Abstract

Recently, a new phase-resolved Doppler model was presented for spectral domain optical coherence tomography (SD OCT) showing that the linear relation between the axial velocity component of the obliquely moving sample and the phase difference of consecutive A-Scans does not hold true in the presence of a transverse velocity component which is neglected in the widely-used classic Doppler analysis. Besides taking note of the new non-proportional relationship of phase shift and oblique sample motion, it is essential to consider the correlation of the phase shift and its specific characteristic at certain Doppler angles for designing Doppler experiments with SD OCT. A correlation quotient is introduced to quantify the correlation of the backscattering signal in consecutive A-Scans as a function of the oblique sample motion. It was found that at certain velocities and Doppler angles no correlation of the phases of sequential A-Scans exists, even though the signal does not vanish. To indicate how the noise of the Doppler phase shift behaves for oblique movement, the standard deviation is determined as a function of the correlation quotient and the number of complex Doppler data averaged. The detailed theoretical model is validated by using a flow phantom model consisting of a 1% Intralipid flow through a 310 µm capillary. Finally, a short discussion of the presented results and the consequence for performing Doppler experiments is given.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. Y. T. Pan, Z. L. Wu, Z. J. Yuan, Z. G. Wang, and C. W. Du, “Subcellular imaging of epithelium with time-lapse optical coherence tomography,” J. Biomed. Opt. 12(5), 050504 (2007).
    [CrossRef] [PubMed]
  3. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
    [CrossRef]
  4. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997).
    [CrossRef] [PubMed]
  5. M. Pircher, E. Goetzinger, R. Leitgeb, and C. Hitzenberger, “Three dimensional polarization sensitive OCT of human skin in vivo,” Opt. Express 12(14), 3236–3244 (2004).
    [CrossRef] [PubMed]
  6. Z. G. Wang, C. S. D. Lee, W. C. Waltzer, J. X. Liu, H. K. Xie, Z. J. Yuan, and Y. T. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
    [CrossRef] [PubMed]
  7. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
    [CrossRef] [PubMed]
  8. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000).
    [CrossRef]
  9. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25(11), 820–822 (2000).
    [CrossRef]
  10. R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
    [CrossRef]
  11. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
    [CrossRef] [PubMed]
  12. X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20(11), 1337–1339 (1995).
    [CrossRef] [PubMed]
  13. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997).
    [CrossRef] [PubMed]
  14. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22(1), 64–66 (1997).
    [CrossRef] [PubMed]
  15. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
    [CrossRef]
  16. Z. Xu, L. Carrion, and R. Maciejko, “A zero-crossing detection method applied to Doppler OCT,” Opt. Express 16(7), 4394–4412 (2008).
    [CrossRef] [PubMed]
  17. H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett. 27(6), 409–411 (2002).
    [CrossRef]
  18. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
    [CrossRef] [PubMed]
  19. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
    [CrossRef] [PubMed]
  20. L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242(4-6), 345–350 (2004).
    [CrossRef]
  21. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
    [CrossRef] [PubMed]
  22. B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, “Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation,” J. Biomed. Opt. 12(4), 041214 (2007).
