Abstract

We present the experimental observation of the superlensing effect in a slab of a one-dimensional photonic crystal made of tilted dielectric elements. We show that this flat lens can achieve subwavelength resolution in different frequency bands. We also demonstrate that the introduction of a proper corrugation on the lens surface can dramatically improve both the transmission and the resolution of the imaged signal.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  2. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals:Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696 (2000).
    [CrossRef]
  3. C. Luo, StevenG. Johnson, and J. D. Joannopoulos "All-angle negative refraction without negative effective index,"Phys. Rev. B 65, 201104 (2002).
    [CrossRef]
  4. C. Luo, S.G. Johnson, and J. D. Joannopoulos, "Subwavelength imaging in photonic crystals,"Phys. Rev. B 68, 045115 (2003).
    [CrossRef]
  5. P. Parimi, W. T. Lu, P. Vodo and S. Sridhar "Imaging by Flat Lens using Negative Refraction," Nature (London) 426, 404 (2003).
    [CrossRef]
  6. X. Fan and G. P. Wang, "Nanoscale metal waveguide arrays as plasmon lenses," Opt. Lett. 31, 1322-1324 (2006).
    [CrossRef] [PubMed]
  7. X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, "All-Angle Broadband Negative Refraction of MetalWaveguide Arrays in the Visible Range: Theoretical Analysis and Numerical Demonstration," Phys. Rev. Lett. 97, 073901 (2006).
    [CrossRef] [PubMed]
  8. H. Shin and S. Fan, "All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals," Appl. Phys. Lett. 89, 151102 (2006).
    [CrossRef]
  9. B. Wang, L. Shen, and S. He, "Superlens formed by a one-dimensional dielectric photonic crystal," J. Opt. Soc. Am. B 25(3), (2008).
    [CrossRef]
  10. S. Savo, E. Di Gennaro, C. Miletto, A. Andreone, P. Dardano, L. Moretti, and V. Mocella, "Pendellösung effect in photonic crystals," Opt. Express 16, 9097 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-9097.
    [CrossRef] [PubMed]
  11. S. Feng, H.Y. Sang, Z.Y. Li, B.Y. Cheng, and D.Z. Zhang, "Sensitivity of surface states to the stack sequence of one-dimensional photonic crystals," J. Opt. A: Pure Appl. Opt. 7, 374381 (2005).
    [CrossRef]
  12. T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, "Photonic Crystal Lens: From Negative Refraction and Negative Index to Negative Permittivity and Permeability," Phys. Rev. Lett. 97, 073905 (2006).
    [CrossRef] [PubMed]
  13. R. D. Meade, K. D. Brommer, A. M. Rappe, J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B 44, 10961 (1991).
    [CrossRef]
  14. B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, " Surface waves in photonic crystal slabs," Phys. Rev. B 74, 195104 (2006).
    [CrossRef]
  15. S. Xiao, M. Qiu, Z. Ruan, and S. He, "Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction," Appl. Phys. Lett. 85, 4269 (2004).
    [CrossRef]
  16. E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, "Efficient coupling of light into and out of a photonic crystal waveguide via surface modes," Photonics and Nanostructures - Fundamentals and Applications 2,97 (2004).
    [CrossRef]
  17. B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. V. Perry, and S. Sridhar, "Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths," Opt. Lett. (2009).(In press).
    [PubMed]

2009 (1)

B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. V. Perry, and S. Sridhar, "Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths," Opt. Lett. (2009).(In press).
[PubMed]

2008 (2)

2006 (5)

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, "All-Angle Broadband Negative Refraction of MetalWaveguide Arrays in the Visible Range: Theoretical Analysis and Numerical Demonstration," Phys. Rev. Lett. 97, 073901 (2006).
[CrossRef] [PubMed]

H. Shin and S. Fan, "All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals," Appl. Phys. Lett. 89, 151102 (2006).
[CrossRef]

X. Fan and G. P. Wang, "Nanoscale metal waveguide arrays as plasmon lenses," Opt. Lett. 31, 1322-1324 (2006).
[CrossRef] [PubMed]

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, "Photonic Crystal Lens: From Negative Refraction and Negative Index to Negative Permittivity and Permeability," Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef] [PubMed]

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, " Surface waves in photonic crystal slabs," Phys. Rev. B 74, 195104 (2006).
[CrossRef]

