Abstract

We investigate diode pump absorption and temperature distribution in three erbium-doped double-clad fluoride fibers. Absorption is measured via fluorescence intensity and temperature distribution is measured with thermal imaging. Ray-tracing calculations of absorption and heat-equation modeling of temperature distribution are also conducted. We found excellent agreement between measurements and calculations for all fibers. Results indicate that erbium-doped fluoride fiber lasers have already reached maximum output powers allowed under natural convection cooling, with fiber end being the most critical. We propose cooling and fiber design optimizations that may allow an order-of-magnitude further power-scaling.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. O'Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, “Power Scaling of SM Fiber Lasers toward 10kW,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThA3.
  2. J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann,“The Rising Power of Fiber Lasers and Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
    [CrossRef]
  3. S. D. Jackson, T. A. King, and M. Pollnau, “Modelling of high-power diode-pumped erbium 3 μm fibre lasers,” J. Mod. Opt. 47(11), 1987–1994 (2000).
  4. M. Pollnau and S. D. Jackson; “Energy Recycling Versus Lifetime Quenching in Erbium-Doped 3-μm Fiber Lasers,” IEEE J. Quantum Electron. 38(2), 162–169 (2002).
    [CrossRef]
  5. X. Zhu and R. Jain, “Numerical analysis and experimental results of high-power Er/Pr:ZBLAN 2.7 microm fiber lasers with different pumping designs,” Appl. Opt. 45(27), 7118–7125 (2006).
    [CrossRef] [PubMed]
  6. B. Srinivasan, J. Tafoya, and R. Jain, “High-power “Watt-level” CW operation of diode-pumped 2.7 aem fiber lasers using efficient cross-relaxation and energy transfer mechanisms,” Opt. Express 4(12), 490–495 (1999).
    [CrossRef] [PubMed]
  7. T. Sandrock, D. Fischer, P. Glas, M. Leitner, M. Wrage, and A. Diening, “Diode-pumped 1-W Er-doped fluoride glass M-profile fiber laser emitting at 2.8 mum,” Opt. Lett. 24(18), 1284–1286 (1999).
    [CrossRef]
  8. S. D. Jackson, T. A. King, and M. Pollnau, “Diode-pumped 1.7-W erbium 3-mum fiber laser,” Opt. Lett. 24(16), 1133–1135 (1999).
    [CrossRef]
  9. X. Zhu and R. Jain, “Compact 2 W wavelength-tunable Er:ZBLAN mid-infrared fiber laser,” Opt. Lett. 32(16), 2381–2383 (2007).
    [CrossRef] [PubMed]
  10. X. Zhu and R. Jain, “10-W-level diode-pumped compact 2.78 microm ZBLAN fiber laser,” Opt. Lett. 32(1), 26–28 (2007).
    [CrossRef]
  11. A. Liu and K. Ueda, “The absorption characteristics of circular, offset and rectangular double-clad fibers,” Opt. Commun. 132(5-6), 511–518 (1996).
    [CrossRef]
  12. V. Doya, O. Legrand, and F. Mortessagne, “Optimized absorption in a chaotic double-clad fiber amplifier,” Opt. Lett. 26(12), 872–874 (2001).
    [CrossRef]
  13. P. Leproux, S. Février, V. Doya, P. Roy, and D. Pagnoux, “Modeling and Optimization of Double-Clad Fiber Amplifiers Using Chaotic Propagation of the Pump,” Opt. Fiber Technol. 7(4), 324–339 (2001).
    [CrossRef]
  14. S. Bedö, W. Lüthy, and H. P. Weber, “The effective absorption coefficient in double clad fibers,” Opt. Commun. 99(5-6), 331–335 (1993).
    [CrossRef]
  15. D. C. Brown and H. J. Hoffman, “Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
    [CrossRef]
  16. D. J. Coleman and T. A. King, “Pump induced thermal effects in high power Tm3+ and Tm3+/Ho3+ cladding-pumped fibre lasers,” Meas. Sci. Technol. 14(7), 998–1002 (2003).
    [CrossRef]
  17. L. Li, H. Li, T. Qiu, V. L. Temyanko, M. M. Morrell, A. Schülzgen, A. Mafi, J. V. Moloney, and N. Peyghambarian, “3-Dimensional thermal analysis and active cooling of short-length high-power fiber lasers,” Opt. Express 13(9), 3420–3428 (2005).
    [CrossRef] [PubMed]
  18. Y. Jeong, S. Baek, P. Dupriez, J.-N. Maran, J. K. Sahu, J. Nilsson, and B. Lee, “Thermal characteristics of an end-pumped high-power ytterbium-sensitized erbium-doped fiber laser under natural convection,” Opt. Express 16(24), 19865–19871 (2008).
    [CrossRef] [PubMed]
  19. H. W. McAdams, Heat Transmission, (McGraw-Hill, 3rd edition, 1954).

