Abstract

By extending the net-gain modulation phasor approach to account for the discrete distribution of the gain and saturable absorber sections in the cavity, a convenient model is derived and experimentally verified for the cavity design of two-section passively mode-locked quantum dash (QDash) lasers. The new set of equations can be used to predict functional device layouts using the measured modal gain and loss characteristics as input. It is shown to be a valuable tool for realizing the cavity design of monolithic long-wavelength InAs/InP QDash passively mode-locked lasers.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
    [CrossRef]
  2. G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003).
    [CrossRef]
  3. Y.-C. Xin, Y. Li, V. Kovanis, A. L. Gray, L. Zhang, and L. F. Lester, “Reconfigurable quantum dot monolithic multisection passive mode-locked lasers,” Opt. Express 15(12), 7623–7633 (2007).
    [CrossRef] [PubMed]
  4. M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, A. R. Kovsh, N. N. Ledentsov, C. Schubert, and V. Marembert, “Direct modulation and mode locking of 1.3 μm quantum dot lasers,” N. J. Phys. 6, 181 (2004).
    [CrossRef]
  5. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
    [CrossRef]
  6. M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 661–672 (2009).
    [CrossRef]
  7. M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y. S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 mum,” Opt. Express 15(25), 16292–16301 (2007).
    [CrossRef] [PubMed]
  8. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
    [CrossRef]
  9. D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
    [CrossRef]
  10. G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely Low Room-Temperature Threshold Current Density Diode Lasers Using InAs Dots in an In0.15Ga0.85As Quantum Well,” Electron. Lett. 35(14), 1163–1165 (1999).
    [CrossRef]
  11. K. Y. Lau and J. Paslaski, “Condition for short pulse generation in ultrahigh frequency mode-locking of semiconductor-Lasers,” IEEE Photon. Technol. Lett. 3(11), 974–976 (1991).
    [CrossRef]
  12. J. Palaski and K. Y. Lau, “Parameter ranges for ultrahigh frequency mode-locking of semiconductor lasers,” Appl. Phys. Lett. 59(1), 7–9 (1991).
    [CrossRef]
  13. Y.-C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
    [CrossRef]
  14. P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterization of semiconductor laser gain media by the segmented contact method,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1275–1282 (2003).
    [CrossRef]
  15. N. G. Usechak, Y.-C. Xin, C.-Y. Lin, L. F. Lester, D. J. Kane, and V. Kovanis, “Modeling and direct electric-field measurements of passively mode-locked quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 653–660 (2009).
    [CrossRef]
  16. A. G. Vladimirov and D. Turaev, “Model for passive mode locking in semiconductor lasers,” Phys. Rev. A 72(3), 033808 (2005).
    [CrossRef]
  17. P. Vasilev, Mode-locking Diode Lasers, Ultrafast diode lasers Fundamentals and applications, (Artech House, Boston 1995), Chap. 4.
  18. Y.-C. Xin, C.-Y. Lin, Y. Li, H. P. Bae, H. B. Yuen, M. A. Wistey, J. S. Harris, S. R. Bank, and L. F. Lester, “Monolithic 1.55 μm GaInNAsSb quantum well passively modelocked lasers,” Electron. Lett. 44(9), 581–582 (2008).
    [CrossRef]
  19. C.-Y. Lin, Y.-C. Xin, N. A. Naderi, F. L. Chiragh, and L. F. Lester, “Monolithic 1.58-micron InAs/InP quantum dash passively mode-locked lasers,” Proc. SPIE 7211, 721118 (2009).
    [CrossRef]
  20. F. Grillot, C.-Y. Lin, N. A. Naderi, M. Pochet, and L. F. Lester, “Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser,” Appl. Phys. Lett. 94(15), 153503 (2009).
    [CrossRef]
  21. R.-H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, H. Li, K. J. Malloy, and L. F. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. Lett. 13(8), 767–769 (2001).
    [CrossRef]
  22. N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).
    [CrossRef]

2009 (6)

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
[CrossRef]

N. G. Usechak, Y.-C. Xin, C.-Y. Lin, L. F. Lester, D. J. Kane, and V. Kovanis, “Modeling and direct electric-field measurements of passively mode-locked quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 653–660 (2009).
[CrossRef]