    [CrossRef] [PubMed]
  23. H. Wehbe, M. Ruggeri, S. Jiao, G. Gregori, C. A. Puliafito, and W. Zhao, “Automatic retinal blood flow calculation using spectral domain optical coherence tomography,” Opt. Express 15(23), 15193–15206 (2007).
    [CrossRef] [PubMed]
  24. Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express 17(5), 4061–4073 (2009).
    [CrossRef] [PubMed]
  25. T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
    [CrossRef] [PubMed]
  26. A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express 15(4), 1627–1638 (2007).
    [CrossRef] [PubMed]
  27. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
    [CrossRef] [PubMed]
  28. S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12(13), 2977–2998 (2004).
    [CrossRef] [PubMed]
  29. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  30. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  31. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
    [CrossRef] [PubMed]
  32. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(13), 10584–10598 (2009).
    [CrossRef] [PubMed]
  33. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
    [CrossRef] [PubMed]
  34. Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16(16), 12350–12361 (2008).
    [CrossRef] [PubMed]
  35. Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express 17(5), 4177–4188 (2009).
    [CrossRef] [PubMed]
  36. A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15(2), 408–422 (2007).
    [CrossRef] [PubMed]
  37. V. Yang, M. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. Wilson, and I. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11(7), 794–809 (2003).
    [CrossRef] [PubMed]
  38. B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
    [CrossRef] [PubMed]
  39. B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009).
    [CrossRef] [PubMed]
  40. E. Koch, J. Walther, and M. Cuevas, “Limits of Fourier domain Doppler-OCT at high velocities,” Sensors and Actuators A , doi:10/1016j.sna.2009.01.022.
  41. G. Lamouche, M. L. Dufour, B. Gauthier, and J. Monchalin, “Gouy phase anomaly in optical coherence tomography,” Opt. Commun. 239(4-6), 297–301 (2004).
    [CrossRef]
  42. J. Walther, A. Krüger, M. Cuevas, and E. Koch, “Effects of axial, transverse and oblique sample motion in FD OCT in systems with global or rolling shutter line detector,” J. Opt. Soc. Am. A 25(11), 2791–2802 (2008).
    [CrossRef]
  43. S. Meißner, G. Muller, J. Walther, A. Krüger, M. Cuevas, B. Eichhorn, U. Ravens, H. Morawietz, and E. Koch, “Investigation of murine Vasodynamics by Fourier Domain Optical Coherence Tomography,” Proc. SPIE 6627, 66270D (2007).
    [CrossRef]
  44. J. Walther, G. Muller, H. Morawietz, and E. Koch, “Analysis of in vitro and in vivo bidirectional flow velocities by phase-resolved Doppler Fourier-domain OCT,” Sens. Actuators A doi:10.1016/j.sna.2009.02.025. .
  45. A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, “Phase-resolved Doppler optical coherence tomography--limitations and improvements,” Opt. Lett. 33(13), 1425–1427 (2008).
    [CrossRef] [PubMed]
  46. J. Walther and E. Koch, “Flow measurement by using the signal decrease of moving scatterers in spatially encoded Fourier domain optical coherence tomography,” Proc. SPIE 7168, 71681S (2009).
    [CrossRef]
  47. B. Karamata, K. Hassler, M. Laubscher, and T. Lasser, “Speckle statistics in optical coherence tomography,” J. Opt. Soc. Am. A 22(4), 593–596 (2005).
    [CrossRef]
  48. J. W. You, T. C. Chen, M. Mujat, B. H. Park, and J. F. de Boer, “Pulsed illumination spectral-domain optical coherence tomography for human retinal imaging,” Opt. Express 14(15), 6739–6748 (2006).
    [CrossRef] [PubMed]

