Abstract

We report on the application of a laser rapid thermal annealing technique for iterative bandgap engineering at selected areas of quantum semiconductor wafers. The approach takes advantage of the quantum well intermixing (QWI) effect for achieving targeted values of the bandgap in a series of small annealing steps. Each QWI step is monitored by collecting a photoluminescence map and, consequently, choosing the annealing strategy of the next step. An array of eight sites, 280 μm in diameter, each emitting at 1480 nm, has been fabricated with a spectral accuracy of better than 2 nm in a standard InGaAs/InGaAsP QW heterostructure that originally emitted at 1550 nm.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Heidrich, “Monolithically integrated photonic and optoelectronic circuits based on InP - System applications, technology, perspectives,” Microsystem Technol.-Micro-and Nanosystems-Inform, Storage and Proc. Systems 9, 295–298 (2003).
  2. P. Legay, F. Alexandre, J. L. Benchimol, M. Allovon, F. Laune, and S. Fouchet, “Selective area chemical beam epitaxy for butt-coupling integration,” J. Cryst. Growth 164(1-4), 314–320 (1996).
    [CrossRef]
  3. K. Kamon, S. Takagishi, and H. Mori, “Selective Embedded Growth of AlxGa1-xAs by Low-Pressure Organometallic Vapor-Phase Epitaxy,” Japan. J. Appl. Phys. Letters 25(Part 2, No. 1), L10–12 (1986).
    [CrossRef]
  4. J. A. Lebens, C. S. Tsai, K. J. Vahala, and T. F. Kuech, “Application of Selective Epitaxy to Fabrication of Nanometer Scale Wire and Dot Structures,” Appl. Phys. Lett. 56(26), 2642–2644 (1990).
    [CrossRef]
  5. Y. T. Sun, E. R. Messmer, S. Lourdudoss, J. Ahopelto, S. Rennon, J. P. Reithmaier, and A. Forchel, “Selective growth of InP on focused-ion-beam-modified GaAs surface by hydride vapor phase epitaxy,” Appl. Phys. Lett. 79, 1885–1887 (2001).
    [CrossRef]
  6. N. Tamura and Y. Shimamune, “45 nm CMOS technology with low temperature selective epitaxy of SiGe,” Appl. Surf. Sci. 254(19), 6067–6071 (2008).
    [CrossRef]
  7. N. Otsuka, M. Kito, Y. Mori, M. Ishino, and Y. Matsui, “New Structure by Selective Regrowth in Multiquantum-Well Laser-Diodes Performed by Low-Pressure Metalorganic Vapor-Phase Epitaxy,” J. Cryst. Growth 145(1-4), 866–874 (1994).
    [CrossRef]
  8. C. A. Verschuren, P. J. Harmsma, Y. S. Oei, M. R. Leys, H. Vonk, and J. H. Wolter, “Butt-coupling loss of 0.1 dB/interface in InP/InGaAs MQW waveguide-waveguide structures grown by selective area chemical beam epitaxy,” J. Cryst. Growth 188(1-4), 288–294 (1998).
    [CrossRef]
  9. K. A. Anselm, W. Y. Hwang, H. W. Ren, D. Zhang, and J. Um, “Manufacturing of laser diodes grown by molecular beam epitaxy for coarse wavelength division multiplexing systems,” J. Vac. Sci. Technol. B 26(3), 1167–1170 (2008).
    [CrossRef]
  10. T. Sasaki, M. Yamaguchi, and M. Kitamura, “Monolithically Integrated Multiwavelength Mqw Dbr Laser-Diodes Fabricated by Selective Metalorganic Vapor-Phase Epitaxy,” J. Cryst. Growth 145(1-4), 846–851 (1994).
    [CrossRef]
  11. K. Kudo, K. Yashiki, T. Sasaki, Y. Yokoyama, K. Hamamoto, T. Morimoto, and M. Yamaguchi, “1.55-μm wavelength-selectable microarray DFB-LD's with monolithically integrated MMI combiner, SOA, and EA-Modulator,” IEEE Photon. Technol. Lett. 12(3), 242–244 (2000).
    [CrossRef]
  12. N. Kashio, K. Kurishima, K. Sano, M. Ida, N. Watanabe, and H. Fukuyama, “Monolithic integration of InP HBTs and uni-traveling-carrier photodiodes using nonselective regrowth,” IEEE Trans. Electron. Dev. 54(7), 1651–1657 (2007).
    [CrossRef]
  13. Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005).
    [CrossRef]
  14. R. L. Thornton, R. D. Burnham, T. L. Paoli, N. Holonyak, and D. G. Deppe, “Highly Efficient, Long Lived AlGaAs Lasers Fabricated by Silicon Impurity Induced Disordering,” Appl. Phys. Lett. 49(3), 133–134 (1986).
    [CrossRef]
  15. E. H. Li, Selected papers on quantum well intermixing for photonics, Bellingham, Wash.: SPIE Optical Engineering Press, 1998.
  16. J. Beauvais, J. H. Marsh, A. H. Kean, A. C. Bryce, and C. Button, “Suppression of Bandgap Shifts in GaAs/AlGaAs Quantum-Wells Using Strontium Fluoride Caps,” Electron. Lett. 28(17), 1670–1672 (1992).
    [CrossRef]
  17. J. H. Marsh, O. P. Kowalski, S. D. McDougall, B. C. Qiu, A. McKee, C. J. Hamilton, R. M. De la Rue, and A. C. Bryce, “Quantum well intermixing in material systems for 1.5 μm (invited),” J. Vac. Sci. Technol. A 16(2), 810–816 (1998).
    [CrossRef]
  18. E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: A quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
    [CrossRef]
  19. A. McKee, C. J. McLean, G. Lullo, A. C. Bryce, R. M. DelaRue, J. H. Marsh, and C. C. Button, “Monolithic integration in InGaAs-InGaAsP multiple-quantum-well structures using laser intermixing,” IEEE J. Quantum Electron. 33(1), 45–55 (1997).
    [CrossRef]
  20. J. J. Dubowski, C. N. Allen, and S. Fafard, “Laser-induced InAs/GaAs quantum dot intermixing,” Appl. Phys. Lett. 77(22), 3583–3585 (2000).
    [CrossRef]
  21. J. J. Dubowski, Y. Feng, P. J. Poole, M. Buchanan, S. Poirier, J. Genest, and V. Aimez, “Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd:YAG laser-induced quantum well intermixing,” J. Vac. Sci. Technol. A 20(4), 1426–1429 (2002).
    [CrossRef]
  22. J. J. Dubowski, C. Y. Song, J. Lefebvre, Z. Wasilewski, G. Aers, and H. C. Liu, “Laser-induced selective area tuning of GaAs/AlGaAs quantum well microstructures for two-color IR detector operation,” J. Vac. Sci. Technol. A 22(3), 887–890 (2004).
    [CrossRef]
  23. R. Stanowski, O. Voznyy, and J. J. Dubowski, “Finite element model calculations of temperature profiles in Nd:YAG laser annealed GaAs/AlGaAs quantum well microstructures,” J. Laser Micro Nanoengineering 1, 17–21 (2006).
    [CrossRef]
  24. J. Genest, R. Beal, V. Aimez, and J. J. Dubowski, “ArF laser-based quantum well intermixing in InGaAs/InGaAsP heterostructures,” Appl. Phys. Lett. 93(7), 071106 (2008).
    [CrossRef]
  25. T. Biondi, A. Scuderi, E. Ragonese, and G. Palmisano, “Characterization and modeling of silicon integrated spiral inductors for high-frequency applications,” Analog Integr. Circ. Sig.Process. 51(2), 89–100 (2007).
    [CrossRef]
  26. R. Stanowski and J. J. Dubowski, “Laser rapid thermal annealing of quantum semiconductor wafers: a one step bandgap engineering technique,” Appl. Phys., A Mater. Sci. Process. 94(3), 667–674 (2009).
    [CrossRef]
  27. R. Stanowski, S. Bouazis, and J. J. Dubowski, “Selective area bandgap engineering of InGaAsP/InP quantum well microstructures with an infrared laser rapid thermal annealing technique,” Proc. SPIE, Vol., vol. 6869, 68790D (2008).
  28. L. Lu, A. Mock, M. Bagheri, E. H. Hwang, J. O’Brien, and P. D. Dapkus, “Double-heterostructure photonic crystal lasers with lower thresholds and higher slope efficiencies obtained by quantum well intermixing,” Opt. Express 16(22), 17342–17347 (2008).
    [CrossRef] [PubMed]