C.-Y. Lin, Y.-C. Xin, N. A. Naderi, F. L. Chiragh, and L. F. Lester, “Monolithic 1.58-micron InAs/InP quantum dash passively mode-locked lasers,” Proc. SPIE 7211, 721118 (2009).
[CrossRef]

F. Grillot, C.-Y. Lin, N. A. Naderi, M. Pochet, and L. F. Lester, “Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser,” Appl. Phys. Lett. 94(15), 153503 (2009).
[CrossRef]

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).
[CrossRef]

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 661–672 (2009).
[CrossRef]

2008 (1)

Y.-C. Xin, C.-Y. Lin, Y. Li, H. P. Bae, H. B. Yuen, M. A. Wistey, J. S. Harris, S. R. Bank, and L. F. Lester, “Monolithic 1.55 μm GaInNAsSb quantum well passively modelocked lasers,” Electron. Lett. 44(9), 581–582 (2008).
[CrossRef]

2007 (4)

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Y.-C. Xin, Y. Li, V. Kovanis, A. L. Gray, L. Zhang, and L. F. Lester, “Reconfigurable quantum dot monolithic multisection passive mode-locked lasers,” Opt. Express 15(12), 7623–7633 (2007).
[CrossRef] [PubMed]

M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y. S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 mum,” Opt. Express 15(25), 16292–16301 (2007).
[CrossRef] [PubMed]

2006 (1)

Y.-C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

2005 (1)

A. G. Vladimirov and D. Turaev, “Model for passive mode locking in semiconductor lasers,” Phys. Rev. A 72(3), 033808 (2005).
[CrossRef]

2004 (1)

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, A. R. Kovsh, N. N. Ledentsov, C. Schubert, and V. Marembert, “Direct modulation and mode locking of 1.3 μm quantum dot lasers,” N. J. Phys. 6, 181 (2004).
[CrossRef]

2003 (2)

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterization of semiconductor laser gain media by the segmented contact method,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1275–1282 (2003).
[CrossRef]

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003).
[CrossRef]

2001 (1)

R.-H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, H. Li, K. J. Malloy, and L. F. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. Lett. 13(8), 767–769 (2001).
[CrossRef]

2000 (1)

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

1999 (1)

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely Low Room-Temperature Threshold Current Density Diode Lasers Using InAs Dots in an In0.15Ga0.85As Quantum Well,” Electron. Lett. 35(14), 1163–1165 (1999).
[CrossRef]

1991 (2)

K. Y. Lau and J. Paslaski, “Condition for short pulse generation in ultrahigh frequency mode-locking of semiconductor-Lasers,” IEEE Photon. Technol. Lett. 3(11), 974–976 (1991).
[CrossRef]

J. Palaski and K. Y. Lau, “Parameter ranges for ultrahigh frequency mode-locking of semiconductor lasers,” Appl. Phys. Lett. 59(1), 7–9 (1991).
[CrossRef]

Accard, A.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Agarwal, D.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003).
[CrossRef]

Anantathanasarn, S.

Bae, H. P.

Y.-C. Xin, C.-Y. Lin, Y. Li, H. P. Bae, H. B. Yuen, M. A. Wistey, J. S. Harris, S. R. Bank, and L. F. Lester, “Monolithic 1.55 μm GaInNAsSb quantum well passively modelocked lasers,” Electron. Lett. 44(9), 581–582 (2008).
[CrossRef]

Bank, S. R.

Y.-C. Xin, C.-Y. Lin, Y. Li, H. P. Bae, H. B. Yuen, M. A. Wistey, J. S. Harris, S. R. Bank, and L. F. Lester, “Monolithic 1.55 μm GaInNAsSb quantum well passively modelocked lasers,” Electron. Lett. 44(9), 581–582 (2008).
[CrossRef]

Batte, T.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
[CrossRef]

Bente, E. A. J. M.

Bhatnagar, A.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003).
[CrossRef]

Bimberg, D.

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, A. R. Kovsh, N. N. Ledentsov, C. Schubert, and V. Marembert, “Direct modulation and mode locking of 1.3 μm quantum dot lasers,” N. J. Phys. 6, 181 (2004).
[CrossRef]

Blood, P.

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterization of semiconductor laser gain media by the segmented contact method,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1275–1282 (2003).
[CrossRef]

Brenot, R.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Cataluna, M. A.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Chiragh, F. L.