2008 (1)

2007 (3)

X. Zhu and R. Jain, “10-W-level diode-pumped compact 2.78 microm ZBLAN fiber laser,” Opt. Lett. 32(1), 26–28 (2007).
[CrossRef]

X. Zhu and R. Jain, “Compact 2 W wavelength-tunable Er:ZBLAN mid-infrared fiber laser,” Opt. Lett. 32(16), 2381–2383 (2007).
[CrossRef] [PubMed]

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann,“The Rising Power of Fiber Lasers and Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[CrossRef]

2006 (1)

2005 (1)

2003 (1)

D. J. Coleman and T. A. King, “Pump induced thermal effects in high power Tm3+ and Tm3+/Ho3+ cladding-pumped fibre lasers,” Meas. Sci. Technol. 14(7), 998–1002 (2003).
[CrossRef]

2002 (1)

M. Pollnau and S. D. Jackson; “Energy Recycling Versus Lifetime Quenching in Erbium-Doped 3-μm Fiber Lasers,” IEEE J. Quantum Electron. 38(2), 162–169 (2002).
[CrossRef]

2001 (3)

P. Leproux, S. Février, V. Doya, P. Roy, and D. Pagnoux, “Modeling and Optimization of Double-Clad Fiber Amplifiers Using Chaotic Propagation of the Pump,” Opt. Fiber Technol. 7(4), 324–339 (2001).
[CrossRef]

D. C. Brown and H. J. Hoffman, “Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[CrossRef]

V. Doya, O. Legrand, and F. Mortessagne, “Optimized absorption in a chaotic double-clad fiber amplifier,” Opt. Lett. 26(12), 872–874 (2001).
[CrossRef]

2000 (1)

S. D. Jackson, T. A. King, and M. Pollnau, “Modelling of high-power diode-pumped erbium 3 μm fibre lasers,” J. Mod. Opt. 47(11), 1987–1994 (2000).

1999 (3)

1996 (1)

A. Liu and K. Ueda, “The absorption characteristics of circular, offset and rectangular double-clad fibers,” Opt. Commun. 132(5-6), 511–518 (1996).
[CrossRef]

1993 (1)

S. Bedö, W. Lüthy, and H. P. Weber, “The effective absorption coefficient in double clad fibers,” Opt. Commun. 99(5-6), 331–335 (1993).
[CrossRef]

Baek, S.

Bedö, S.

S. Bedö, W. Lüthy, and H. P. Weber, “The effective absorption coefficient in double clad fibers,” Opt. Commun. 99(5-6), 331–335 (1993).
[CrossRef]

Brown, D. C.

D. C. Brown and H. J. Hoffman, “Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[CrossRef]

Coleman, D. J.

D. J. Coleman and T. A. King, “Pump induced thermal effects in high power Tm3+ and Tm3+/Ho3+ cladding-pumped fibre lasers,” Meas. Sci. Technol. 14(7), 998–1002 (2003).
[CrossRef]

Diening, A.

Doya, V.

P. Leproux, S. Février, V. Doya, P. Roy, and D. Pagnoux, “Modeling and Optimization of Double-Clad Fiber Amplifiers Using Chaotic Propagation of the Pump,” Opt. Fiber Technol. 7(4), 324–339 (2001).
[CrossRef]

V. Doya, O. Legrand, and F. Mortessagne, “Optimized absorption in a chaotic double-clad fiber amplifier,” Opt. Lett. 26(12), 872–874 (2001).
[CrossRef]

Dupriez, P.

Eberhardt, R.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann,“The Rising Power of Fiber Lasers and Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[CrossRef]

Février, S.

P. Leproux, S. Février, V. Doya, P. Roy, and D. Pagnoux, “Modeling and Optimization of Double-Clad Fiber Amplifiers Using Chaotic Propagation of the Pump,” Opt. Fiber Technol. 7(4), 324–339 (2001).
[CrossRef]

Fischer, D.

Glas, P.

Hoffman, H. J.