2009 (1)

R. Stanowski and J. J. Dubowski, “Laser rapid thermal annealing of quantum semiconductor wafers: a one step bandgap engineering technique,” Appl. Phys., A Mater. Sci. Process. 94(3), 667–674 (2009).
[CrossRef]

2008 (4)

L. Lu, A. Mock, M. Bagheri, E. H. Hwang, J. O’Brien, and P. D. Dapkus, “Double-heterostructure photonic crystal lasers with lower thresholds and higher slope efficiencies obtained by quantum well intermixing,” Opt. Express 16(22), 17342–17347 (2008).
[CrossRef] [PubMed]

J. Genest, R. Beal, V. Aimez, and J. J. Dubowski, “ArF laser-based quantum well intermixing in InGaAs/InGaAsP heterostructures,” Appl. Phys. Lett. 93(7), 071106 (2008).
[CrossRef]

N. Tamura and Y. Shimamune, “45 nm CMOS technology with low temperature selective epitaxy of SiGe,” Appl. Surf. Sci. 254(19), 6067–6071 (2008).
[CrossRef]

K. A. Anselm, W. Y. Hwang, H. W. Ren, D. Zhang, and J. Um, “Manufacturing of laser diodes grown by molecular beam epitaxy for coarse wavelength division multiplexing systems,” J. Vac. Sci. Technol. B 26(3), 1167–1170 (2008).
[CrossRef]

2007 (2)

N. Kashio, K. Kurishima, K. Sano, M. Ida, N. Watanabe, and H. Fukuyama, “Monolithic integration of InP HBTs and uni-traveling-carrier photodiodes using nonselective regrowth,” IEEE Trans. Electron. Dev. 54(7), 1651–1657 (2007).
[CrossRef]

T. Biondi, A. Scuderi, E. Ragonese, and G. Palmisano, “Characterization and modeling of silicon integrated spiral inductors for high-frequency applications,” Analog Integr. Circ. Sig.Process. 51(2), 89–100 (2007).
[CrossRef]

2006 (1)

R. Stanowski, O. Voznyy, and J. J. Dubowski, “Finite element model calculations of temperature profiles in Nd:YAG laser annealed GaAs/AlGaAs quantum well microstructures,” J. Laser Micro Nanoengineering 1, 17–21 (2006).
[CrossRef]

2005 (2)

Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005).
[CrossRef]

E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: A quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

2004 (1)

J. J. Dubowski, C. Y. Song, J. Lefebvre, Z. Wasilewski, G. Aers, and H. C. Liu, “Laser-induced selective area tuning of GaAs/AlGaAs quantum well microstructures for two-color IR detector operation,” J. Vac. Sci. Technol. A 22(3), 887–890 (2004).
[CrossRef]

2003 (1)

H. Heidrich, “Monolithically integrated photonic and optoelectronic circuits based on InP - System applications, technology, perspectives,” Microsystem Technol.-Micro-and Nanosystems-Inform, Storage and Proc. Systems 9, 295–298 (2003).

2002 (1)

J. J. Dubowski, Y. Feng, P. J. Poole, M. Buchanan, S. Poirier, J. Genest, and V. Aimez, “Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd:YAG laser-induced quantum well intermixing,” J. Vac. Sci. Technol. A 20(4), 1426–1429 (2002).
[CrossRef]

2001 (1)

Y. T. Sun, E. R. Messmer, S. Lourdudoss, J. Ahopelto, S. Rennon, J. P. Reithmaier, and A. Forchel, “Selective growth of InP on focused-ion-beam-modified GaAs surface by hydride vapor phase epitaxy,” Appl. Phys. Lett. 79, 1885–1887 (2001).
[CrossRef]

2000 (2)

K. Kudo, K. Yashiki, T. Sasaki, Y. Yokoyama, K. Hamamoto, T. Morimoto, and M. Yamaguchi, “1.55-μm wavelength-selectable microarray DFB-LD's with monolithically integrated MMI combiner, SOA, and EA-Modulator,” IEEE Photon. Technol. Lett. 12(3), 242–244 (2000).
[CrossRef]

J. J. Dubowski, C. N. Allen, and S. Fafard, “Laser-induced InAs/GaAs quantum dot intermixing,” Appl. Phys. Lett. 77(22), 3583–3585 (2000).
[CrossRef]

1998 (2)

C. A. Verschuren, P. J. Harmsma, Y. S. Oei, M. R. Leys, H. Vonk, and J. H. Wolter, “Butt-coupling loss of 0.1 dB/interface in InP/InGaAs MQW waveguide-waveguide structures grown by selective area chemical beam epitaxy,” J. Cryst. Growth 188(1-4), 288–294 (1998).
[CrossRef]

J. H. Marsh, O. P. Kowalski, S. D. McDougall, B. C. Qiu, A. McKee, C. J. Hamilton, R. M. De la Rue, and A. C. Bryce, “Quantum well intermixing in material systems for 1.5 μm (invited),” J. Vac. Sci. Technol. A 16(2), 810–816 (1998).
[CrossRef]

1997 (1)

A. McKee, C. J. McLean, G. Lullo, A. C. Bryce, R. M. DelaRue, J. H. Marsh, and C. C. Button, “Monolithic integration in InGaAs-InGaAsP multiple-quantum-well structures using laser intermixing,” IEEE J. Quantum Electron. 33(1), 45–55 (1997).
[CrossRef]

1996 (1)

P. Legay, F. Alexandre, J. L. Benchimol, M. Allovon, F. Laune, and S. Fouchet, “Selective area chemical beam epitaxy for butt-coupling integration,” J. Cryst. Growth 164(1-4), 314–320 (1996).
[CrossRef]

1994 (2)

T. Sasaki, M. Yamaguchi, and M. Kitamura, “Monolithically Integrated Multiwavelength Mqw Dbr Laser-Diodes Fabricated by Selective Metalorganic Vapor-Phase Epitaxy,” J. Cryst. Growth 145(1-4), 846–851 (1994).
[CrossRef]

N. Otsuka, M. Kito, Y. Mori, M. Ishino, and Y. Matsui, “New Structure by Selective Regrowth in Multiquantum-Well Laser-Diodes Performed by Low-Pressure Metalorganic Vapor-Phase Epitaxy,” J. Cryst. Growth 145(1-4), 866–874 (1994).
[CrossRef]

1992 (1)

J. Beauvais, J. H. Marsh, A. H. Kean, A. C. Bryce, and C. Button, “Suppression of Bandgap Shifts in GaAs/AlGaAs Quantum-Wells Using Strontium Fluoride Caps,” Electron. Lett. 28(17), 1670–1672 (1992).
[CrossRef]

1990 (1)

J. A. Lebens, C. S. Tsai, K. J. Vahala, and T. F. Kuech, “Application of Selective Epitaxy to Fabrication of Nanometer Scale Wire and Dot Structures,” Appl. Phys. Lett. 56(26), 2642–2644 (1990).
[CrossRef]

1986 (2)

K. Kamon, S. Takagishi, and H. Mori, “Selective Embedded Growth of AlxGa1-xAs by Low-Pressure Organometallic Vapor-Phase Epitaxy,” Japan. J. Appl. Phys. Letters 25(Part 2, No. 1), L10–12 (1986).
[CrossRef]

R. L. Thornton, R. D. Burnham, T. L. Paoli, N. Holonyak, and D. G. Deppe, “Highly Efficient, Long Lived AlGaAs Lasers Fabricated by Silicon Impurity Induced Disordering,” Appl. Phys. Lett. 49(3), 133–134 (1986).
[CrossRef]

Aers, G.

