Abstract

Fiber Bragg gratings with greatly enhanced thermal stability have been fabricated by the use of femtosecond laser pulse irradiation on optical fibers with relaxed residual stress, through using high temperature annealing treatment. The grating reflectivity and resonant wavelength can be maintained for periods up to 20 hours using isothermal measurements and temperatures up to 1200 °C. No hysteresis was observed in the wavelength response when the gratings were annealed and the temperature cycled repeatedly between room temperature and 1200 °C.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Jovanovic, M. A? slund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, "Narrow linewidth,100 W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core," Opt. Lett. 32(19), 2804-2806 (2007).
    [CrossRef] [PubMed]
  2. J. Canning, "Fibre gratings and devices for sensors and lasers," Laser Photon. Rev. 2, 275-289 (2008).
    [CrossRef]
  3. G. Brambilla and H. Rutt, "Fiber Bragg gratings with enhanced thermal stability," Appl. Phys. Lett. 80, 3259-3261 (2002).
    [CrossRef]
  4. G. Brambilla, "High-temperature fibre Bragg grating thermometer," Electron. Lett. 38, 954-955 (2002).
    [CrossRef]
  5. T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
    [CrossRef]
  6. M. Aslund and J. Canning, "Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber," Opt. Lett. 25, 692-694 (2000)
    [CrossRef]
  7. J. L. Archambault, L. Reekie, and P. St. J. Russell, "100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses," Electron. Lett. 29, 453-455 (1993).
    [CrossRef]
  8. M. Fokine, "Formation of thermally stable chemical composition gratings in optical fibers," J. Opt. Soc. Am. B,  19, 1759-1765 (2002).
    [CrossRef]
  9. M. Fokine, "Thermal stability of oxygen-modulated chemical-composition gratings in standard telecommunication fiber," Opt. Lett. 29, 1185-1187 (2004).
    [CrossRef] [PubMed]
  10. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, "Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm," Opt. Lett. 33,1917-1919 (2008).
    [CrossRef] [PubMed]
  11. J. Canning, M. Stevenson, S. Bandyopadhyay and K. Cook, "Extreme Silica Optical Fibre Gratings," Sensors 8, 6448-6452 (2008).
    [CrossRef]
  12. D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, "Long-term thermal stability tests at 1000 ºC of silica fibre Bragg gratings made with ultrafast laser radiation," Meas. Sci. Technol. 17, 1009-1013 (2006)
    [CrossRef]
  13. Y. Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan, "Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses," Opt. Express 16, 21239-21247 (2008).
    [CrossRef] [PubMed]
  14. C. W. Smelser, S. J. Mihailov, and D. Grobnic, "Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask," Opt. Express 13, 5377-5386 (2005).
    [CrossRef] [PubMed]
  15. U. C. Paek and C. R. Kurkjian, "Calculation of cooling rate and induced stresses in drawing of optical fibers," J. Am. Ceram. Soc. 58, 330-334 (1975).
    [CrossRef]

2008 (4)

2007 (1)

2006 (1)

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, "Long-term thermal stability tests at 1000 ºC of silica fibre Bragg gratings made with ultrafast laser radiation," Meas. Sci. Technol. 17, 1009-1013 (2006)
[CrossRef]

2005 (1)

2004 (1)

2002 (3)

M. Fokine, "Formation of thermally stable chemical composition gratings in optical fibers," J. Opt. Soc. Am. B,  19, 1759-1765 (2002).
[CrossRef]

G. Brambilla and H. Rutt, "Fiber Bragg gratings with enhanced thermal stability," Appl. Phys. Lett. 80, 3259-3261 (2002).
[CrossRef]

G. Brambilla, "High-temperature fibre Bragg grating thermometer," Electron. Lett. 38, 954-955 (2002).
[CrossRef]

2000 (1)

1994 (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

1993 (1)

J. L. Archambault, L. Reekie, and P. St. J. Russell, "100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses," Electron. Lett. 29, 453-455 (1993).
[CrossRef]

1975 (1)

U. C. Paek and C. R. Kurkjian, "Calculation of cooling rate and induced stresses in drawing of optical fibers," J. Am. Ceram. Soc. 58, 330-334 (1975).
[CrossRef]

Archambault, J. L.

J. L. Archambault, L. Reekie, and P. St. J. Russell, "100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses," Electron. Lett. 29, 453-455 (1993).
[CrossRef]

Aslund, M.

Bandyopadhyay, S.

Brambilla, G.

G. Brambilla and H. Rutt, "Fiber Bragg gratings with enhanced thermal stability," Appl. Phys. Lett. 80, 3259-3261 (2002).
[CrossRef]

G. Brambilla, "High-temperature fibre Bragg grating thermometer," Electron. Lett. 38, 954-955 (2002).
[CrossRef]

Canning, J.

Cook, K.

Erdogan, T.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

Fokine, M.