2005 (1)

S. Feng, H.Y. Sang, Z.Y. Li, B.Y. Cheng, and D.Z. Zhang, "Sensitivity of surface states to the stack sequence of one-dimensional photonic crystals," J. Opt. A: Pure Appl. Opt. 7, 374381 (2005).
[CrossRef]

2004 (1)

S. Xiao, M. Qiu, Z. Ruan, and S. He, "Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction," Appl. Phys. Lett. 85, 4269 (2004).
[CrossRef]

2003 (2)

C. Luo, S.G. Johnson, and J. D. Joannopoulos, "Subwavelength imaging in photonic crystals,"Phys. Rev. B 68, 045115 (2003).
[CrossRef]

C. Luo, S.G. Johnson, and J. D. Joannopoulos, "Subwavelength imaging in photonic crystals,"Phys. Rev. B 68, 045115 (2003).
[CrossRef]

P. Parimi, W. T. Lu, P. Vodo and S. Sridhar "Imaging by Flat Lens using Negative Refraction," Nature (London) 426, 404 (2003).
[CrossRef]

2002 (1)

C. Luo, StevenG. Johnson, and J. D. Joannopoulos "All-angle negative refraction without negative effective index,"Phys. Rev. B 65, 201104 (2002).
[CrossRef]

C. Luo, StevenG. Johnson, and J. D. Joannopoulos "All-angle negative refraction without negative effective index,"Phys. Rev. B 65, 201104 (2002).
[CrossRef]

2000 (2)

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals:Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696 (2000).
[CrossRef]

1991 (1)

R. D. Meade, K. D. Brommer, A. M. Rappe, J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B 44, 10961 (1991).
[CrossRef]

Andreone, A.

Banyal, R. K.

B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. V. Perry, and S. Sridhar, "Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths," Opt. Lett. (2009).(In press).
[PubMed]

Brommer, K. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B 44, 10961 (1991).
[CrossRef]

Casse, B. D. F.

B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. V. Perry, and S. Sridhar, "Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths," Opt. Lett. (2009).(In press).
[PubMed]

Chan, C. T.

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, "All-Angle Broadband Negative Refraction of MetalWaveguide Arrays in the Visible Range: Theoretical Analysis and Numerical Demonstration," Phys. Rev. Lett. 97, 073901 (2006).
[CrossRef] [PubMed]

Cheng, B.Y.

S. Feng, H.Y. Sang, Z.Y. Li, B.Y. Cheng, and D.Z. Zhang, "Sensitivity of surface states to the stack sequence of one-dimensional photonic crystals," J. Opt. A: Pure Appl. Opt. 7, 374381 (2005).
[CrossRef]

Dai, W.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, " Surface waves in photonic crystal slabs," Phys. Rev. B 74, 195104 (2006).
[CrossRef]

Dardano, P.

Decoopman, T.

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, "Photonic Crystal Lens: From Negative Refraction and Negative Index to Negative Permittivity and Permeability," Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef] [PubMed]

Di Gennaro, E.

Dokmeci, M. R.

B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. V. Perry, and S. Sridhar, "Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths," Opt. Lett. (2009).(In press).
[PubMed]

Enoch, S.

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, "Photonic Crystal Lens: From Negative Refraction and Negative Index to Negative Permittivity and Permeability," Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef] [PubMed]

Fan, S.

H. Shin and S. Fan, "All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals," Appl. Phys. Lett. 89, 151102 (2006).
[CrossRef]

Fan, X.

X. Fan and G. P. Wang, "Nanoscale metal waveguide arrays as plasmon lenses," Opt. Lett. 31, 1322-1324 (2006).
[CrossRef] [PubMed]

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, "All-Angle Broadband Negative Refraction of MetalWaveguide Arrays in the Visible Range: Theoretical Analysis and Numerical Demonstration," Phys. Rev. Lett. 97, 073901 (2006).
[CrossRef] [PubMed]

Fang, A.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, " Surface waves in photonic crystal slabs," Phys. Rev. B 74, 195104 (2006).
[CrossRef]

Feng, S.

S. Feng, H.Y. Sang, Z.Y. Li, B.Y. Cheng, and D.Z. Zhang, "Sensitivity of surface states to the stack sequence of one-dimensional photonic crystals," J. Opt. A: Pure Appl. Opt. 7, 374381 (2005).
[CrossRef]

Gralak, B.