J. J. Dubowski, C. Y. Song, J. Lefebvre, Z. Wasilewski, G. Aers, and H. C. Liu, “Laser-induced selective area tuning of GaAs/AlGaAs quantum well microstructures for two-color IR detector operation,” J. Vac. Sci. Technol. A 22(3), 887–890 (2004).
[CrossRef]

Ahopelto, J.

Y. T. Sun, E. R. Messmer, S. Lourdudoss, J. Ahopelto, S. Rennon, J. P. Reithmaier, and A. Forchel, “Selective growth of InP on focused-ion-beam-modified GaAs surface by hydride vapor phase epitaxy,” Appl. Phys. Lett. 79, 1885–1887 (2001).
[CrossRef]

Aimez, V.

J. Genest, R. Beal, V. Aimez, and J. J. Dubowski, “ArF laser-based quantum well intermixing in InGaAs/InGaAsP heterostructures,” Appl. Phys. Lett. 93(7), 071106 (2008).
[CrossRef]

J. J. Dubowski, Y. Feng, P. J. Poole, M. Buchanan, S. Poirier, J. Genest, and V. Aimez, “Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd:YAG laser-induced quantum well intermixing,” J. Vac. Sci. Technol. A 20(4), 1426–1429 (2002).
[CrossRef]

Alexandre, F.

P. Legay, F. Alexandre, J. L. Benchimol, M. Allovon, F. Laune, and S. Fouchet, “Selective area chemical beam epitaxy for butt-coupling integration,” J. Cryst. Growth 164(1-4), 314–320 (1996).
[CrossRef]

Allen, C. N.

J. J. Dubowski, C. N. Allen, and S. Fafard, “Laser-induced InAs/GaAs quantum dot intermixing,” Appl. Phys. Lett. 77(22), 3583–3585 (2000).
[CrossRef]

Allovon, M.

P. Legay, F. Alexandre, J. L. Benchimol, M. Allovon, F. Laune, and S. Fouchet, “Selective area chemical beam epitaxy for butt-coupling integration,” J. Cryst. Growth 164(1-4), 314–320 (1996).
[CrossRef]

Anselm, K. A.

K. A. Anselm, W. Y. Hwang, H. W. Ren, D. Zhang, and J. Um, “Manufacturing of laser diodes grown by molecular beam epitaxy for coarse wavelength division multiplexing systems,” J. Vac. Sci. Technol. B 26(3), 1167–1170 (2008).
[CrossRef]

Bagheri, M.

Beal, R.

J. Genest, R. Beal, V. Aimez, and J. J. Dubowski, “ArF laser-based quantum well intermixing in InGaAs/InGaAsP heterostructures,” Appl. Phys. Lett. 93(7), 071106 (2008).
[CrossRef]

Beauvais, J.

J. Beauvais, J. H. Marsh, A. H. Kean, A. C. Bryce, and C. Button, “Suppression of Bandgap Shifts in GaAs/AlGaAs Quantum-Wells Using Strontium Fluoride Caps,” Electron. Lett. 28(17), 1670–1672 (1992).
[CrossRef]

Benchimol, J. L.

P. Legay, F. Alexandre, J. L. Benchimol, M. Allovon, F. Laune, and S. Fouchet, “Selective area chemical beam epitaxy for butt-coupling integration,” J. Cryst. Growth 164(1-4), 314–320 (1996).
[CrossRef]

Biondi, T.

T. Biondi, A. Scuderi, E. Ragonese, and G. Palmisano, “Characterization and modeling of silicon integrated spiral inductors for high-frequency applications,” Analog Integr. Circ. Sig.Process. 51(2), 89–100 (2007).
[CrossRef]

Bryce, A. C.

J. H. Marsh, O. P. Kowalski, S. D. McDougall, B. C. Qiu, A. McKee, C. J. Hamilton, R. M. De la Rue, and A. C. Bryce, “Quantum well intermixing in material systems for 1.5 μm (invited),” J. Vac. Sci. Technol. A 16(2), 810–816 (1998).
[CrossRef]

A. McKee, C. J. McLean, G. Lullo, A. C. Bryce, R. M. DelaRue, J. H. Marsh, and C. C. Button, “Monolithic integration in InGaAs-InGaAsP multiple-quantum-well structures using laser intermixing,” IEEE J. Quantum Electron. 33(1), 45–55 (1997).
[CrossRef]

J. Beauvais, J. H. Marsh, A. H. Kean, A. C. Bryce, and C. Button, “Suppression of Bandgap Shifts in GaAs/AlGaAs Quantum-Wells Using Strontium Fluoride Caps,” Electron. Lett. 28(17), 1670–1672 (1992).
[CrossRef]

Buchanan, M.

J. J. Dubowski, Y. Feng, P. J. Poole, M. Buchanan, S. Poirier, J. Genest, and V. Aimez, “Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd:YAG laser-induced quantum well intermixing,” J. Vac. Sci. Technol. A 20(4), 1426–1429 (2002).
[CrossRef]

Burnham, R. D.

R. L. Thornton, R. D. Burnham, T. L. Paoli, N. Holonyak, and D. G. Deppe, “Highly Efficient, Long Lived AlGaAs Lasers Fabricated by Silicon Impurity Induced Disordering,” Appl. Phys. Lett. 49(3), 133–134 (1986).
[CrossRef]

Button, C.

J. Beauvais, J. H. Marsh, A. H. Kean, A. C. Bryce, and C. Button, “Suppression of Bandgap Shifts in GaAs/AlGaAs Quantum-Wells Using Strontium Fluoride Caps,” Electron. Lett. 28(17), 1670–1672 (1992).
[CrossRef]

Button, C. C.

A. McKee, C. J. McLean, G. Lullo, A. C. Bryce, R. M. DelaRue, J. H. Marsh, and C. C. Button, “Monolithic integration in InGaAs-InGaAsP multiple-quantum-well structures using laser intermixing,” IEEE J. Quantum Electron. 33(1), 45–55 (1997).
[CrossRef]

Coldren, L. A.

E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: A quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

Dapkus, P. D.

De la Rue, R. M.

J. H. Marsh, O. P. Kowalski, S. D. McDougall, B. C. Qiu, A. McKee, C. J. Hamilton, R. M. De la Rue, and A. C. Bryce, “Quantum well intermixing in material systems for 1.5 μm (invited),” J. Vac. Sci. Technol. A 16(2), 810–816 (1998).
[CrossRef]

DelaRue, R. M.

A. McKee, C. J. McLean, G. Lullo, A. C. Bryce, R. M. DelaRue, J. H. Marsh, and C. C. Button, “Monolithic integration in InGaAs-InGaAsP multiple-quantum-well structures using laser intermixing,” IEEE J. Quantum Electron. 33(1), 45–55 (1997).
[CrossRef]

Deppe, D. G.

R. L. Thornton, R. D. Burnham, T. L. Paoli, N. Holonyak, and D. G. Deppe, “Highly Efficient, Long Lived AlGaAs Lasers Fabricated by Silicon Impurity Induced Disordering,” Appl. Phys. Lett. 49(3), 133–134 (1986).
[CrossRef]

Dubowski, J. J.