C.-Y. Lin, Y.-C. Xin, N. A. Naderi, F. L. Chiragh, and L. F. Lester, “Monolithic 1.58-micron InAs/InP quantum dash passively mode-locked lasers,” Proc. SPIE 7211, 721118 (2009).
[CrossRef]

Dagens, B.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Debaes, C.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003).
[CrossRef]

Dehaese, O.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
[CrossRef]

Derouin, E.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Dijk, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Dontabactouny, M.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
[CrossRef]

Drisse, O.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Duan, G.-H.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Even, J.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
[CrossRef]

Fiol, G.

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, A. R. Kovsh, N. N. Ledentsov, C. Schubert, and V. Marembert, “Direct modulation and mode locking of 1.3 μm quantum dot lasers,” N. J. Phys. 6, 181 (2004).
[CrossRef]

Gouezigou, O. L.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Gray, A. L.

Y.-C. Xin, Y. Li, V. Kovanis, A. L. Gray, L. Zhang, and L. F. Lester, “Reconfigurable quantum dot monolithic multisection passive mode-locked lasers,” Opt. Express 15(12), 7623–7633 (2007).
[CrossRef] [PubMed]

Y.-C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

Grillot, F.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
[CrossRef]

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).
[CrossRef]

F. Grillot, C.-Y. Lin, N. A. Naderi, M. Pochet, and L. F. Lester, “Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser,” Appl. Phys. Lett. 94(15), 153503 (2009).
[CrossRef]

Harris, J. S.

Y.-C. Xin, C.-Y. Lin, Y. Li, H. P. Bae, H. B. Yuen, M. A. Wistey, J. S. Harris, S. R. Bank, and L. F. Lester, “Monolithic 1.55 μm GaInNAsSb quantum well passively modelocked lasers,” Electron. Lett. 44(9), 581–582 (2008).
[CrossRef]

Heck, M. J. R.

Helman, N. C.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003).
[CrossRef]

Kane, D. J.

N. G. Usechak, Y.-C. Xin, C.-Y. Lin, L. F. Lester, D. J. Kane, and V. Kovanis, “Modeling and direct electric-field measurements of passively mode-locked quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 653–660 (2009).
[CrossRef]

Keeler, G. A.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003).
[CrossRef]

Kovanis, V.

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).
[CrossRef]

N. G. Usechak, Y.-C. Xin, C.-Y. Lin, L. F. Lester, D. J. Kane, and V. Kovanis, “Modeling and direct electric-field measurements of passively mode-locked quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 653–660 (2009).
[CrossRef]

Y.-C. Xin, Y. Li, V. Kovanis, A. L. Gray, L. Zhang, and L. F. Lester, “Reconfigurable quantum dot monolithic multisection passive mode-locked lasers,” Opt. Express 15(12), 7623–7633 (2007).
[CrossRef] [PubMed]

Kovsh, A. R.

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, A. R. Kovsh, N. N. Ledentsov, C. Schubert, and V. Marembert, “Direct modulation and mode locking of 1.3 μm quantum dot lasers,” N. J. Phys. 6, 181 (2004).
[CrossRef]

Kuntz, M.

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, A. R. Kovsh, N. N. Ledentsov, C. Schubert, and V. Marembert, “Direct modulation and mode locking of 1.3 μm quantum dot lasers,” N. J. Phys. 6, 181 (2004).
[CrossRef]

Lämmlin, M.

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, A. R. Kovsh, N. N. Ledentsov, C. Schubert, and V. Marembert, “Direct modulation and mode locking of 1.3 μm quantum dot lasers,” N. J. Phys. 6, 181 (2004).
[CrossRef]

Landreau, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Lau, K. Y.

K. Y. Lau and J. Paslaski, “Condition for short pulse generation in ultrahigh frequency mode-locking of semiconductor-Lasers,” IEEE Photon. Technol. Lett. 3(11), 974–976 (1991).
[CrossRef]

J. Palaski and K. Y. Lau, “Parameter ranges for ultrahigh frequency mode-locking of semiconductor lasers,” Appl. Phys. Lett. 59(1), 7–9 (1991).
[CrossRef]

Ledentsov, N. N.

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, A. R. Kovsh, N. N. Ledentsov, C. Schubert, and V. Marembert, “Direct modulation and mode locking of 1.3 μm quantum dot lasers,” N. J. Phys. 6, 181 (2004).
[CrossRef]

Lelarge, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Lester, L. F.