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, "Photonic Crystal Lens: From Negative Refraction and Negative Index to Negative Permittivity and Permeability," Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef] [PubMed]

He, S.

B. Wang, L. Shen, and S. He, "Superlens formed by a one-dimensional dielectric photonic crystal," J. Opt. Soc. Am. B 25(3), (2008).
[CrossRef]

S. Xiao, M. Qiu, Z. Ruan, and S. He, "Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction," Appl. Phys. Lett. 85, 4269 (2004).
[CrossRef]

Huang, Y. J.

B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. V. Perry, and S. Sridhar, "Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths," Opt. Lett. (2009).(In press).
[PubMed]

Joannopoulos, J. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B 44, 10961 (1991).
[CrossRef]

Joannopoulos,, G.

C. Luo, S.G. Johnson, and J. D. Joannopoulos, "Subwavelength imaging in photonic crystals,"Phys. Rev. B 68, 045115 (2003).
[CrossRef]

Johnson, G.

C. Luo, S.G. Johnson, and J. D. Joannopoulos, "Subwavelength imaging in photonic crystals,"Phys. Rev. B 68, 045115 (2003).
[CrossRef]

Koschny, Th.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, " Surface waves in photonic crystal slabs," Phys. Rev. B 74, 195104 (2006).
[CrossRef]

Lee, J. C. W.

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, "All-Angle Broadband Negative Refraction of MetalWaveguide Arrays in the Visible Range: Theoretical Analysis and Numerical Demonstration," Phys. Rev. Lett. 97, 073901 (2006).
[CrossRef] [PubMed]

Li, Z.Y.

S. Feng, H.Y. Sang, Z.Y. Li, B.Y. Cheng, and D.Z. Zhang, "Sensitivity of surface states to the stack sequence of one-dimensional photonic crystals," J. Opt. A: Pure Appl. Opt. 7, 374381 (2005).
[CrossRef]

Lu, W. T.

B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. V. Perry, and S. Sridhar, "Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths," Opt. Lett. (2009).(In press).
[PubMed]

P. Parimi, W. T. Lu, P. Vodo and S. Sridhar "Imaging by Flat Lens using Negative Refraction," Nature (London) 426, 404 (2003).
[CrossRef]

Luo, C.

C. Luo, S.G. Johnson, and J. D. Joannopoulos, "Subwavelength imaging in photonic crystals,"Phys. Rev. B 68, 045115 (2003).
[CrossRef]

C. Luo, StevenG. Johnson, and J. D. Joannopoulos "All-angle negative refraction without negative effective index,"Phys. Rev. B 65, 201104 (2002).
[CrossRef]

Maystre, D.

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, "Photonic Crystal Lens: From Negative Refraction and Negative Index to Negative Permittivity and Permeability," Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef] [PubMed]

Meade, R. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B 44, 10961 (1991).
[CrossRef]

Miletto, C.

Mocella, V.

Moretti, L.

Notomi, M.

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals:Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696 (2000).
[CrossRef]

Parimi, P.

P. Parimi, W. T. Lu, P. Vodo and S. Sridhar "Imaging by Flat Lens using Negative Refraction," Nature (London) 426, 404 (2003).
[CrossRef]

Pendry, J. B.

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Perry, C. V.

B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. V. Perry, and S. Sridhar, "Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths," Opt. Lett. (2009).(In press).
[PubMed]

Qiu, M.

S. Xiao, M. Qiu, Z. Ruan, and S. He, "Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction," Appl. Phys. Lett. 85, 4269 (2004).
[CrossRef]

Rappe, A. M.

R. D. Meade, K. D. Brommer, A. M. Rappe, J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B 44, 10961 (1991).
[CrossRef]

Ruan, Z.

S. Xiao, M. Qiu, Z. Ruan, and S. He, "Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction," Appl. Phys. Lett. 85, 4269 (2004).
[CrossRef]

S., C.

C. Luo, S.G. Johnson, and J. D. Joannopoulos, "Subwavelength imaging in photonic crystals,"Phys. Rev. B 68, 045115 (2003).
[CrossRef]

Sang, H.Y.

S. Feng, H.Y. Sang, Z.Y. Li, B.Y. Cheng, and D.Z. Zhang, "Sensitivity of surface states to the stack sequence of one-dimensional photonic crystals," J. Opt. A: Pure Appl. Opt. 7, 374381 (2005).
[CrossRef]

Savo, S.