R. Stanowski and J. J. Dubowski, “Laser rapid thermal annealing of quantum semiconductor wafers: a one step bandgap engineering technique,” Appl. Phys., A Mater. Sci. Process. 94(3), 667–674 (2009).
[CrossRef]

J. Genest, R. Beal, V. Aimez, and J. J. Dubowski, “ArF laser-based quantum well intermixing in InGaAs/InGaAsP heterostructures,” Appl. Phys. Lett. 93(7), 071106 (2008).
[CrossRef]

R. Stanowski, O. Voznyy, and J. J. Dubowski, “Finite element model calculations of temperature profiles in Nd:YAG laser annealed GaAs/AlGaAs quantum well microstructures,” J. Laser Micro Nanoengineering 1, 17–21 (2006).
[CrossRef]

J. J. Dubowski, C. Y. Song, J. Lefebvre, Z. Wasilewski, G. Aers, and H. C. Liu, “Laser-induced selective area tuning of GaAs/AlGaAs quantum well microstructures for two-color IR detector operation,” J. Vac. Sci. Technol. A 22(3), 887–890 (2004).
[CrossRef]

J. J. Dubowski, Y. Feng, P. J. Poole, M. Buchanan, S. Poirier, J. Genest, and V. Aimez, “Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd:YAG laser-induced quantum well intermixing,” J. Vac. Sci. Technol. A 20(4), 1426–1429 (2002).
[CrossRef]

J. J. Dubowski, C. N. Allen, and S. Fafard, “Laser-induced InAs/GaAs quantum dot intermixing,” Appl. Phys. Lett. 77(22), 3583–3585 (2000).
[CrossRef]

Fafard, S.

J. J. Dubowski, C. N. Allen, and S. Fafard, “Laser-induced InAs/GaAs quantum dot intermixing,” Appl. Phys. Lett. 77(22), 3583–3585 (2000).
[CrossRef]

Feng, Y.

J. J. Dubowski, Y. Feng, P. J. Poole, M. Buchanan, S. Poirier, J. Genest, and V. Aimez, “Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd:YAG laser-induced quantum well intermixing,” J. Vac. Sci. Technol. A 20(4), 1426–1429 (2002).
[CrossRef]

Forchel, A.

Y. T. Sun, E. R. Messmer, S. Lourdudoss, J. Ahopelto, S. Rennon, J. P. Reithmaier, and A. Forchel, “Selective growth of InP on focused-ion-beam-modified GaAs surface by hydride vapor phase epitaxy,” Appl. Phys. Lett. 79, 1885–1887 (2001).
[CrossRef]

Fouchet, S.

P. Legay, F. Alexandre, J. L. Benchimol, M. Allovon, F. Laune, and S. Fouchet, “Selective area chemical beam epitaxy for butt-coupling integration,” J. Cryst. Growth 164(1-4), 314–320 (1996).
[CrossRef]

Fukuyama, H.

N. Kashio, K. Kurishima, K. Sano, M. Ida, N. Watanabe, and H. Fukuyama, “Monolithic integration of InP HBTs and uni-traveling-carrier photodiodes using nonselective regrowth,” IEEE Trans. Electron. Dev. 54(7), 1651–1657 (2007).
[CrossRef]

Genest, J.

J. Genest, R. Beal, V. Aimez, and J. J. Dubowski, “ArF laser-based quantum well intermixing in InGaAs/InGaAsP heterostructures,” Appl. Phys. Lett. 93(7), 071106 (2008).
[CrossRef]

J. J. Dubowski, Y. Feng, P. J. Poole, M. Buchanan, S. Poirier, J. Genest, and V. Aimez, “Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd:YAG laser-induced quantum well intermixing,” J. Vac. Sci. Technol. A 20(4), 1426–1429 (2002).
[CrossRef]

Hamamoto, K.

K. Kudo, K. Yashiki, T. Sasaki, Y. Yokoyama, K. Hamamoto, T. Morimoto, and M. Yamaguchi, “1.55-μm wavelength-selectable microarray DFB-LD's with monolithically integrated MMI combiner, SOA, and EA-Modulator,” IEEE Photon. Technol. Lett. 12(3), 242–244 (2000).
[CrossRef]

Hamilton, C. J.

J. H. Marsh, O. P. Kowalski, S. D. McDougall, B. C. Qiu, A. McKee, C. J. Hamilton, R. M. De la Rue, and A. C. Bryce, “Quantum well intermixing in material systems for 1.5 μm (invited),” J. Vac. Sci. Technol. A 16(2), 810–816 (1998).
[CrossRef]

Harmsma, P. J.

C. A. Verschuren, P. J. Harmsma, Y. S. Oei, M. R. Leys, H. Vonk, and J. H. Wolter, “Butt-coupling loss of 0.1 dB/interface in InP/InGaAs MQW waveguide-waveguide structures grown by selective area chemical beam epitaxy,” J. Cryst. Growth 188(1-4), 288–294 (1998).
[CrossRef]

Heidrich, H.

H. Heidrich, “Monolithically integrated photonic and optoelectronic circuits based on InP - System applications, technology, perspectives,” Microsystem Technol.-Micro-and Nanosystems-Inform, Storage and Proc. Systems 9, 295–298 (2003).

Holonyak, N.

R. L. Thornton, R. D. Burnham, T. L. Paoli, N. Holonyak, and D. G. Deppe, “Highly Efficient, Long Lived AlGaAs Lasers Fabricated by Silicon Impurity Induced Disordering,” Appl. Phys. Lett. 49(3), 133–134 (1986).
[CrossRef]

Hwang, E. H.

Hwang, W. Y.

K. A. Anselm, W. Y. Hwang, H. W. Ren, D. Zhang, and J. Um, “Manufacturing of laser diodes grown by molecular beam epitaxy for coarse wavelength division multiplexing systems,” J. Vac. Sci. Technol. B 26(3), 1167–1170 (2008).
[CrossRef]

Ida, M.

N. Kashio, K. Kurishima, K. Sano, M. Ida, N. Watanabe, and H. Fukuyama, “Monolithic integration of InP HBTs and uni-traveling-carrier photodiodes using nonselective regrowth,” IEEE Trans. Electron. Dev. 54(7), 1651–1657 (2007).
[CrossRef]

Iga, R.

Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005).
[CrossRef]

Ishino, M.

N. Otsuka, M. Kito, Y. Mori, M. Ishino, and Y. Matsui, “New Structure by Selective Regrowth in Multiquantum-Well Laser-Diodes Performed by Low-Pressure Metalorganic Vapor-Phase Epitaxy,” J. Cryst. Growth 145(1-4), 866–874 (1994).
[CrossRef]

Kamon, K.

K. Kamon, S. Takagishi, and H. Mori, “Selective Embedded Growth of AlxGa1-xAs by Low-Pressure Organometallic Vapor-Phase Epitaxy,” Japan. J. Appl. Phys. Letters 25(Part 2, No. 1), L10–12 (1986).
[CrossRef]

Kashio, N.

N. Kashio, K. Kurishima, K. Sano, M. Ida, N. Watanabe, and H. Fukuyama, “Monolithic integration of InP HBTs and uni-traveling-carrier photodiodes using nonselective regrowth,” IEEE Trans. Electron. Dev. 54(7), 1651–1657 (2007).
[CrossRef]

Kawaguchi, Y.

Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005).
[CrossRef]

Kean, A. H.

J. Beauvais, J. H. Marsh, A. H. Kean, A. C. Bryce, and C. Button, “Suppression of Bandgap Shifts in GaAs/AlGaAs Quantum-Wells Using Strontium Fluoride Caps,” Electron. Lett. 28(17), 1670–1672 (1992).
[CrossRef]

Kitamura, M.

T. Sasaki, M. Yamaguchi, and M. Kitamura, “Monolithically Integrated Multiwavelength Mqw Dbr Laser-Diodes Fabricated by Selective Metalorganic Vapor-Phase Epitaxy,” J. Cryst. Growth 145(1-4), 846–851 (1994).
[CrossRef]

Kito, M.

