991).
[Crossref] [PubMed]

Lemaitre, A.

V. Preisler, T. Grange, R. Ferreira, L.A. de Vaulchier, Y. Guldner, F.J. Teran, M. Potemski, and A. Lemaitre, “Evidence for excitonic polarons in InAs/GaAs quantum dots”, Phys. Rev. B 73, 075320(2006).
[Crossref]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature Solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

Levenson, J. A.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V, Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
[Crossref] [PubMed]

Li, T.

Li, W.S.

K.D. Zhu and W.S. Li, ”Electromagnetically induced transparency due to exciton-phonon interaction in an organic quantum well,” J.Phys.B: At. Mol. Opt. Phys. 34, L679–L686(2001).
[Crossref]

Lukin, M. D.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229 (1999).
[Crossref]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673(2005).
[Crossref]

Melle, S.

Monnier, P.

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V, Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
[Crossref] [PubMed]

Moreland, J.

Y.J. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref] [PubMed]

Odulov, S.

A. Shumelyuk, K. Shcherbin, S. Odulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93, 243604 (2004).
[Crossref]

Palinginis, P.

Podivilov, E.

A. Shumelyuk, K. Shcherbin, S. Odulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93, 243604 (2004).
[Crossref]

Potemski, M.

V. Preisler, T. Grange, R. Ferreira, L.A. de Vaulchier, Y. Guldner, F.J. Teran, M. Potemski, and A. Lemaitre, “Evidence for excitonic polarons in InAs/GaAs quantum dots”, Phys. Rev. B 73, 075320(2006).
[Crossref]

Preisler, V.

V. Preisler, T. Grange, R. Ferreira, L.A. de Vaulchier, Y. Guldner, F.J. Teran, M. Potemski, and A. Lemaitre, “Evidence for excitonic polarons in InAs/GaAs quantum dots”, Phys. Rev. B 73, 075320(2006).
[Crossref]

Rao, D. V.

P. Wu and D. V. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett. 95, 253601 (2005).
[Crossref] [PubMed]

Residori, S.

S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves” Phys. Rev. Lett. 100, 203603(2008).
[Crossref] [PubMed]

Rostovtsev, Y.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229 (1999).
[Crossref]

Rouget, V,

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V, Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
[Crossref] [PubMed]

Roukes, M. L.

K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005).
[Crossref]

Roukes, M.L.

Y.T. Yang, C. Callegari, X.L. Feng, K.L. Ekinci, and M.L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano. Lett. 6, 583–586 (2006).
[Crossref] [PubMed]

Sautenkov, V. A.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229 (1999).
[Crossref]

Schwab, K. C.

K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005).
[Crossref]

Scully, M. O.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229 (1999).
[Crossref]

Sedgwick, R.

Sham, L. J.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932(2007).
[Crossref] [PubMed]

Shcherbin, K.

A. Shumelyuk, K. Shcherbin, S. Odulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93, 243604 (2004).
[Crossref]

Shumelyuk, A.

A. Shumelyuk, K. Shcherbin, S. Odulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93, 243604 (2004).
[Crossref]

Steel, D. G.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932(2007).
[Crossref] [PubMed]

Stroud, C. R.

R. S. Bennink, R. W. Boyd, C. R. Stroud, and V. Wong, “Enhanced self-action effects by electromagnetically induced transparency in the two-level atom,” Phys. Rev. A 63, 033804 (2001).
[Crossref]

Sturman, B.

A. Shumelyuk, K. Shcherbin, S. Odulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93, 243604 (2004).
[Crossref]

Sun, B.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932(2007).
[Crossref] [PubMed]

Tangonan, G. L.

J. F. Lam, S. R. Forrest, and G. L. Tangonan, “Optical nonlinearities in crystalline organic multiple quantum wells,” Phys. Rev. Lett. 66, 1614 (1991).
[Crossref] [PubMed]

Teran, F.J.

V. Preisler, T. Grange, R. Ferreira, L.A. de Vaulchier, Y. Guldner, F.J. Teran, M. Potemski, and A. Lemaitre, “Evidence for excitonic polarons in InAs/GaAs quantum dots”, Phys. Rev. B 73, 075320(2006).
[Crossref]

Wang, H.

Wang, Y.J.

Y.J. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref] [PubMed]

Welch, G. R.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229 (1999).
[Crossref]

Wilson-Rae, I.

I. Wilson-Rae, P. Zoller, and A. Imamoḡlu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004).
[Crossref] [PubMed]

Wong, S.