D. C. Brown and H. J. Hoffman, “Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[CrossRef]

Jackson, S. D.

M. Pollnau and S. D. Jackson; “Energy Recycling Versus Lifetime Quenching in Erbium-Doped 3-μm Fiber Lasers,” IEEE J. Quantum Electron. 38(2), 162–169 (2002).
[CrossRef]

S. D. Jackson, T. A. King, and M. Pollnau, “Modelling of high-power diode-pumped erbium 3 μm fibre lasers,” J. Mod. Opt. 47(11), 1987–1994 (2000).

S. D. Jackson, T. A. King, and M. Pollnau, “Diode-pumped 1.7-W erbium 3-mum fiber laser,” Opt. Lett. 24(16), 1133–1135 (1999).
[CrossRef]

Jain, R.

Jeong, Y.

King, T. A.

D. J. Coleman and T. A. King, “Pump induced thermal effects in high power Tm3+ and Tm3+/Ho3+ cladding-pumped fibre lasers,” Meas. Sci. Technol. 14(7), 998–1002 (2003).
[CrossRef]

S. D. Jackson, T. A. King, and M. Pollnau, “Modelling of high-power diode-pumped erbium 3 μm fibre lasers,” J. Mod. Opt. 47(11), 1987–1994 (2000).

S. D. Jackson, T. A. King, and M. Pollnau, “Diode-pumped 1.7-W erbium 3-mum fiber laser,” Opt. Lett. 24(16), 1133–1135 (1999).
[CrossRef]

Klingebiel, S.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann,“The Rising Power of Fiber Lasers and Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[CrossRef]

Lee, B.

Legrand, O.

Leitner, M.

Leproux, P.

P. Leproux, S. Février, V. Doya, P. Roy, and D. Pagnoux, “Modeling and Optimization of Double-Clad Fiber Amplifiers Using Chaotic Propagation of the Pump,” Opt. Fiber Technol. 7(4), 324–339 (2001).
[CrossRef]

Li, H.

Li, L.

Limpert, J.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann,“The Rising Power of Fiber Lasers and Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[CrossRef]

Liu, A.

A. Liu and K. Ueda, “The absorption characteristics of circular, offset and rectangular double-clad fibers,” Opt. Commun. 132(5-6), 511–518 (1996).
[CrossRef]

Lüthy, W.

S. Bedö, W. Lüthy, and H. P. Weber, “The effective absorption coefficient in double clad fibers,” Opt. Commun. 99(5-6), 331–335 (1993).
[CrossRef]

Mafi, A.

Maran, J.-N.

Moloney, J. V.

Morrell, M. M.

Mortessagne, F.

Nilsson, J.

Pagnoux, D.

P. Leproux, S. Février, V. Doya, P. Roy, and D. Pagnoux, “Modeling and Optimization of Double-Clad Fiber Amplifiers Using Chaotic Propagation of the Pump,” Opt. Fiber Technol. 7(4), 324–339 (2001).
[CrossRef]

Peschel, T.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann,“The Rising Power of Fiber Lasers and Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[CrossRef]

Peyghambarian, N.

Pollnau, M.

M. Pollnau and S. D. Jackson; “Energy Recycling Versus Lifetime Quenching in Erbium-Doped 3-μm Fiber Lasers,” IEEE J. Quantum Electron. 38(2), 162–169 (2002).
[CrossRef]

S. D. Jackson, T. A. King, and M. Pollnau, “Modelling of high-power diode-pumped erbium 3 μm fibre lasers,” J. Mod. Opt. 47(11), 1987–1994 (2000).

S. D. Jackson, T. A. King, and M. Pollnau, “Diode-pumped 1.7-W erbium 3-mum fiber laser,” Opt. Lett. 24(16), 1133–1135 (1999).
[CrossRef]

Qiu, T.

Roser, F.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann,“The Rising Power of Fiber Lasers and Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[CrossRef]

Roy, P.

P. Leproux, S. Février, V. Doya, P. Roy, and D. Pagnoux, “Modeling and Optimization of Double-Clad Fiber Amplifiers Using Chaotic Propagation of the Pump,” Opt. Fiber Technol. 7(4), 324–339 (2001).
[CrossRef]

Sahu, J. K.

Sandrock, T.

Schreiber, T.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann,“The Rising Power of Fiber Lasers and Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[CrossRef]

Schülzgen, A.

Srinivasan, B.

Tafoya, J.

Temyanko, V. L.