N. Otsuka, M. Kito, Y. Mori, M. Ishino, and Y. Matsui, “New Structure by Selective Regrowth in Multiquantum-Well Laser-Diodes Performed by Low-Pressure Metalorganic Vapor-Phase Epitaxy,” J. Cryst. Growth 145(1-4), 866–874 (1994).
[CrossRef]

Kowalski, O. P.

J. H. Marsh, O. P. Kowalski, S. D. McDougall, B. C. Qiu, A. McKee, C. J. Hamilton, R. M. De la Rue, and A. C. Bryce, “Quantum well intermixing in material systems for 1.5 μm (invited),” J. Vac. Sci. Technol. A 16(2), 810–816 (1998).
[CrossRef]

Kudo, K.

K. Kudo, K. Yashiki, T. Sasaki, Y. Yokoyama, K. Hamamoto, T. Morimoto, and M. Yamaguchi, “1.55-μm wavelength-selectable microarray DFB-LD's with monolithically integrated MMI combiner, SOA, and EA-Modulator,” IEEE Photon. Technol. Lett. 12(3), 242–244 (2000).
[CrossRef]

Kuech, T. F.

J. A. Lebens, C. S. Tsai, K. J. Vahala, and T. F. Kuech, “Application of Selective Epitaxy to Fabrication of Nanometer Scale Wire and Dot Structures,” Appl. Phys. Lett. 56(26), 2642–2644 (1990).
[CrossRef]

Kurishima, K.

N. Kashio, K. Kurishima, K. Sano, M. Ida, N. Watanabe, and H. Fukuyama, “Monolithic integration of InP HBTs and uni-traveling-carrier photodiodes using nonselective regrowth,” IEEE Trans. Electron. Dev. 54(7), 1651–1657 (2007).
[CrossRef]

Lal, V.

E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: A quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

Laune, F.

P. Legay, F. Alexandre, J. L. Benchimol, M. Allovon, F. Laune, and S. Fouchet, “Selective area chemical beam epitaxy for butt-coupling integration,” J. Cryst. Growth 164(1-4), 314–320 (1996).
[CrossRef]

Lebens, J. A.

J. A. Lebens, C. S. Tsai, K. J. Vahala, and T. F. Kuech, “Application of Selective Epitaxy to Fabrication of Nanometer Scale Wire and Dot Structures,” Appl. Phys. Lett. 56(26), 2642–2644 (1990).
[CrossRef]

Lefebvre, J.

J. J. Dubowski, C. Y. Song, J. Lefebvre, Z. Wasilewski, G. Aers, and H. C. Liu, “Laser-induced selective area tuning of GaAs/AlGaAs quantum well microstructures for two-color IR detector operation,” J. Vac. Sci. Technol. A 22(3), 887–890 (2004).
[CrossRef]

Legay, P.

P. Legay, F. Alexandre, J. L. Benchimol, M. Allovon, F. Laune, and S. Fouchet, “Selective area chemical beam epitaxy for butt-coupling integration,” J. Cryst. Growth 164(1-4), 314–320 (1996).
[CrossRef]

Leys, M. R.

C. A. Verschuren, P. J. Harmsma, Y. S. Oei, M. R. Leys, H. Vonk, and J. H. Wolter, “Butt-coupling loss of 0.1 dB/interface in InP/InGaAs MQW waveguide-waveguide structures grown by selective area chemical beam epitaxy,” J. Cryst. Growth 188(1-4), 288–294 (1998).
[CrossRef]

Liu, H. C.

J. J. Dubowski, C. Y. Song, J. Lefebvre, Z. Wasilewski, G. Aers, and H. C. Liu, “Laser-induced selective area tuning of GaAs/AlGaAs quantum well microstructures for two-color IR detector operation,” J. Vac. Sci. Technol. A 22(3), 887–890 (2004).
[CrossRef]

Lourdudoss, S.

Y. T. Sun, E. R. Messmer, S. Lourdudoss, J. Ahopelto, S. Rennon, J. P. Reithmaier, and A. Forchel, “Selective growth of InP on focused-ion-beam-modified GaAs surface by hydride vapor phase epitaxy,” Appl. Phys. Lett. 79, 1885–1887 (2001).
[CrossRef]

Lu, L.

Lullo, G.

A. McKee, C. J. McLean, G. Lullo, A. C. Bryce, R. M. DelaRue, J. H. Marsh, and C. C. Button, “Monolithic integration in InGaAs-InGaAsP multiple-quantum-well structures using laser intermixing,” IEEE J. Quantum Electron. 33(1), 45–55 (1997).
[CrossRef]

Marsh, J. H.

J. H. Marsh, O. P. Kowalski, S. D. McDougall, B. C. Qiu, A. McKee, C. J. Hamilton, R. M. De la Rue, and A. C. Bryce, “Quantum well intermixing in material systems for 1.5 μm (invited),” J. Vac. Sci. Technol. A 16(2), 810–816 (1998).
[CrossRef]

A. McKee, C. J. McLean, G. Lullo, A. C. Bryce, R. M. DelaRue, J. H. Marsh, and C. C. Button, “Monolithic integration in InGaAs-InGaAsP multiple-quantum-well structures using laser intermixing,” IEEE J. Quantum Electron. 33(1), 45–55 (1997).
[CrossRef]

J. Beauvais, J. H. Marsh, A. H. Kean, A. C. Bryce, and C. Button, “Suppression of Bandgap Shifts in GaAs/AlGaAs Quantum-Wells Using Strontium Fluoride Caps,” Electron. Lett. 28(17), 1670–1672 (1992).
[CrossRef]

Masanovic, M. L.

E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: A quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

Matsui, Y.

N. Otsuka, M. Kito, Y. Mori, M. Ishino, and Y. Matsui, “New Structure by Selective Regrowth in Multiquantum-Well Laser-Diodes Performed by Low-Pressure Metalorganic Vapor-Phase Epitaxy,” J. Cryst. Growth 145(1-4), 866–874 (1994).
[CrossRef]

Mawatari, H.

Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005).
[CrossRef]

McDougall, S. D.

J. H. Marsh, O. P. Kowalski, S. D. McDougall, B. C. Qiu, A. McKee, C. J. Hamilton, R. M. De la Rue, and A. C. Bryce, “Quantum well intermixing in material systems for 1.5 μm (invited),” J. Vac. Sci. Technol. A 16(2), 810–816 (1998).
[CrossRef]

McKee, A.

J. H. Marsh, O. P. Kowalski, S. D. McDougall, B. C. Qiu, A. McKee, C. J. Hamilton, R. M. De la Rue, and A. C. Bryce, “Quantum well intermixing in material systems for 1.5 μm (invited),” J. Vac. Sci. Technol. A 16(2), 810–816 (1998).
[CrossRef]

A. McKee, C. J. McLean, G. Lullo, A. C. Bryce, R. M. DelaRue, J. H. Marsh, and C. C. Button, “Monolithic integration in InGaAs-InGaAsP multiple-quantum-well structures using laser intermixing,” IEEE J. Quantum Electron. 33(1), 45–55 (1997).
[CrossRef]

McLean, C. J.

A. McKee, C. J. McLean, G. Lullo, A. C. Bryce, R. M. DelaRue, J. H. Marsh, and C. C. Button, “Monolithic integration in InGaAs-InGaAsP multiple-quantum-well structures using laser intermixing,” IEEE J. Quantum Electron. 33(1), 45–55 (1997).
[CrossRef]

Messmer, E. R.

Y. T. Sun, E. R. Messmer, S. Lourdudoss, J. Ahopelto, S. Rennon, J. P. Reithmaier, and A. Forchel, “Selective growth of InP on focused-ion-beam-modified GaAs surface by hydride vapor phase epitaxy,” Appl. Phys. Lett. 79, 1885–1887 (2001).
[CrossRef]

Mock, A.