2009 (6)

2008 (5)

2007 (9)

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[CrossRef] [PubMed]

B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, “Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation,” J. Biomed. Opt. 12(4), 041214 (2007).
[CrossRef] [PubMed]

Y. T. Pan, Z. L. Wu, Z. J. Yuan, Z. G. Wang, and C. W. Du, “Subcellular imaging of epithelium with time-lapse optical coherence tomography,” J. Biomed. Opt. 12(5), 050504 (2007).
[CrossRef] [PubMed]

Z. G. Wang, C. S. D. Lee, W. C. Waltzer, J. X. Liu, H. K. Xie, Z. J. Yuan, and Y. T. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[CrossRef] [PubMed]

S. Meißner, G. Muller, J. Walther, A. Krüger, M. Cuevas, B. Eichhorn, U. Ravens, H. Morawietz, and E. Koch, “Investigation of murine Vasodynamics by Fourier Domain Optical Coherence Tomography,” Proc. SPIE 6627, 66270D (2007).
[CrossRef]

A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15(2), 408–422 (2007).
[CrossRef] [PubMed]

A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express 15(4), 1627–1638 (2007).
[CrossRef] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
[CrossRef] [PubMed]

H. Wehbe, M. Ruggeri, S. Jiao, G. Gregori, C. A. Puliafito, and W. Zhao, “Automatic retinal blood flow calculation using spectral domain optical coherence tomography,” Opt. Express 15(23), 15193–15206 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (3)

2004 (4)

S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12(13), 2977–2998 (2004).
[CrossRef] [PubMed]

M. Pircher, E. Goetzinger, R. Leitgeb, and C. Hitzenberger, “Three dimensional polarization sensitive OCT of human skin in vivo,” Opt. Express 12(14), 3236–3244 (2004).
[CrossRef] [PubMed]

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242(4-6), 345–350 (2004).
[CrossRef]

G. Lamouche, M. L. Dufour, B. Gauthier, and J. Monchalin, “Gouy phase anomaly in optical coherence tomography,” Opt. Commun. 239(4-6), 297–301 (2004).
[CrossRef]

2003 (5)

2002 (1)

2000 (2)

1999 (1)

1997 (5)

1995 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Bachman, M.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242(4-6), 345–350 (2004).
[CrossRef]

Bachmann, A. H.

Bajraszewski, T.

Barton, J. K.

Blatter, C.

Boppart, S. A.

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Bouma, B.

Bouma, B. E.

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Bower, B. A.

B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, “Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation,” J. Biomed. Opt. 12(4), 041214 (2007).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[CrossRef] [PubMed]

Brecke, K. M.

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Cable, A. E.

Carrion, L.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, T.

Chen, T. C.

Chen, Z.

Choma, M.

Cuevas, M.

J. Walther, A. Krüger, M. Cuevas, and E. Koch, “Effects of axial, transverse and oblique sample motion in FD OCT in systems with global or rolling shutter line detector,” J. Opt. Soc. Am. A 25(11), 2791–2802 (2008).
[CrossRef]

S. Meißner, G. Muller, J. Walther, A. Krüger, M. Cuevas, B. Eichhorn, U. Ravens, H. Morawietz, and E. Koch, “Investigation of murine Vasodynamics by Fourier Domain Optical Coherence Tomography,” Proc. SPIE 6627, 66270D (2007).
[CrossRef]

E. Koch, J. Walther, and M. Cuevas, “Limits of Fourier domain Doppler-OCT at high velocities,” Sensors and Actuators A , doi:10/1016j.sna.2009.01.022.

Dave, D.

Davis, A. M.

de Boer, J.

de Boer, J. F.

Ding, Z.

Drexler, W.

Du, C. W.

Y. T. Pan, Z. L. Wu, Z. J. Yuan, Z. G. Wang, and C. W. Du, “Subcellular imaging of epithelium with time-lapse optical coherence tomography,” J. Biomed. Opt. 12(5), 050504 (2007).
[CrossRef] [PubMed]

Dufour, M. L.

G. Lamouche, M. L. Dufour, B. Gauthier, and J. Monchalin, “Gouy phase anomaly in optical coherence tomography,” Opt. Commun. 239(4-6), 297–301 (2004).
[CrossRef]

Duncan, D. D.

Eichhorn, B.

S. Meißner, G. Muller, J. Walther, A. Krüger, M. Cuevas, B. Eichhorn, U. Ravens, H. Morawietz, and E. Koch, “Investigation of murine Vasodynamics by Fourier Domain Optical Coherence Tomography,” Proc. SPIE 6627, 66270D (2007).
[CrossRef]

Fawzi, A.

Fercher, A.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[CrossRef]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gauthier, B.

G. Lamouche, M. L. Dufour, B. Gauthier, and J. Monchalin, “Gouy phase anomaly in optical coherence tomography,” Opt. Commun. 239(4-6), 297–301 (2004).
[CrossRef]

Gil-Flamer, J.

Goetzinger, E.

Gordon, M.

Gregori, G.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gruber, A.

Guo, S.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242(4-6), 345–350 (2004).
[CrossRef]

Hanson, S. R.