N. G. Usechak, Y.-C. Xin, C.-Y. Lin, L. F. Lester, D. J. Kane, and V. Kovanis, “Modeling and direct electric-field measurements of passively mode-locked quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 653–660 (2009).
[CrossRef]

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).
[CrossRef]

C.-Y. Lin, Y.-C. Xin, N. A. Naderi, F. L. Chiragh, and L. F. Lester, “Monolithic 1.58-micron InAs/InP quantum dash passively mode-locked lasers,” Proc. SPIE 7211, 721118 (2009).
[CrossRef]

F. Grillot, C.-Y. Lin, N. A. Naderi, M. Pochet, and L. F. Lester, “Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser,” Appl. Phys. Lett. 94(15), 153503 (2009).
[CrossRef]

Y.-C. Xin, C.-Y. Lin, Y. Li, H. P. Bae, H. B. Yuen, M. A. Wistey, J. S. Harris, S. R. Bank, and L. F. Lester, “Monolithic 1.55 μm GaInNAsSb quantum well passively modelocked lasers,” Electron. Lett. 44(9), 581–582 (2008).
[CrossRef]

Y.-C. Xin, Y. Li, V. Kovanis, A. L. Gray, L. Zhang, and L. F. Lester, “Reconfigurable quantum dot monolithic multisection passive mode-locked lasers,” Opt. Express 15(12), 7623–7633 (2007).
[CrossRef] [PubMed]

Y.-C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

R.-H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, H. Li, K. J. Malloy, and L. F. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. Lett. 13(8), 767–769 (2001).
[CrossRef]

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely Low Room-Temperature Threshold Current Density Diode Lasers Using InAs Dots in an In0.15Ga0.85As Quantum Well,” Electron. Lett. 35(14), 1163–1165 (1999).
[CrossRef]

Lewis, G. M.

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterization of semiconductor laser gain media by the segmented contact method,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1275–1282 (2003).
[CrossRef]

Li, H.

R.-H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, H. Li, K. J. Malloy, and L. F. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. Lett. 13(8), 767–769 (2001).
[CrossRef]

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely Low Room-Temperature Threshold Current Density Diode Lasers Using InAs Dots in an In0.15Ga0.85As Quantum Well,” Electron. Lett. 35(14), 1163–1165 (1999).
[CrossRef]

Li, Y.

Y.-C. Xin, C.-Y. Lin, Y. Li, H. P. Bae, H. B. Yuen, M. A. Wistey, J. S. Harris, S. R. Bank, and L. F. Lester, “Monolithic 1.55 μm GaInNAsSb quantum well passively modelocked lasers,” Electron. Lett. 44(9), 581–582 (2008).
[CrossRef]

Y.-C. Xin, Y. Li, V. Kovanis, A. L. Gray, L. Zhang, and L. F. Lester, “Reconfigurable quantum dot monolithic multisection passive mode-locked lasers,” Opt. Express 15(12), 7623–7633 (2007).
[CrossRef] [PubMed]

Y.-C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

Lin, C.-Y.

N. G. Usechak, Y.-C. Xin, C.-Y. Lin, L. F. Lester, D. J. Kane, and V. Kovanis, “Modeling and direct electric-field measurements of passively mode-locked quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 653–660 (2009).
[CrossRef]

C.-Y. Lin, Y.-C. Xin, N. A. Naderi, F. L. Chiragh, and L. F. Lester, “Monolithic 1.58-micron InAs/InP quantum dash passively mode-locked lasers,” Proc. SPIE 7211, 721118 (2009).
[CrossRef]

F. Grillot, C.-Y. Lin, N. A. Naderi, M. Pochet, and L. F. Lester, “Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser,” Appl. Phys. Lett. 94(15), 153503 (2009).
[CrossRef]

Y.-C. Xin, C.-Y. Lin, Y. Li, H. P. Bae, H. B. Yuen, M. A. Wistey, J. S. Harris, S. R. Bank, and L. F. Lester, “Monolithic 1.55 μm GaInNAsSb quantum well passively modelocked lasers,” Electron. Lett. 44(9), 581–582 (2008).
[CrossRef]

Liu, G. T.

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely Low Room-Temperature Threshold Current Density Diode Lasers Using InAs Dots in an In0.15Ga0.85As Quantum Well,” Electron. Lett. 35(14), 1163–1165 (1999).
[CrossRef]

Loualiche, S.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
[CrossRef]

Luong, S.