Mori, H.

K. Kamon, S. Takagishi, and H. Mori, “Selective Embedded Growth of AlxGa1-xAs by Low-Pressure Organometallic Vapor-Phase Epitaxy,” Japan. J. Appl. Phys. Letters 25(Part 2, No. 1), L10–12 (1986).
[CrossRef]

Mori, Y.

N. Otsuka, M. Kito, Y. Mori, M. Ishino, and Y. Matsui, “New Structure by Selective Regrowth in Multiquantum-Well Laser-Diodes Performed by Low-Pressure Metalorganic Vapor-Phase Epitaxy,” J. Cryst. Growth 145(1-4), 866–874 (1994).
[CrossRef]

Morimoto, T.

K. Kudo, K. Yashiki, T. Sasaki, Y. Yokoyama, K. Hamamoto, T. Morimoto, and M. Yamaguchi, “1.55-μm wavelength-selectable microarray DFB-LD's with monolithically integrated MMI combiner, SOA, and EA-Modulator,” IEEE Photon. Technol. Lett. 12(3), 242–244 (2000).
[CrossRef]

Morrison, G. B.

E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: A quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

O’Brien, J.

Oei, Y. S.

C. A. Verschuren, P. J. Harmsma, Y. S. Oei, M. R. Leys, H. Vonk, and J. H. Wolter, “Butt-coupling loss of 0.1 dB/interface in InP/InGaAs MQW waveguide-waveguide structures grown by selective area chemical beam epitaxy,” J. Cryst. Growth 188(1-4), 288–294 (1998).
[CrossRef]

Okamoto, H.

Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005).
[CrossRef]

Oku, S.

Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005).
[CrossRef]

Otsuka, N.

N. Otsuka, M. Kito, Y. Mori, M. Ishino, and Y. Matsui, “New Structure by Selective Regrowth in Multiquantum-Well Laser-Diodes Performed by Low-Pressure Metalorganic Vapor-Phase Epitaxy,” J. Cryst. Growth 145(1-4), 866–874 (1994).
[CrossRef]

Palmisano, G.

T. Biondi, A. Scuderi, E. Ragonese, and G. Palmisano, “Characterization and modeling of silicon integrated spiral inductors for high-frequency applications,” Analog Integr. Circ. Sig.Process. 51(2), 89–100 (2007).
[CrossRef]

Paoli, T. L.

R. L. Thornton, R. D. Burnham, T. L. Paoli, N. Holonyak, and D. G. Deppe, “Highly Efficient, Long Lived AlGaAs Lasers Fabricated by Silicon Impurity Induced Disordering,” Appl. Phys. Lett. 49(3), 133–134 (1986).
[CrossRef]

Poirier, S.

J. J. Dubowski, Y. Feng, P. J. Poole, M. Buchanan, S. Poirier, J. Genest, and V. Aimez, “Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd:YAG laser-induced quantum well intermixing,” J. Vac. Sci. Technol. A 20(4), 1426–1429 (2002).
[CrossRef]

Poole, P. J.

J. J. Dubowski, Y. Feng, P. J. Poole, M. Buchanan, S. Poirier, J. Genest, and V. Aimez, “Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd:YAG laser-induced quantum well intermixing,” J. Vac. Sci. Technol. A 20(4), 1426–1429 (2002).
[CrossRef]

Qiu, B. C.

J. H. Marsh, O. P. Kowalski, S. D. McDougall, B. C. Qiu, A. McKee, C. J. Hamilton, R. M. De la Rue, and A. C. Bryce, “Quantum well intermixing in material systems for 1.5 μm (invited),” J. Vac. Sci. Technol. A 16(2), 810–816 (1998).
[CrossRef]

Ragonese, E.

T. Biondi, A. Scuderi, E. Ragonese, and G. Palmisano, “Characterization and modeling of silicon integrated spiral inductors for high-frequency applications,” Analog Integr. Circ. Sig.Process. 51(2), 89–100 (2007).
[CrossRef]

Raring, J. W.

E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: A quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

Reithmaier, J. P.

Y. T. Sun, E. R. Messmer, S. Lourdudoss, J. Ahopelto, S. Rennon, J. P. Reithmaier, and A. Forchel, “Selective growth of InP on focused-ion-beam-modified GaAs surface by hydride vapor phase epitaxy,” Appl. Phys. Lett. 79, 1885–1887 (2001).
[CrossRef]

Ren, H. W.

K. A. Anselm, W. Y. Hwang, H. W. Ren, D. Zhang, and J. Um, “Manufacturing of laser diodes grown by molecular beam epitaxy for coarse wavelength division multiplexing systems,” J. Vac. Sci. Technol. B 26(3), 1167–1170 (2008).
[CrossRef]

Rennon, S.

Y. T. Sun, E. R. Messmer, S. Lourdudoss, J. Ahopelto, S. Rennon, J. P. Reithmaier, and A. Forchel, “Selective growth of InP on focused-ion-beam-modified GaAs surface by hydride vapor phase epitaxy,” Appl. Phys. Lett. 79, 1885–1887 (2001).
[CrossRef]

Sano, K.

N. Kashio, K. Kurishima, K. Sano, M. Ida, N. Watanabe, and H. Fukuyama, “Monolithic integration of InP HBTs and uni-traveling-carrier photodiodes using nonselective regrowth,” IEEE Trans. Electron. Dev. 54(7), 1651–1657 (2007).
[CrossRef]

Sasaki, T.

K. Kudo, K. Yashiki, T. Sasaki, Y. Yokoyama, K. Hamamoto, T. Morimoto, and M. Yamaguchi, “1.55-μm wavelength-selectable microarray DFB-LD's with monolithically integrated MMI combiner, SOA, and EA-Modulator,” IEEE Photon. Technol. Lett. 12(3), 242–244 (2000).
[CrossRef]

T. Sasaki, M. Yamaguchi, and M. Kitamura, “Monolithically Integrated Multiwavelength Mqw Dbr Laser-Diodes Fabricated by Selective Metalorganic Vapor-Phase Epitaxy,” J. Cryst. Growth 145(1-4), 846–851 (1994).
[CrossRef]

Scuderi, A.

T. Biondi, A. Scuderi, E. Ragonese, and G. Palmisano, “Characterization and modeling of silicon integrated spiral inductors for high-frequency applications,” Analog Integr. Circ. Sig.Process. 51(2), 89–100 (2007).
[CrossRef]

Shimamune, Y.

N. Tamura and Y. Shimamune, “45 nm CMOS technology with low temperature selective epitaxy of SiGe,” Appl. Surf. Sci. 254(19), 6067–6071 (2008).
[CrossRef]

Skogen, E. J.

E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: A quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

Song, C. Y.

J. J. Dubowski, C. Y. Song, J. Lefebvre, Z. Wasilewski, G. Aers, and H. C. Liu, “Laser-induced selective area tuning of GaAs/AlGaAs quantum well microstructures for two-color IR detector operation,” J. Vac. Sci. Technol. A 22(3), 887–890 (2004).
[CrossRef]

Stanowski, R.

R. Stanowski and J. J. Dubowski, “Laser rapid thermal annealing of quantum semiconductor wafers: a one step bandgap engineering technique,” Appl. Phys., A Mater. Sci. Process. 94(3), 667–674 (2009).
[CrossRef]

R. Stanowski, O. Voznyy, and J. J. Dubowski, “Finite element model calculations of temperature profiles in Nd:YAG laser annealed GaAs/AlGaAs quantum well microstructures,” J. Laser Micro Nanoengineering 1, 17–21 (2006).
[CrossRef]

Sun, Y. T.

Y. T. Sun, E. R. Messmer, S. Lourdudoss, J. Ahopelto, S. Rennon, J. P. Reithmaier, and A. Forchel, “Selective growth of InP on focused-ion-beam-modified GaAs surface by hydride vapor phase epitaxy,” Appl. Phys. Lett. 79, 1885–1887 (2001).
[CrossRef]

Suzaki, Y.

Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005).
[CrossRef]

Takagishi, S.

K. Kamon, S. Takagishi, and H. Mori, “Selective Embedded Growth of AlxGa1-xAs by Low-Pressure Organometallic Vapor-Phase Epitaxy,” Japan. J. Appl. Phys. Letters 25(Part 2, No. 1), L10–12 (1986).
[CrossRef]

Tamura, N.

N. Tamura and Y. Shimamune, “45 nm CMOS technology with low temperature selective epitaxy of SiGe,” Appl. Surf. Sci. 254(19), 6067–6071 (2008).
[CrossRef]

Thornton, R. L.

R. L. Thornton, R. D. Burnham, T. L. Paoli, N. Holonyak, and D. G. Deppe, “Highly Efficient, Long Lived AlGaAs Lasers Fabricated by Silicon Impurity Induced Disordering,” Appl. Phys. Lett. 49(3), 133–134 (1986).
[CrossRef]

Tsai, C. S.

J. A. Lebens, C. S. Tsai, K. J. Vahala, and T. F. Kuech, “Application of Selective Epitaxy to Fabrication of Nanometer Scale Wire and Dot Structures,” Appl. Phys. Lett. 56(26), 2642–2644 (1990).
[CrossRef]

Um, J.

K. A. Anselm, W. Y. Hwang, H. W. Ren, D. Zhang, and J. Um, “Manufacturing of laser diodes grown by molecular beam epitaxy for coarse wavelength division multiplexing systems,” J. Vac. Sci. Technol. B 26(3), 1167–1170 (2008).
[CrossRef]

Vahala, K. J.

J. A. Lebens, C. S. Tsai, K. J. Vahala, and T. F. Kuech, “Application of Selective Epitaxy to Fabrication of Nanometer Scale Wire and Dot Structures,” Appl. Phys. Lett. 56(26), 2642–2644 (1990).
[CrossRef]

Verschuren, C. A.

C. A. Verschuren, P. J. Harmsma, Y. S. Oei, M. R. Leys, H. Vonk, and J. H. Wolter, “Butt-coupling loss of 0.1 dB/interface in InP/InGaAs MQW waveguide-waveguide structures grown by selective area chemical beam epitaxy,” J. Cryst. Growth 188(1-4), 288–294 (1998).
[CrossRef]

Vonk, H.

C. A. Verschuren, P. J. Harmsma, Y. S. Oei, M. R. Leys, H. Vonk, and J. H. Wolter, “Butt-coupling loss of 0.1 dB/interface in InP/InGaAs MQW waveguide-waveguide structures grown by selective area chemical beam epitaxy,” J. Cryst. Growth 188(1-4), 288–294 (1998).
[CrossRef]

Voznyy, O.

R. Stanowski, O. Voznyy, and J. J. Dubowski, “Finite element model calculations of temperature profiles in Nd:YAG laser annealed GaAs/AlGaAs quantum well microstructures,” J. Laser Micro Nanoengineering 1, 17–21 (2006).
[CrossRef]

Wang, C. S.

E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: A quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

Wasilewski, Z.

J. J. Dubowski, C. Y. Song, J. Lefebvre, Z. Wasilewski, G. Aers, and H. C. Liu, “Laser-induced selective area tuning of GaAs/AlGaAs quantum well microstructures for two-color IR detector operation,” J. Vac. Sci. Technol. A 22(3), 887–890 (2004).
[CrossRef]

Watanabe, N.

N. Kashio, K. Kurishima, K. Sano, M. Ida, N. Watanabe, and H. Fukuyama, “Monolithic integration of InP HBTs and uni-traveling-carrier photodiodes using nonselective regrowth,” IEEE Trans. Electron. Dev. 54(7), 1651–1657 (2007).
[CrossRef]

Wolter, J. H.

C. A. Verschuren, P. J. Harmsma, Y. S. Oei, M. R. Leys, H. Vonk, and J. H. Wolter, “Butt-coupling loss of 0.1 dB/interface in InP/InGaAs MQW waveguide-waveguide structures grown by selective area chemical beam epitaxy,” J. Cryst. Growth 188(1-4), 288–294 (1998).
[CrossRef]

Yamaguchi, M.

K. Kudo, K. Yashiki, T. Sasaki, Y. Yokoyama, K. Hamamoto, T. Morimoto, and M. Yamaguchi, “1.55-μm wavelength-selectable microarray DFB-LD's with monolithically integrated MMI combiner, SOA, and EA-Modulator,” IEEE Photon. Technol. Lett. 12(3), 242–244 (2000).
[CrossRef]

T. Sasaki, M. Yamaguchi, and M. Kitamura, “Monolithically Integrated Multiwavelength Mqw Dbr Laser-Diodes Fabricated by Selective Metalorganic Vapor-Phase Epitaxy,” J. Cryst. Growth 145(1-4), 846–851 (1994).
[CrossRef]

Yasaka, H.

Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005).
[CrossRef]

Yashiki, K.

K. Kudo, K. Yashiki, T. Sasaki, Y. Yokoyama, K. Hamamoto, T. Morimoto, and M. Yamaguchi, “1.55-μm wavelength-selectable microarray DFB-LD's with monolithically integrated MMI combiner, SOA, and EA-Modulator,” IEEE Photon. Technol. Lett. 12(3), 242–244 (2000).
[CrossRef]

Yokoyama, Y.

K. Kudo, K. Yashiki, T. Sasaki, Y. Yokoyama, K. Hamamoto, T. Morimoto, and M. Yamaguchi, “1.55-μm wavelength-selectable microarray DFB-LD's with monolithically integrated MMI combiner, SOA, and EA-Modulator,” IEEE Photon. Technol. Lett. 12(3), 242–244 (2000).
[CrossRef]

Yoshino, K.

Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005).
[CrossRef]

Zhang, D.

K. A. Anselm, W. Y. Hwang, H. W. Ren, D. Zhang, and J. Um, “Manufacturing of laser diodes grown by molecular beam epitaxy for coarse wavelength division multiplexing systems,” J. Vac. Sci. Technol. B 26(3), 1167–1170 (2008).
[CrossRef]

Analog Integr. Circ. Sig.Process. (1)

T. Biondi, A. Scuderi, E. Ragonese, and G. Palmisano, “Characterization and modeling of silicon integrated spiral inductors for high-frequency applications,” Analog Integr. Circ. Sig.Process. 51(2), 89–100 (2007).
[CrossRef]

Appl. Phys. Lett. (5)

J. Genest, R. Beal, V. Aimez, and J. J. Dubowski, “ArF laser-based quantum well intermixing in InGaAs/InGaAsP heterostructures,” Appl. Phys. Lett. 93(7), 071106 (2008).
[CrossRef]

J. J. Dubowski, C. N. Allen, and S. Fafard, “Laser-induced InAs/GaAs quantum dot intermixing,” Appl. Phys. Lett. 77(22), 3583–3585 (2000).
[CrossRef]

J. A. Lebens, C. S. Tsai, K. J. Vahala, and T. F. Kuech, “Application of Selective Epitaxy to Fabrication of Nanometer Scale Wire and Dot Structures,” Appl. Phys. Lett. 56(26), 2642–2644 (1990).
[CrossRef]

Y. T. Sun, E. R. Messmer, S. Lourdudoss, J. Ahopelto, S. Rennon, J. P. Reithmaier, and A. Forchel, “Selective growth of InP on focused-ion-beam-modified GaAs surface by hydride vapor phase epitaxy,” Appl. Phys. Lett. 79, 1885–1887 (2001).
[CrossRef]