Hassler, K.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C.

Hitzenberger, C. K.

Huang, D.

Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express 17(5), 4061–4073 (2009).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hurst, S.

Ippen, E. P.

Izatt, J.

Izatt, J. A.

Jacques, S. L.

Jiang, J. Y.

Jiao, S.

Karamata, B.

Kärtner, F. X.

Kennedy, K. M.

Kirkpatrick, S. J.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[CrossRef]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
[CrossRef] [PubMed]

Koch, E.

J. Walther and E. Koch, “Flow measurement by using the signal decrease of moving scatterers in spatially encoded Fourier domain optical coherence tomography,” Proc. SPIE 7168, 71681S (2009).
[CrossRef]

J. Walther, A. Krüger, M. Cuevas, and E. Koch, “Effects of axial, transverse and oblique sample motion in FD OCT in systems with global or rolling shutter line detector,” J. Opt. Soc. Am. A 25(11), 2791–2802 (2008).
[CrossRef]

S. Meißner, G. Muller, J. Walther, A. Krüger, M. Cuevas, B. Eichhorn, U. Ravens, H. Morawietz, and E. Koch, “Investigation of murine Vasodynamics by Fourier Domain Optical Coherence Tomography,” Proc. SPIE 6627, 66270D (2007).
[CrossRef]

E. Koch, J. Walther, and M. Cuevas, “Limits of Fourier domain Doppler-OCT at high velocities,” Sensors and Actuators A , doi:10/1016j.sna.2009.01.022.

J. Walther, G. Muller, H. Morawietz, and E. Koch, “Analysis of in vitro and in vivo bidirectional flow velocities by phase-resolved Doppler Fourier-domain OCT,” Sens. Actuators A doi:10.1016/j.sna.2009.02.025. .

Kolbitsch, C.

Kowalczyk, A.

Krüger, A.

J. Walther, A. Krüger, M. Cuevas, and E. Koch, “Effects of axial, transverse and oblique sample motion in FD OCT in systems with global or rolling shutter line detector,” J. Opt. Soc. Am. A 25(11), 2791–2802 (2008).
[CrossRef]

S. Meißner, G. Muller, J. Walther, A. Krüger, M. Cuevas, B. Eichhorn, U. Ravens, H. Morawietz, and E. Koch, “Investigation of murine Vasodynamics by Fourier Domain Optical Coherence Tomography,” Proc. SPIE 6627, 66270D (2007).
[CrossRef]

Kulkarni, M. D.

Lamouche, G.

G. Lamouche, M. L. Dufour, B. Gauthier, and J. Monchalin, “Gouy phase anomaly in optical coherence tomography,” Opt. Commun. 239(4-6), 297–301 (2004).
[CrossRef]

Lasser, T.

Laubscher, M.

Lee, C. S. D.

Z. G. Wang, C. S. D. Lee, W. C. Waltzer, J. X. Liu, H. K. Xie, Z. J. Yuan, and Y. T. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[CrossRef] [PubMed]

Leitgeb, R.

Leitgeb, R. A.

Li, G. P.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242(4-6), 345–350 (2004).
[CrossRef]

Li, X. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, G.

Liu, J. X.

Z. G. Wang, C. S. D. Lee, W. C. Waltzer, J. X. Liu, H. K. Xie, Z. J. Yuan, and Y. T. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[CrossRef] [PubMed]

Lo, S.

Ma, Z.

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
[CrossRef] [PubMed]

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[CrossRef]

Maciejko, R.

Malekafzali, A.

Mariampillai, A.

Meißner, S.

S. Meißner, G. Muller, J. Walther, A. Krüger, M. Cuevas, B. Eichhorn, U. Ravens, H. Morawietz, and E. Koch, “Investigation of murine Vasodynamics by Fourier Domain Optical Coherence Tomography,” Proc. SPIE 6627, 66270D (2007).
[CrossRef]

Milner, T. E.

Mok, A.

Monchalin, J.