S. Chu and S. Wong, “Linear Pulse Propagation in an Absorbing Medium,” Phys. Rev. Lett. 48, 738(1982).
[Crossref]

Wong, V.

R. S. Bennink, R. W. Boyd, C. R. Stroud, and V. Wong, “Enhanced self-action effects by electromagnetically induced transparency in the two-level atom,” Phys. Rev. A 63, 033804 (2001).
[Crossref]

Wu, P.

P. Wu and D. V. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett. 95, 253601 (2005).
[Crossref] [PubMed]

Wu, Z.J.

Y.W. Jiang, K.D. Zhu, Z.J. Wu, X.Z. Yuan, and M. Yao,”Electromagnetically induced transparency in quantum dots”, J.Phys.B: At. Mol. Opt. Phys. 39, 2621–2632(2006).
[Crossref]

Xu, X.

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932(2007).
[Crossref] [PubMed]

Yang, Y.T.

Y.T. Yang, C. Callegari, X.L. Feng, K.L. Ekinci, and M.L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano. Lett. 6, 583–586 (2006).
[Crossref] [PubMed]

Yao, M.

Y.W. Jiang, K.D. Zhu, Z.J. Wu, X.Z. Yuan, and M. Yao,”Electromagnetically induced transparency in quantum dots”, J.Phys.B: At. Mol. Opt. Phys. 39, 2621–2632(2006).
[Crossref]

Yuan, X.Z.

Y.W. Jiang, K.D. Zhu, Z.J. Wu, X.Z. Yuan, and M. Yao,”Electromagnetically induced transparency in quantum dots”, J.Phys.B: At. Mol. Opt. Phys. 39, 2621–2632(2006).
[Crossref]

Zhu, K.D.

Y.W. Jiang, K.D. Zhu, Z.J. Wu, X.Z. Yuan, and M. Yao,”Electromagnetically induced transparency in quantum dots”, J.Phys.B: At. Mol. Opt. Phys. 39, 2621–2632(2006).
[Crossref]

K.D. Zhu and W.S. Li, ”Electromagnetically induced transparency due to exciton-phonon interaction in an organic quantum well,” J.Phys.B: At. Mol. Opt. Phys. 34, L679–L686(2001).
[Crossref]

Zibrov, A. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229 (1999).
[Crossref]

Zoller, P.

I. Wilson-Rae, P. Zoller, and A. Imamoḡlu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004).
[Crossref] [PubMed]

J.Phys.B: At. Mol. Opt. Phys. (2)

K.D. Zhu and W.S. Li, ”Electromagnetically induced transparency due to exciton-phonon interaction in an organic quantum well,” J.Phys.B: At. Mol. Opt. Phys. 34, L679–L686(2001).
[Crossref]

Y.W. Jiang, K.D. Zhu, Z.J. Wu, X.Z. Yuan, and M. Yao,”Electromagnetically induced transparency in quantum dots”, J.Phys.B: At. Mol. Opt. Phys. 39, 2621–2632(2006).
[Crossref]

Nano. Lett. (1)

Y.T. Yang, C. Callegari, X.L. Feng, K.L. Ekinci, and M.L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano. Lett. 6, 583–586 (2006).
[Crossref] [PubMed]

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598(1999).
[Crossref]

Opt. Lett. (2)

Phys. Rev. A (3)

G. S. Agarwal, “Electromagnetic-field-induced transparency in high-density exciton systems,” Phys. Rev. A 51, R2711–R2714 (1995).
[Crossref] [PubMed]

R. S. Bennink, R. W. Boyd, C. R. Stroud, and V. Wong, “Enhanced self-action effects by electromagnetically induced transparency in the two-level atom,” Phys. Rev. A 63, 033804 (2001).
[Crossref]

S. E. Harris, J. E. Field, and A. Kasapi, “Dispersive properties of electromagnetically induced transparency,” Phys. Rev. A 46, R29–R32 (1992).
[Crossref] [PubMed]

Phys. Rev. B (1)

V. Preisler, T. Grange, R. Ferreira, L.A. de Vaulchier, Y. Guldner, F.J. Teran, M. Potemski, and A. Lemaitre, “Evidence for excitonic polarons in InAs/GaAs quantum dots”, Phys. Rev. B 73, 075320(2006).
[Crossref]

Phys. Rev. Lett. (10)

J. F. Lam, S. R. Forrest, and G. L. Tangonan, “Optical nonlinearities in crystalline organic multiple quantum wells,” Phys. Rev. Lett. 66, 1614 (1991).
[Crossref] [PubMed]