R. L. Thornton, R. D. Burnham, T. L. Paoli, N. Holonyak, and D. G. Deppe, “Highly Efficient, Long Lived AlGaAs Lasers Fabricated by Silicon Impurity Induced Disordering,” Appl. Phys. Lett. 49(3), 133–134 (1986).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

R. Stanowski and J. J. Dubowski, “Laser rapid thermal annealing of quantum semiconductor wafers: a one step bandgap engineering technique,” Appl. Phys., A Mater. Sci. Process. 94(3), 667–674 (2009).
[CrossRef]

Appl. Surf. Sci. (1)

N. Tamura and Y. Shimamune, “45 nm CMOS technology with low temperature selective epitaxy of SiGe,” Appl. Surf. Sci. 254(19), 6067–6071 (2008).
[CrossRef]

Electron. Lett. (1)

J. Beauvais, J. H. Marsh, A. H. Kean, A. C. Bryce, and C. Button, “Suppression of Bandgap Shifts in GaAs/AlGaAs Quantum-Wells Using Strontium Fluoride Caps,” Electron. Lett. 28(17), 1670–1672 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. McKee, C. J. McLean, G. Lullo, A. C. Bryce, R. M. DelaRue, J. H. Marsh, and C. C. Button, “Monolithic integration in InGaAs-InGaAsP multiple-quantum-well structures using laser intermixing,” IEEE J. Quantum Electron. 33(1), 45–55 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Suzaki, H. Yasaka, H. Mawatari, K. Yoshino, Y. Kawaguchi, S. Oku, R. Iga, and H. Okamoto, “Monolithically integrated eight-channel WDM modulator with narrow channel spacing and high throughput,” IEEE J. Sel. Top. Quantum Electron. 11(1), 43–49 (2005).
[CrossRef]

E. J. Skogen, J. W. Raring, G. B. Morrison, C. S. Wang, V. Lal, M. L. Masanovic, and L. A. Coldren, “Monolithically integrated active components: A quantum-well intermixing approach,” IEEE J. Sel. Top. Quantum Electron. 11(2), 343–355 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Kudo, K. Yashiki, T. Sasaki, Y. Yokoyama, K. Hamamoto, T. Morimoto, and M. Yamaguchi, “1.55-μm wavelength-selectable microarray DFB-LD's with monolithically integrated MMI combiner, SOA, and EA-Modulator,” IEEE Photon. Technol. Lett. 12(3), 242–244 (2000).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

N. Kashio, K. Kurishima, K. Sano, M. Ida, N. Watanabe, and H. Fukuyama, “Monolithic integration of InP HBTs and uni-traveling-carrier photodiodes using nonselective regrowth,” IEEE Trans. Electron. Dev. 54(7), 1651–1657 (2007).
[CrossRef]

J. Cryst. Growth (4)

N. Otsuka, M. Kito, Y. Mori, M. Ishino, and Y. Matsui, “New Structure by Selective Regrowth in Multiquantum-Well Laser-Diodes Performed by Low-Pressure Metalorganic Vapor-Phase Epitaxy,” J. Cryst. Growth 145(1-4), 866–874 (1994).
[CrossRef]

C. A. Verschuren, P. J. Harmsma, Y. S. Oei, M. R. Leys, H. Vonk, and J. H. Wolter, “Butt-coupling loss of 0.1 dB/interface in InP/InGaAs MQW waveguide-waveguide structures grown by selective area chemical beam epitaxy,” J. Cryst. Growth 188(1-4), 288–294 (1998).
[CrossRef]

P. Legay, F. Alexandre, J. L. Benchimol, M. Allovon, F. Laune, and S. Fouchet, “Selective area chemical beam epitaxy for butt-coupling integration,” J. Cryst. Growth 164(1-4), 314–320 (1996).
[CrossRef]

T. Sasaki, M. Yamaguchi, and M. Kitamura, “Monolithically Integrated Multiwavelength Mqw Dbr Laser-Diodes Fabricated by Selective Metalorganic Vapor-Phase Epitaxy,” J. Cryst. Growth 145(1-4), 846–851 (1994).
[CrossRef]

J. Laser Micro Nanoengineering (1)

R. Stanowski, O. Voznyy, and J. J. Dubowski, “Finite element model calculations of temperature profiles in Nd:YAG laser annealed GaAs/AlGaAs quantum well microstructures,” J. Laser Micro Nanoengineering 1, 17–21 (2006).
[CrossRef]

J. Vac. Sci. Technol. A (3)

J. J. Dubowski, Y. Feng, P. J. Poole, M. Buchanan, S. Poirier, J. Genest, and V. Aimez, “Monolithic multiple wavelength ridge waveguide laser array fabricated by Nd:YAG laser-induced quantum well intermixing,” J. Vac. Sci. Technol. A 20(4), 1426–1429 (2002).
[CrossRef]

J. J. Dubowski, C. Y. Song, J. Lefebvre, Z. Wasilewski, G. Aers, and H. C. Liu, “Laser-induced selective area tuning of GaAs/AlGaAs quantum well microstructures for two-color IR detector operation,” J. Vac. Sci. Technol. A 22(3), 887–890 (2004).
[CrossRef]

J. H. Marsh, O. P. Kowalski, S. D. McDougall, B. C. Qiu, A. McKee, C. J. Hamilton, R. M. De la Rue, and A. C. Bryce, “Quantum well intermixing in material systems for 1.5 μm (invited),” J. Vac. Sci. Technol. A 16(2), 810–816 (1998).
[CrossRef]

J. Vac. Sci. Technol. B (1)

K. A. Anselm, W. Y. Hwang, H. W. Ren, D. Zhang, and J. Um, “Manufacturing of laser diodes grown by molecular beam epitaxy for coarse wavelength division multiplexing systems,” J. Vac. Sci. Technol. B 26(3), 1167–1170 (2008).
[CrossRef]

Japan. J. Appl. Phys. Letters (1)

K. Kamon, S. Takagishi, and H. Mori, “Selective Embedded Growth of AlxGa1-xAs by Low-Pressure Organometallic Vapor-Phase Epitaxy,” Japan. J. Appl. Phys. Letters 25(Part 2, No. 1), L10–12 (1986).
[CrossRef]

Microsystem Technol.-Micro-and Nanosystems-Inform, Storage and Proc. Systems (1)

H. Heidrich, “Monolithically integrated photonic and optoelectronic circuits based on InP - System applications, technology, perspectives,” Microsystem Technol.-Micro-and Nanosystems-Inform, Storage and Proc. Systems 9, 295–298 (2003).

Opt. Express (1)

Other (2)

R. Stanowski, S. Bouazis, and J. J. Dubowski, “Selective area bandgap engineering of InGaAsP/InP quantum well microstructures with an infrared laser rapid thermal annealing technique,” Proc. SPIE, Vol., vol. 6869, 68790D (2008).

E. H. Li, Selected papers on quantum well intermixing for photonics, Bellingham, Wash.: SPIE Optical Engineering Press, 1998.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic idea of the IBESA process.

Fig. 2
Fig. 2

Photoluminescence PL peak wavelength map of an InGaAs/InGaAsP QW wafer with 20 sites of QWI material fabricated by Laser-RTA (a), and PL spectra of the as-grown and 70 nm blueshifted (site A3) materials (b). The inset shows details of the processed microstructure.

Fig. 3
Fig. 3

Photoluminescence peak wavelength cross-scans for A1, A2, A3 and A4 sites following the 1st (a), 2nd (b) and 3rd (c) IBESA annealing step.

Fig. 4
Fig. 4

Photoluminescence peak wavelength cross-scans for B1, B2, B3 and B4 sites following the 1st (a), 2nd (b) and 3rd (c) IBESA annealing step.

Tables (1)

Tables Icon

Table 1 Irradiation time and resulting PL peak wavelength emission from InGaAs/InGaAsP QW heterostructures processed by a 3-step IBESA technique.

Metrics