G. Lamouche, M. L. Dufour, B. Gauthier, and J. Monchalin, “Gouy phase anomaly in optical coherence tomography,” Opt. Commun. 239(4-6), 297–301 (2004).
[CrossRef]

Morawietz, H.

S. Meißner, G. Muller, J. Walther, A. Krüger, M. Cuevas, B. Eichhorn, U. Ravens, H. Morawietz, and E. Koch, “Investigation of murine Vasodynamics by Fourier Domain Optical Coherence Tomography,” Proc. SPIE 6627, 66270D (2007).
[CrossRef]

J. Walther, G. Muller, H. Morawietz, and E. Koch, “Analysis of in vitro and in vivo bidirectional flow velocities by phase-resolved Doppler Fourier-domain OCT,” Sens. Actuators A doi:10.1016/j.sna.2009.02.025. .

Morgner, U.

Mujat, M.

Muller, G.

S. Meißner, G. Muller, J. Walther, A. Krüger, M. Cuevas, B. Eichhorn, U. Ravens, H. Morawietz, and E. Koch, “Investigation of murine Vasodynamics by Fourier Domain Optical Coherence Tomography,” Proc. SPIE 6627, 66270D (2007).
[CrossRef]

J. Walther, G. Muller, H. Morawietz, and E. Koch, “Analysis of in vitro and in vivo bidirectional flow velocities by phase-resolved Doppler Fourier-domain OCT,” Sens. Actuators A doi:10.1016/j.sna.2009.02.025. .

Munce, N. R.

Nassif, N.

Nelson, J. S.

Pan, Y. T.

Z. G. Wang, C. S. D. Lee, W. C. Waltzer, J. X. Liu, H. K. Xie, Z. J. Yuan, and Y. T. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[CrossRef] [PubMed]

Y. T. Pan, Z. L. Wu, Z. J. Yuan, Z. G. Wang, and C. W. Du, “Subcellular imaging of epithelium with time-lapse optical coherence tomography,” J. Biomed. Opt. 12(5), 050504 (2007).
[CrossRef] [PubMed]

Park, B.

Park, B. H.

Pekar, J.

Pierce, M.

Pierce, M. C.

Pircher, M.

Pitris, C.

Puliafito, C. A.

H. Wehbe, M. Ruggeri, S. Jiao, G. Gregori, C. A. Puliafito, and W. Zhao, “Automatic retinal blood flow calculation using spectral domain optical coherence tomography,” Opt. Express 15(23), 15193–15206 (2007).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Qi, B.

Randall, C.

Ravens, U.

S. Meißner, G. Muller, J. Walther, A. Krüger, M. Cuevas, B. Eichhorn, U. Ravens, H. Morawietz, and E. Koch, “Investigation of murine Vasodynamics by Fourier Domain Optical Coherence Tomography,” Proc. SPIE 6627, 66270D (2007).
[CrossRef]

Ren, H.

Ruggeri, M.

Sarunic, M.

Schmetterer, L.

Schmoll, T.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Seng-Yue, E.

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Srinivas, S.

Standish, B. A.

Sticker, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Tan, O.

Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express 17(5), 4061–4073 (2009).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[CrossRef] [PubMed]

Tao, Y. K.

Tearney, G.

Tearney, G. J.

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Vakoc, B.

Vakoc, B. J.

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009).
[CrossRef] [PubMed]

van Gemert, M. J. C.

Villiger, M. L.

Vitkin, I.

Vitkin, I. A.

Walther, J.