Y.-C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

Lutti, J.

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterization of semiconductor laser gain media by the segmented contact method,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1275–1282 (2003).
[CrossRef]

Make, D.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Malloy, K. J.

R.-H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, H. Li, K. J. Malloy, and L. F. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. Lett. 13(8), 767–769 (2001).
[CrossRef]

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely Low Room-Temperature Threshold Current Density Diode Lasers Using InAs Dots in an In0.15Ga0.85As Quantum Well,” Electron. Lett. 35(14), 1163–1165 (1999).
[CrossRef]

Marembert, V.

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, A. R. Kovsh, N. N. Ledentsov, C. Schubert, and V. Marembert, “Direct modulation and mode locking of 1.3 μm quantum dot lasers,” N. J. Phys. 6, 181 (2004).
[CrossRef]

Marinelli, C.

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, A. R. Kovsh, N. N. Ledentsov, C. Schubert, and V. Marembert, “Direct modulation and mode locking of 1.3 μm quantum dot lasers,” N. J. Phys. 6, 181 (2004).
[CrossRef]

Martinez, A.

Y.-C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

Miller, D. A. B.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003).
[CrossRef]

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

Naderi, N.

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).
[CrossRef]

Naderi, N. A.

F. Grillot, C.-Y. Lin, N. A. Naderi, M. Pochet, and L. F. Lester, “Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser,” Appl. Phys. Lett. 94(15), 153503 (2009).
[CrossRef]

C.-Y. Lin, Y.-C. Xin, N. A. Naderi, F. L. Chiragh, and L. F. Lester, “Monolithic 1.58-micron InAs/InP quantum dash passively mode-locked lasers,” Proc. SPIE 7211, 721118 (2009).
[CrossRef]

Nelson, B. E.

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003).
[CrossRef]

Newell, T. C.

R.-H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, H. Li, K. J. Malloy, and L. F. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. Lett. 13(8), 767–769 (2001).
[CrossRef]

Nötzel, R.

Oei, Y. S.

Palaski, J.

J. Palaski and K. Y. Lau, “Parameter ranges for ultrahigh frequency mode-locking of semiconductor lasers,” Appl. Phys. Lett. 59(1), 7–9 (1991).
[CrossRef]

Paslaski, J.

K. Y. Lau and J. Paslaski, “Condition for short pulse generation in ultrahigh frequency mode-locking of semiconductor-Lasers,” IEEE Photon. Technol. Lett. 3(11), 974–976 (1991).
[CrossRef]

Penty, R. V.

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 661–672 (2009).
[CrossRef]

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, A. R. Kovsh, N. N. Ledentsov, C. Schubert, and V. Marembert, “Direct modulation and mode locking of 1.3 μm quantum dot lasers,” N. J. Phys. 6, 181 (2004).
[CrossRef]

Piron, R.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
[CrossRef]

Pochet, M.

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).
[CrossRef]

F. Grillot, C.-Y. Lin, N. A. Naderi, M. Pochet, and L. F. Lester, “Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser,” Appl. Phys. Lett. 94(15), 153503 (2009).
[CrossRef]

Poingt, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Pommereau, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Provost, J.-G.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Rae, A. R.

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 661–672 (2009).
[CrossRef]

Rafailov, E. U.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Renaudier, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Rotter, T. J.

Y.-C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

Rousseau, B.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

Schubert, C.

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, A. R. Kovsh, N. N. Ledentsov, C. Schubert, and V. Marembert, “Direct modulation and mode locking of 1.3 μm quantum dot lasers,” N. J. Phys. 6, 181 (2004).
[CrossRef]

Sellin, R.

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, A. R. Kovsh, N. N. Ledentsov, C. Schubert, and V. Marembert, “Direct modulation and mode locking of 1.3 μm quantum dot lasers,” N. J. Phys. 6, 181 (2004).
[CrossRef]

Shernyakov, Y. M.

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, A. R. Kovsh, N. N. Ledentsov, C. Schubert, and V. Marembert, “Direct modulation and mode locking of 1.3 μm quantum dot lasers,” N. J. Phys. 6, 181 (2004).
[CrossRef]

Sibbett, W.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Smalbrugge, B.

Smit, M. K.

Smowton, P. M.

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterization of semiconductor laser gain media by the segmented contact method,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1275–1282 (2003).
[CrossRef]

Stintz, A.