Selvarasah, S.

B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. V. Perry, and S. Sridhar, "Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths," Opt. Lett. (2009).(In press).
[PubMed]

Shen, L.

B. Wang, L. Shen, and S. He, "Superlens formed by a one-dimensional dielectric photonic crystal," J. Opt. Soc. Am. B 25(3), (2008).
[CrossRef]

Shin, H.

H. Shin and S. Fan, "All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals," Appl. Phys. Lett. 89, 151102 (2006).
[CrossRef]

Soukoulis, C. M.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, " Surface waves in photonic crystal slabs," Phys. Rev. B 74, 195104 (2006).
[CrossRef]

Sridhar, S.

B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. V. Perry, and S. Sridhar, "Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths," Opt. Lett. (2009).(In press).
[PubMed]

P. Parimi, W. T. Lu, P. Vodo and S. Sridhar "Imaging by Flat Lens using Negative Refraction," Nature (London) 426, 404 (2003).
[CrossRef]

Steven, C.

C. Luo, StevenG. Johnson, and J. D. Joannopoulos "All-angle negative refraction without negative effective index,"Phys. Rev. B 65, 201104 (2002).
[CrossRef]

Tayeb, G.

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, "Photonic Crystal Lens: From Negative Refraction and Negative Index to Negative Permittivity and Permeability," Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef] [PubMed]

Tuttle, G.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, " Surface waves in photonic crystal slabs," Phys. Rev. B 74, 195104 (2006).
[CrossRef]

Vodo, P.

P. Parimi, W. T. Lu, P. Vodo and S. Sridhar "Imaging by Flat Lens using Negative Refraction," Nature (London) 426, 404 (2003).
[CrossRef]

Wang, B.

B. Wang, L. Shen, and S. He, "Superlens formed by a one-dimensional dielectric photonic crystal," J. Opt. Soc. Am. B 25(3), (2008).
[CrossRef]

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, " Surface waves in photonic crystal slabs," Phys. Rev. B 74, 195104 (2006).
[CrossRef]

Wang, G. P.

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, "All-Angle Broadband Negative Refraction of MetalWaveguide Arrays in the Visible Range: Theoretical Analysis and Numerical Demonstration," Phys. Rev. Lett. 97, 073901 (2006).
[CrossRef] [PubMed]

X. Fan and G. P. Wang, "Nanoscale metal waveguide arrays as plasmon lenses," Opt. Lett. 31, 1322-1324 (2006).
[CrossRef] [PubMed]

Xiao, S.

S. Xiao, M. Qiu, Z. Ruan, and S. He, "Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction," Appl. Phys. Lett. 85, 4269 (2004).
[CrossRef]

Zhang, D.Z.

S. Feng, H.Y. Sang, Z.Y. Li, B.Y. Cheng, and D.Z. Zhang, "Sensitivity of surface states to the stack sequence of one-dimensional photonic crystals," J. Opt. A: Pure Appl. Opt. 7, 374381 (2005).
[CrossRef]

Zhang, L.

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, " Surface waves in photonic crystal slabs," Phys. Rev. B 74, 195104 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

H. Shin and S. Fan, "All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals," Appl. Phys. Lett. 89, 151102 (2006).
[CrossRef]

S. Xiao, M. Qiu, Z. Ruan, and S. He, "Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction," Appl. Phys. Lett. 85, 4269 (2004).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

S. Feng, H.Y. Sang, Z.Y. Li, B.Y. Cheng, and D.Z. Zhang, "Sensitivity of surface states to the stack sequence of one-dimensional photonic crystals," J. Opt. A: Pure Appl. Opt. 7, 374381 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

B. Wang, L. Shen, and S. He, "Superlens formed by a one-dimensional dielectric photonic crystal," J. Opt. Soc. Am. B 25(3), (2008).
[CrossRef]

Nature (London) (1)

P. Parimi, W. T. Lu, P. Vodo and S. Sridhar "Imaging by Flat Lens using Negative Refraction," Nature (London) 426, 404 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

X. Fan and G. P. Wang, "Nanoscale metal waveguide arrays as plasmon lenses," Opt. Lett. 31, 1322-1324 (2006).
[CrossRef] [PubMed]