J. Walther and E. Koch, “Flow measurement by using the signal decrease of moving scatterers in spatially encoded Fourier domain optical coherence tomography,” Proc. SPIE 7168, 71681S (2009).
[CrossRef]

J. Walther, A. Krüger, M. Cuevas, and E. Koch, “Effects of axial, transverse and oblique sample motion in FD OCT in systems with global or rolling shutter line detector,” J. Opt. Soc. Am. A 25(11), 2791–2802 (2008).
[CrossRef]

S. Meißner, G. Muller, J. Walther, A. Krüger, M. Cuevas, B. Eichhorn, U. Ravens, H. Morawietz, and E. Koch, “Investigation of murine Vasodynamics by Fourier Domain Optical Coherence Tomography,” Proc. SPIE 6627, 66270D (2007).
[CrossRef]

E. Koch, J. Walther, and M. Cuevas, “Limits of Fourier domain Doppler-OCT at high velocities,” Sensors and Actuators A , doi:10/1016j.sna.2009.01.022.

J. Walther, G. Muller, H. Morawietz, and E. Koch, “Analysis of in vitro and in vivo bidirectional flow velocities by phase-resolved Doppler Fourier-domain OCT,” Sens. Actuators A doi:10.1016/j.sna.2009.02.025. .

Waltzer, W. C.

Z. G. Wang, C. S. D. Lee, W. C. Waltzer, J. X. Liu, H. K. Xie, Z. J. Yuan, and Y. T. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[CrossRef] [PubMed]

Wang, L.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242(4-6), 345–350 (2004).
[CrossRef]

Wang, R. K.

Wang, X.

Wang, X. J.

Wang, Y.

Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express 17(5), 4061–4073 (2009).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[CrossRef] [PubMed]

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242(4-6), 345–350 (2004).
[CrossRef]

Wang, Z. G.

Y. T. Pan, Z. L. Wu, Z. J. Yuan, Z. G. Wang, and C. W. Du, “Subcellular imaging of epithelium with time-lapse optical coherence tomography,” J. Biomed. Opt. 12(5), 050504 (2007).
[CrossRef] [PubMed]

Z. G. Wang, C. S. D. Lee, W. C. Waltzer, J. X. Liu, H. K. Xie, Z. J. Yuan, and Y. T. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[CrossRef] [PubMed]

Wehbe, H.

Welch, A. J.

White, B.

Wilson, B.

Wojtkowski, M.

Wu, Z. L.

Y. T. Pan, Z. L. Wu, Z. J. Yuan, Z. G. Wang, and C. W. Du, “Subcellular imaging of epithelium with time-lapse optical coherence tomography,” J. Biomed. Opt. 12(5), 050504 (2007).
[CrossRef] [PubMed]

Xie, H. K.

Z. G. Wang, C. S. D. Lee, W. C. Waltzer, J. X. Liu, H. K. Xie, Z. J. Yuan, and Y. T. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[CrossRef] [PubMed]

Xu, Z.

Yang, C.

Yang, V.

Yang, V. X. D.

Yazdanfar, S.

You, J. W.

Yuan, Z. J.

Y. T. Pan, Z. L. Wu, Z. J. Yuan, Z. G. Wang, and C. W. Du, “Subcellular imaging of epithelium with time-lapse optical coherence tomography,” J. Biomed. Opt. 12(5), 050504 (2007).
[CrossRef] [PubMed]

Z. G. Wang, C. S. D. Lee, W. C. Waltzer, J. X. Liu, H. K. Xie, Z. J. Yuan, and Y. T. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[CrossRef] [PubMed]

Yun, S.

Yun, S. H.

Zawadzki, R.

Zawadzki, R. J.

B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, “Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation,” J. Biomed. Opt. 12(4), 041214 (2007).
[CrossRef] [PubMed]

Zhang, J.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242(4-6), 345–350 (2004).
[CrossRef]

Zhao, M.

B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, “Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation,” J. Biomed. Opt. 12(4), 041214 (2007).
[CrossRef] [PubMed]

Zhao, W.

Zhao, Y.