R.-H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, H. Li, K. J. Malloy, and L. F. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. Lett. 13(8), 767–769 (2001).
[CrossRef]

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely Low Room-Temperature Threshold Current Density Diode Lasers Using InAs Dots in an In0.15Ga0.85As Quantum Well,” Electron. Lett. 35(14), 1163–1165 (1999).
[CrossRef]

Su, H.

Y.-C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

Summers, H.

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterization of semiconductor laser gain media by the segmented contact method,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1275–1282 (2003).
[CrossRef]

Sun, K.

Y.-C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

Tan, K. T.

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, A. R. Kovsh, N. N. Ledentsov, C. Schubert, and V. Marembert, “Direct modulation and mode locking of 1.3 μm quantum dot lasers,” N. J. Phys. 6, 181 (2004).
[CrossRef]

Tavernier, K.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
[CrossRef]

Terry, N.

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).
[CrossRef]

Thompson, M. G.

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 661–672 (2009).
[CrossRef]

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, A. R. Kovsh, N. N. Ledentsov, C. Schubert, and V. Marembert, “Direct modulation and mode locking of 1.3 μm quantum dot lasers,” N. J. Phys. 6, 181 (2004).
[CrossRef]

Thomson, J.

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterization of semiconductor laser gain media by the segmented contact method,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1275–1282 (2003).
[CrossRef]

Turaev, D.

A. G. Vladimirov and D. Turaev, “Model for passive mode locking in semiconductor lasers,” Phys. Rev. A 72(3), 033808 (2005).
[CrossRef]

Usechak, N. G.

N. G. Usechak, Y.-C. Xin, C.-Y. Lin, L. F. Lester, D. J. Kane, and V. Kovanis, “Modeling and direct electric-field measurements of passively mode-locked quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 653–660 (2009).
[CrossRef]

Ustinov, V. M.

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, A. R. Kovsh, N. N. Ledentsov, C. Schubert, and V. Marembert, “Direct modulation and mode locking of 1.3 μm quantum dot lasers,” N. J. Phys. 6, 181 (2004).
[CrossRef]

Varangis, P. M.

Y.-C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

R.-H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, H. Li, K. J. Malloy, and L. F. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. Lett. 13(8), 767–769 (2001).
[CrossRef]

Vladimirov, A. G.

A. G. Vladimirov and D. Turaev, “Model for passive mode locking in semiconductor lasers,” Phys. Rev. A 72(3), 033808 (2005).
[CrossRef]

Wang, R.-H.

R.-H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, H. Li, K. J. Malloy, and L. F. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. Lett. 13(8), 767–769 (2001).
[CrossRef]

White, I. H.

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 661–672 (2009).
[CrossRef]

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, A. R. Kovsh, N. N. Ledentsov, C. Schubert, and V. Marembert, “Direct modulation and mode locking of 1.3 μm quantum dot lasers,” N. J. Phys. 6, 181 (2004).
[CrossRef]

Wistey, M. A.

Y.-C. Xin, C.-Y. Lin, Y. Li, H. P. Bae, H. B. Yuen, M. A. Wistey, J. S. Harris, S. R. Bank, and L. F. Lester, “Monolithic 1.55 μm GaInNAsSb quantum well passively modelocked lasers,” Electron. Lett. 44(9), 581–582 (2008).
[CrossRef]

Wonfor, A.

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, A. R. Kovsh, N. N. Ledentsov, C. Schubert, and V. Marembert, “Direct modulation and mode locking of 1.3 μm quantum dot lasers,” N. J. Phys. 6, 181 (2004).
[CrossRef]

Xia, M.

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 661–672 (2009).
[CrossRef]

Xin, Y.-C.

N. G. Usechak, Y.-C. Xin, C.-Y. Lin, L. F. Lester, D. J. Kane, and V. Kovanis, “Modeling and direct electric-field measurements of passively mode-locked quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 653–660 (2009).
[CrossRef]

C.-Y. Lin, Y.-C. Xin, N. A. Naderi, F. L. Chiragh, and L. F. Lester, “Monolithic 1.58-micron InAs/InP quantum dash passively mode-locked lasers,” Proc. SPIE 7211, 721118 (2009).
[CrossRef]

Y.-C. Xin, C.-Y. Lin, Y. Li, H. P. Bae, H. B. Yuen, M. A. Wistey, J. S. Harris, S. R. Bank, and L. F. Lester, “Monolithic 1.55 μm GaInNAsSb quantum well passively modelocked lasers,” Electron. Lett. 44(9), 581–582 (2008).
[CrossRef]

Y.-C. Xin, Y. Li, V. Kovanis, A. L. Gray, L. Zhang, and L. F. Lester, “Reconfigurable quantum dot monolithic multisection passive mode-locked lasers,” Opt. Express 15(12), 7623–7633 (2007).
[CrossRef] [PubMed]

Y.-C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

Yuen, H. B.