B. D. F. Casse, W. T. Lu, R. K. Banyal, Y. J. Huang, S. Selvarasah, M. R. Dokmeci, C. V. Perry, and S. Sridhar, "Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths," Opt. Lett. (2009).(In press).
[PubMed]

Phys. Rev. B (5)

R. D. Meade, K. D. Brommer, A. M. Rappe, J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B 44, 10961 (1991).
[CrossRef]

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, Th. Koschny, and C. M. Soukoulis, " Surface waves in photonic crystal slabs," Phys. Rev. B 74, 195104 (2006).
[CrossRef]

M. Notomi, "Theory of light propagation in strongly modulated photonic crystals:Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, 10696 (2000).
[CrossRef]

C. Luo, StevenG. Johnson, and J. D. Joannopoulos "All-angle negative refraction without negative effective index,"Phys. Rev. B 65, 201104 (2002).
[CrossRef]

C. Luo, S.G. Johnson, and J. D. Joannopoulos, "Subwavelength imaging in photonic crystals,"Phys. Rev. B 68, 045115 (2003).
[CrossRef]

Phys. Rev. Lett. (3)

X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, "All-Angle Broadband Negative Refraction of MetalWaveguide Arrays in the Visible Range: Theoretical Analysis and Numerical Demonstration," Phys. Rev. Lett. 97, 073901 (2006).
[CrossRef] [PubMed]

T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, "Photonic Crystal Lens: From Negative Refraction and Negative Index to Negative Permittivity and Permeability," Phys. Rev. Lett. 97, 073905 (2006).
[CrossRef] [PubMed]

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Other (1)

E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, "Efficient coupling of light into and out of a photonic crystal waveguide via surface modes," Photonics and Nanostructures - Fundamentals and Applications 2,97 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(Color online) Band structure along the off-axis direction for a 1D PC with a unit cell realized using alumina and air (a) or alumina and plexiglas (b) respectively. (c) and (d): EFCs at different frequencies for the same structures.

Fig. 2.
Fig. 2.

(Color online) (a) Sketch of the slab obtained rotating, by an angle θ, a one dimensional PC having a unit cell made of two different dielectric materials ε 1=8.6 and ε 2=1. (b) and (c) equi-frequency contours at ω=0.260 (1 st band) and ω=0.457 (2 nd band) respectively, plotted in the first and in the repeated Brillouin zone, relatively to the crystal in (a); k 1 and k 2 are two wave vectors impinging the air-PC interface at two generic different angles γ 1 and γ 2, whereas k 1r and k 2r are the wave vectors diffracted inside the crystal.

Fig. 3.
Fig. 3.

(Color online) (a) Detail of the photonic crystal surface termination for the case with and without corrugation. (b) Comparison of the focus profiles (calculated via FDTD) produced by the slab with corrugation (blue line) and without corrugation (red line). (c) and (d) Transversal and lateral profiles respectively of the transmitted energy in a normalized scale. All the above profiles are taken along the lines (parallel and perpendicular to the PC surface) where the focused image exhibits its maximum.

Fig. 4.
Fig. 4.

(Color online) Plot of the normalized frequencies at which slabs made of different materials show the maximum transmission for the focused image as a function of the finite width ratio α (a) and dielectric constants ε 1, ε 2 (b) of the tilted elements (θ=45°).

Fig. 5.
Fig. 5.

(Color online) 3D spatial mapping of the point source signal transmitted by the alumina-air slab at 13.7175GHz.

Fig. 6.
Fig. 6.

(Color online) In-plane spatial mapping of the measured electric field intensity ((a), (c), (e)) and phase ((b), (d), (f)) for the alumina-air PC at 7.800GHz, 9.0825GHz and 13.7175GHz respectively.

Fig. 7.
Fig. 7.

Normalized transversal (a) and lateral (b) experimental profiles, taken at 13.7175GHz along the lines where the focused image exhibits its maximum, for the alumina-air superlens.

Fig. 8.
Fig. 8.

Normalized transversal (a) and lateral (b) experimental profiles, taken at 7.3505GHz along the lines where the focused image exhibits its maximum, for the alumina-plexiglas superlens.

Fig. 9.
Fig. 9.

Simulated (a) and measured (b) lateral profiles respectively for the focused image of a point source changing its position (dsource ) normal to the surface of the alumina-plexiglass PC superlens

Metrics