S. Residori, U. Bortolozzo, and J. P. Huignard, “Slow and fast light in liquid crystal light valves” Phys. Rev. Lett. 100, 203603(2008).
[Crossref] [PubMed]

E. Baldit, K. Bencheikh, P. Monnier, J. A. Levenson, and V, Rouget, “Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal,” Phys. Rev. Lett. 95, 143601 (2005).
[Crossref] [PubMed]

A. Shumelyuk, K. Shcherbin, S. Odulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93, 243604 (2004).
[Crossref]

P. Wu and D. V. Rao, “Controllable snail-paced light in biological bacteriorhodopsin thin film,” Phys. Rev. Lett. 95, 253601 (2005).
[Crossref] [PubMed]

I. Wilson-Rae, P. Zoller, and A. Imamoḡlu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004).
[Crossref] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229 (1999).
[Crossref]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[Crossref] [PubMed]

S. Chu and S. Wong, “Linear Pulse Propagation in an Absorbing Medium,” Phys. Rev. Lett. 48, 738(1982).
[Crossref]

Y.J. Wang, M. Eardley, S. Knappe, J. Moreland, L. Hollberg, and J. Kitching, “Magnetic resonance in an atomic vapor excited by a mechanical resonator,” Phys. Rev. Lett. 97, 227602 (2006).
[Crossref] [PubMed]

Phys. Today (1)

K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005).
[Crossref]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673(2005).
[Crossref]

Science (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature Solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932(2007).
[Crossref] [PubMed]

Other (2)

R. W. Boyd, Nonlinear Optics (San Diego, CA: Academic) (1992).

R.W. Boyd and D. J. Gauthier Progress in Optics, edited by E. Wolf (Elsevier, Amsterdam), Vol. 43, pp. 497–530 (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. The imaginary part and real part of the linear optical susceptibility as a function of the signal detuning form exciton resonance Δ s with parameters Ω2=0.15(GHz)2, ωn =1.2GHz, Δ p =1.2GHz, γn =4×10-5 GHz, and β=0.06.
Fig. 2.
Fig. 2. The group velocity index ng (=c/vg ) of slow light (in units of ∑) as a function of the detuning Δ s with parameters ωn =1.2GHz, Δ p =1.2GHz, γn=4×10-5 GHz, and β=0.06.
Fig. 3.
Fig. 3. (a) The absorption spectrum of a signal field in the presence of a strong pump field for the case Ω2 R =6, ω n0=8, Δ p0=2, γn0 =3.0×10-4, and β=0.06. (b) The new features in the spectrum shown in (a) are identified by the corresponding transition between the dressed states of exciton.
Fig. 4.
Fig. 4. The dimensionless imaginary part and real part of the linear optical susceptibility as a function of the signal detuning from exciton resonance Δ s with parameters Ω2=0.15(GHz)2, ωn =1.2GHz, Δ p =0, γn =4×10-5 GHz, and β=0.06.
Fig. 5.
Fig. 5. The group velocity index ng (=c/vg) of superluminal light (in units of ∑) as a function of the detuning Δ s with parameters ωn =1.2GHz, Δ p =0, γn =4×10-5 GHz, and β=0.06.
Fig. 6.
Fig. 6. The absorption spectrum of a signal field as a function of the detuning Δ s between a signal field and exciton with three different decay rates of resonator. The other parameters used are Ω2=0.1(GHz)2, ωn =1.2GHz, Δ p =1.2GHz, and β=0.06. The inset is the amplification of the most remarkable region of transparency.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

H=h¯ΔpSz+h¯ωna+a+h¯Szωnβ(a++a)h¯(ΩS++Ω*S)μh¯(S+Eseiδt+SEs*eiδt),
dSdt=[Γ2i(Δp+ωnβN)]S2iΩSz2iμh¯EseiδtSz,
dSzdt=(Sz+12)Γ1+iΩ(S+S)+iμh¯(S+EseiδtSEs*eiδt),
d2Ndt2+γndNdt+ωn2N=2ωn2βSz,
χ(1)(ωs)=2Bw0(ΩR2+C)Ew0AE2B(ΩR2+C)(Bδ0),
(w0+1)[(Δp0β2ωn0w0)2+1]+2ΩR2w0=0 .
vg=cn+ωs(dndωs),
cvg=1+2πReχeff(1)(ωs)ωs=ωex+2πωsRe(dχeff(1)dωs)ωs=ωex.
cvg1=2πωexρμ2h¯Γ2Re(dχ(1)(ωs)dωs)ωs=ωex=Γ2ΣRe(dχ(1)(ωs)dωs)ωs=ωex.

Metrics