Tünnermann, A.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann,“The Rising Power of Fiber Lasers and Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[CrossRef]

Ueda, K.

A. Liu and K. Ueda, “The absorption characteristics of circular, offset and rectangular double-clad fibers,” Opt. Commun. 132(5-6), 511–518 (1996).
[CrossRef]

Weber, H. P.

S. Bedö, W. Lüthy, and H. P. Weber, “The effective absorption coefficient in double clad fibers,” Opt. Commun. 99(5-6), 331–335 (1993).
[CrossRef]

Wirth, C.

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann,“The Rising Power of Fiber Lasers and Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[CrossRef]

Wrage, M.

Zhu, X.

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

M. Pollnau and S. D. Jackson; “Energy Recycling Versus Lifetime Quenching in Erbium-Doped 3-μm Fiber Lasers,” IEEE J. Quantum Electron. 38(2), 162–169 (2002).
[CrossRef]

D. C. Brown and H. J. Hoffman, “Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Limpert, F. Roser, S. Klingebiel, T. Schreiber, C. Wirth, T. Peschel, R. Eberhardt, and A. Tünnermann,“The Rising Power of Fiber Lasers and Amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 537–545 (2007).
[CrossRef]

J. Mod. Opt. (1)

S. D. Jackson, T. A. King, and M. Pollnau, “Modelling of high-power diode-pumped erbium 3 μm fibre lasers,” J. Mod. Opt. 47(11), 1987–1994 (2000).

Meas. Sci. Technol. (1)

D. J. Coleman and T. A. King, “Pump induced thermal effects in high power Tm3+ and Tm3+/Ho3+ cladding-pumped fibre lasers,” Meas. Sci. Technol. 14(7), 998–1002 (2003).
[CrossRef]

Opt. Commun. (2)

A. Liu and K. Ueda, “The absorption characteristics of circular, offset and rectangular double-clad fibers,” Opt. Commun. 132(5-6), 511–518 (1996).
[CrossRef]

S. Bedö, W. Lüthy, and H. P. Weber, “The effective absorption coefficient in double clad fibers,” Opt. Commun. 99(5-6), 331–335 (1993).
[CrossRef]

Opt. Express (3)

Opt. Fiber Technol. (1)

P. Leproux, S. Février, V. Doya, P. Roy, and D. Pagnoux, “Modeling and Optimization of Double-Clad Fiber Amplifiers Using Chaotic Propagation of the Pump,” Opt. Fiber Technol. 7(4), 324–339 (2001).
[CrossRef]

Opt. Lett. (5)

Other (2)

M. O'Connor, V. Gapontsev, V. Fomin, M. Abramov, and A. Ferin, “Power Scaling of SM Fiber Lasers toward 10kW,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThA3.

H. W. McAdams, Heat Transmission, (McGraw-Hill, 3rd edition, 1954).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Setup for measuring the pump absorption at twolocations in a free fiber configuration.

Fig. 2
Fig. 2

(a) Measured fluorescence intensity for all fibers on the bulk and (b) measured/calculated pump absorption for 30/300/CC fiber.

Fig. 3
Fig. 3

(a) Measured fluorescence intensity on fiber ends and (b) ray-trace calculated pump absorption.

Fig. 4
Fig. 4

Setup for measuring the temperature distribution at two locations in a laser resonator configuration.

Fig. 5
Fig. 5

IR image of the fiber end with (a) pump off and (b) pump on.

Fig. 6
Fig. 6

(a) Measured surface temperatures for fiber ends under 0.7 W pump and (b) calculated surface temperatures from heat-equation model.

Fig. 7
Fig. 7

Calculated fiber temperature for 1 W/m thermal load.

Fig. 8
Fig. 8

Core temperatures for 10 μm (solid) and 30 μm (dashed) core radii.

Fig. 9
Fig. 9

Laser power for 150 μm (solid) and 200 μm (dashed) cladding radii.

Tables (1)

Tables Icon

Table 1 Geometry of Er-doped double-clad ZBLAN fibers used in our measurements

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

α=αmπrc2NAcAd.
k(r)rr(rT(r)r)={Qh;0rrc0;rcrrg.
h=hnc+hrad=hnc0(rgrnc0)2/3+4πσTamb3.
ΔTc=Ppump(1η)λαmVc8π2krcrd2[1+2log(rdrc)+2khrd].
Plasermax=ΔTcmax8π2ηk(1η)λαmVcrd2rc[1+2log(rdrc)+2khrd]1.

Metrics