Y.-C. Xin, C.-Y. Lin, Y. Li, H. P. Bae, H. B. Yuen, M. A. Wistey, J. S. Harris, S. R. Bank, and L. F. Lester, “Monolithic 1.55 μm GaInNAsSb quantum well passively modelocked lasers,” Electron. Lett. 44(9), 581–582 (2008).
[CrossRef]

Zhang, L.

Y.-C. Xin, Y. Li, V. Kovanis, A. L. Gray, L. Zhang, and L. F. Lester, “Reconfigurable quantum dot monolithic multisection passive mode-locked lasers,” Opt. Express 15(12), 7623–7633 (2007).
[CrossRef] [PubMed]

Y.-C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

Zhou, D.

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
[CrossRef]

Zhukov, A. E.

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, A. R. Kovsh, N. N. Ledentsov, C. Schubert, and V. Marembert, “Direct modulation and mode locking of 1.3 μm quantum dot lasers,” N. J. Phys. 6, 181 (2004).
[CrossRef]

Zilko, J.

Y.-C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

Zou, Z.

Y.-C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

J. Palaski and K. Y. Lau, “Parameter ranges for ultrahigh frequency mode-locking of semiconductor lasers,” Appl. Phys. Lett. 59(1), 7–9 (1991).
[CrossRef]

D. Zhou, R. Piron, M. Dontabactouny, O. Dehaese, F. Grillot, T. Batte, K. Tavernier, J. Even, and S. Loualiche, “Low threshold current density of InAs quantum dash laser on InP (100) through optimizing double cap technique,” Appl. Phys. Lett. 94(8), 081107 (2009).
[CrossRef]

F. Grillot, C.-Y. Lin, N. A. Naderi, M. Pochet, and L. F. Lester, “Optical feedback instabilities in a monolithic InAs/GaAs quantum dot passively mode-locked laser,” Appl. Phys. Lett. 94(15), 153503 (2009).
[CrossRef]

Electron. Lett. (2)

G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely Low Room-Temperature Threshold Current Density Diode Lasers Using InAs Dots in an In0.15Ga0.85As Quantum Well,” Electron. Lett. 35(14), 1163–1165 (1999).
[CrossRef]

Y.-C. Xin, C.-Y. Lin, Y. Li, H. P. Bae, H. B. Yuen, M. A. Wistey, J. S. Harris, S. R. Bank, and L. F. Lester, “Monolithic 1.55 μm GaInNAsSb quantum well passively modelocked lasers,” Electron. Lett. 44(9), 581–582 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y.-C. Xin, Y. Li, A. Martinez, T. J. Rotter, H. Su, L. Zhang, A. L. Gray, S. Luong, K. Sun, Z. Zou, J. Zilko, P. M. Varangis, and L. F. Lester, “Optical gain and absorption of quantum dots measured using an alternative segmented contact method,” IEEE J. Quantum Electron. 42(7), 725–732 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (6)

P. Blood, G. M. Lewis, P. M. Smowton, H. Summers, J. Thomson, and J. Lutti, “Characterization of semiconductor laser gain media by the segmented contact method,” IEEE J. Sel. Top. Quantum Electron. 9(5), 1275–1282 (2003).
[CrossRef]

N. G. Usechak, Y.-C. Xin, C.-Y. Lin, L. F. Lester, D. J. Kane, and V. Kovanis, “Modeling and direct electric-field measurements of passively mode-locked quantum-dot lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 653–660 (2009).
[CrossRef]

N. Naderi, M. Pochet, F. Grillot, N. Terry, V. Kovanis, and L. F. Lester, “Modeling the injection-locked behavior of a quantum dash semiconductor laser,” IEEE J. Sel. Top. Quantum Electron. 15, 563–571 (2009).
[CrossRef]