Grattan, K. T. V.

Grobnic, D.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, "Long-term thermal stability tests at 1000 ºC of silica fibre Bragg gratings made with ultrafast laser radiation," Meas. Sci. Technol. 17, 1009-1013 (2006)
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, "Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask," Opt. Express 13, 5377-5386 (2005).
[CrossRef] [PubMed]

Jovanovic, N.

Kurkjian, C. R.

U. C. Paek and C. R. Kurkjian, "Calculation of cooling rate and induced stresses in drawing of optical fibers," J. Am. Ceram. Soc. 58, 330-334 (1975).
[CrossRef]

Lemaire, P. J.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

Li, Y.

Liao, C. R.

Mihailov, S. J.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, "Long-term thermal stability tests at 1000 ºC of silica fibre Bragg gratings made with ultrafast laser radiation," Meas. Sci. Technol. 17, 1009-1013 (2006)
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, "Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask," Opt. Express 13, 5377-5386 (2005).
[CrossRef] [PubMed]

Mizrahi, V.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

Monroe, D.

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

Paek, U. C.

U. C. Paek and C. R. Kurkjian, "Calculation of cooling rate and induced stresses in drawing of optical fibers," J. Am. Ceram. Soc. 58, 330-334 (1975).
[CrossRef]

Reekie, L.

J. L. Archambault, L. Reekie, and P. St. J. Russell, "100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses," Electron. Lett. 29, 453-455 (1993).
[CrossRef]

Russell, P. St. J.

J. L. Archambault, L. Reekie, and P. St. J. Russell, "100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses," Electron. Lett. 29, 453-455 (1993).
[CrossRef]

Rutt, H.

G. Brambilla and H. Rutt, "Fiber Bragg gratings with enhanced thermal stability," Appl. Phys. Lett. 80, 3259-3261 (2002).
[CrossRef]

Smelser, C. W.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, "Long-term thermal stability tests at 1000 ºC of silica fibre Bragg gratings made with ultrafast laser radiation," Meas. Sci. Technol. 17, 1009-1013 (2006)
[CrossRef]

C. W. Smelser, S. J. Mihailov, and D. Grobnic, "Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask," Opt. Express 13, 5377-5386 (2005).
[CrossRef] [PubMed]

Stevenson, M.

Sun, T.

Walker, R. B.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, "Long-term thermal stability tests at 1000 ºC of silica fibre Bragg gratings made with ultrafast laser radiation," Meas. Sci. Technol. 17, 1009-1013 (2006)
[CrossRef]

Wang, D. N.

Appl. Phys. Lett. (1)

G. Brambilla and H. Rutt, "Fiber Bragg gratings with enhanced thermal stability," Appl. Phys. Lett. 80, 3259-3261 (2002).
[CrossRef]

Electron. Lett. (2)

G. Brambilla, "High-temperature fibre Bragg grating thermometer," Electron. Lett. 38, 954-955 (2002).
[CrossRef]

J. L. Archambault, L. Reekie, and P. St. J. Russell, "100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses," Electron. Lett. 29, 453-455 (1993).
[CrossRef]

J. Am. Ceram. Soc. (1)

U. C. Paek and C. R. Kurkjian, "Calculation of cooling rate and induced stresses in drawing of optical fibers," J. Am. Ceram. Soc. 58, 330-334 (1975).
[CrossRef]

J. Appl. Phys. (1)

T. Erdogan, V. Mizrahi, P. J. Lemaire, and D. Monroe, "Decay of ultraviolet-induced fiber Bragg gratings," J. Appl. Phys. 76, 73-80 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

J. Canning, "Fibre gratings and devices for sensors and lasers," Laser Photon. Rev. 2, 275-289 (2008).
[CrossRef]

Meas. Sci. Technol. (1)

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, "Long-term thermal stability tests at 1000 ºC of silica fibre Bragg gratings made with ultrafast laser radiation," Meas. Sci. Technol. 17, 1009-1013 (2006)
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Sensors (1)

J. Canning, M. Stevenson, S. Bandyopadhyay and K. Cook, "Extreme Silica Optical Fibre Gratings," Sensors 8, 6448-6452 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Comparison of the short-term annealing characteristics of gratings written in pre-annealed and non-annealed fibers.

Fig. 2.
Fig. 2.

Change in the reflectivity of the type II-IR FBGs inscribed in normal and pre-annealed fibers over a 1300 min period at an annealing temperature of 1200 °C.

Fig. 3.
Fig. 3.

Change in the resonant wavelength of the type II-IR FBGs inscribed in (a) normal fiber; pre-annealed fiber at (b) 800 °C; and (c) 1100 °C over a period of 1300 min at an annealing temperature of 1200 °C.

Fig. 4.
Fig. 4.

Temperature cycling of the type II-IR FBGs written in pre-annealed SMF-28 fiber at 1100 °C.

Metrics