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs quantum-dot mode-locked laser diodes,” IEEE J. Sel. Top. Quantum Electron. 15, 661–672 (2009).
[CrossRef]

G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. B. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Sel. Top. Quantum Electron. 9(2), 477–485 (2003).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. Dijk, D. Make, O. L. Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quantum Electron. 13(1), 111–124 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

R.-H. Wang, A. Stintz, P. M. Varangis, T. C. Newell, H. Li, K. J. Malloy, and L. F. Lester, “Room-temperature operation of InAs quantum-dash lasers on InP (001),” IEEE Photon. Technol. Lett. 13(8), 767–769 (2001).
[CrossRef]

K. Y. Lau and J. Paslaski, “Condition for short pulse generation in ultrahigh frequency mode-locking of semiconductor-Lasers,” IEEE Photon. Technol. Lett. 3(11), 974–976 (1991).
[CrossRef]

N. J. Phys. (1)

M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, A. Wonfor, R. Sellin, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, A. R. Kovsh, N. N. Ledentsov, C. Schubert, and V. Marembert, “Direct modulation and mode locking of 1.3 μm quantum dot lasers,” N. J. Phys. 6, 181 (2004).
[CrossRef]

Nat. Photonics (1)

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Opt. Express (2)

Phys. Rev. A (1)

A. G. Vladimirov and D. Turaev, “Model for passive mode locking in semiconductor lasers,” Phys. Rev. A 72(3), 033808 (2005).
[CrossRef]

Proc. IEEE (1)

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

Proc. SPIE (1)

C.-Y. Lin, Y.-C. Xin, N. A. Naderi, F. L. Chiragh, and L. F. Lester, “Monolithic 1.58-micron InAs/InP quantum dash passively mode-locked lasers,” Proc. SPIE 7211, 721118 (2009).
[CrossRef]

Other (1)

P. Vasilev, Mode-locking Diode Lasers, Ultrafast diode lasers Fundamentals and applications, (Artech House, Boston 1995), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The layer structure of the InAs QDash laser

Fig. 2
Fig. 2

The room-temperature modal gain (a) and total loss (b) measured using the segmented contact method.

Fig. 3
Fig. 3

The side view of the two-section passive QDash MLL.

Fig. 4
Fig. 4

Qualitative comparison of the left- and right- hand sides of Eq. (9) and the determination of thethreshold wavelength

Fig. 5
Fig. 5

The modal gain vs. pump current density at the wavelength of 1.59-μm.

Fig. 6
Fig. 6

L-I curve with reverse voltage from 0V to 2V of the 2.3-mm passive MLL. Inset: Optical spectrum with a DC gain current of 170 mA on the 2-mm gain section and a reverse voltage of 2V on the 0.3-mm absorber.

Fig. 7
Fig. 7

The full span of the RF spectrum at 170mA and 2V reverse voltage of the 2.3-mm two-section passive QDash MLL device. The fundamental repetition frequency is 18.4 GHz. The RF spectrum clearly shows the first two harmonic components.

Fig. 8
Fig. 8

The full span of the RF spectrum at 400mA and 1V reverse voltage of the 3.5-mm two-section passive QDash MLL device. The fundamental repetition frequency is 12.3 GHz. The RF spectrum clearly shows the first three harmonic components.

Tables (2)

Tables Icon

Table 1 Parameter values for the mode-locked laser simulation

Tables Icon

Table 2 Mode-locking analysis according to Eq. (1) and (8).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S=Esat,gEsat,abs=hνAGghνAGa=GaGg>1
gnet={Ggg0Lgiω+1/TgGaa0Laiω+1/Ta}seiωtL=g^neteiωt1/Tg=1/τg+GgS01/Ta=1/τa+GaS0Gg=vgdg0dnGa=vgda0dn
S0=1αmυghνΓPWdL
(Gg2g0LgL+Ga2a0LaL)S022   ΩMLL2>αi
(da0dn)2a0LaL(dg0dn)2g0LgL>αi2(αmvgWdΓPhν)2
(dg0dJ|g0=0)2a0αi>L2La(ηiταmWvgΓPhνq)2
P>Lαi2Laa0[ηiταmWvgΓ(dg0/dJ|g0=0)hνq]
a0g0LaLg>(dg0dJdg0dJ|g0=0)2
g0Lg=a0La+(αm+αi)L

Metrics