Appl. Phys. Lett. (1)

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett. 89(14), 144103 (2006).
[CrossRef]

IEEE Trans. Med. Imaging (1)

B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Statistical properties of phase-decorrelation in phase-resolved Doppler optical coherence tomography,” IEEE Trans. Med. Imaging 28(6), 814–821 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12(4), 041215 (2007).
[CrossRef] [PubMed]

B. A. Bower, M. Zhao, R. J. Zawadzki, and J. A. Izatt, “Real-time spectral domain Doppler optical coherence tomography and investigation of human retinal vessel autoregulation,” J. Biomed. Opt. 12(4), 041214 (2007).
[CrossRef] [PubMed]

Y. T. Pan, Z. L. Wu, Z. J. Yuan, Z. G. Wang, and C. W. Du, “Subcellular imaging of epithelium with time-lapse optical coherence tomography,” J. Biomed. Opt. 12(5), 050504 (2007).
[CrossRef] [PubMed]

Z. G. Wang, C. S. D. Lee, W. C. Waltzer, J. X. Liu, H. K. Xie, Z. J. Yuan, and Y. T. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

Opt. Commun. (2)

G. Lamouche, M. L. Dufour, B. Gauthier, and J. Monchalin, “Gouy phase anomaly in optical coherence tomography,” Opt. Commun. 239(4-6), 297–301 (2004).
[CrossRef]

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242(4-6), 345–350 (2004).
[CrossRef]

Opt. Express (22)

V. Yang, M. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. Wilson, and I. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11(7), 794–809 (2003).
[CrossRef] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
[CrossRef] [PubMed]

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
[CrossRef] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12(13), 2977–2998 (2004).
[CrossRef] [PubMed]

M. Pircher, E. Goetzinger, R. Leitgeb, and C. Hitzenberger, “Three dimensional polarization sensitive OCT of human skin in vivo,” Opt. Express 12(14), 3236–3244 (2004).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S. H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 microm,” Opt. Express 13(11), 3931–3944 (2005).
[CrossRef] [PubMed]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005).
[CrossRef] [PubMed]

J. W. You, T. C. Chen, M. Mujat, B. H. Park, and J. F. de Boer, “Pulsed illumination spectral-domain optical coherence tomography for human retinal imaging,” Opt. Express 14(15), 6739–6748 (2006).
[CrossRef] [PubMed]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
[CrossRef] [PubMed]

A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15(2), 408–422 (2007).
[CrossRef] [PubMed]

A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express 15(4), 1627–1638 (2007).
[CrossRef] [PubMed]

R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express 15(7), 4083–4097 (2007).
[CrossRef] [PubMed]

H. Wehbe, M. Ruggeri, S. Jiao, G. Gregori, C. A. Puliafito, and W. Zhao, “Automatic retinal blood flow calculation using spectral domain optical coherence tomography,” Opt. Express 15(23), 15193–15206 (2007).
[CrossRef] [PubMed]

Z. Xu, L. Carrion, and R. Maciejko, “A zero-crossing detection method applied to Doppler OCT,” Opt. Express 16(7), 4394–4412 (2008).
[CrossRef] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
[CrossRef] [PubMed]

Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express 17(5), 4061–4073 (2009).
[CrossRef] [PubMed]

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
[CrossRef] [PubMed]

Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express 17(5), 4177–4188 (2009).
[CrossRef] [PubMed]

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(13), 10584–10598 (2009).
[CrossRef] [PubMed]

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16(16), 12350–12361 (2008).
[CrossRef] [PubMed]

Opt. Lett. (10)

A. Szkulmowska, M. Szkulmowski, A. Kowalczyk, and M. Wojtkowski, “Phase-resolved Doppler optical coherence tomography--limitations and improvements,” Opt. Lett. 33(13), 1425–1427 (2008).
[CrossRef] [PubMed]

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000).
[CrossRef]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25(11), 820–822 (2000).
[CrossRef]

X. J. Wang, T. E. Milner, and J. S. Nelson, “Characterization of fluid flow velocity by optical Doppler tomography,” Opt. Lett. 20(11), 1337–1339 (1995).
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22(1), 64–66 (1997).
[CrossRef] [PubMed]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997).
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[CrossRef]

H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett. 27(6), 409–411 (2002).
[CrossRef]

Proc. SPIE (2)

S. Meißner, G. Muller, J. Walther, A. Krüger, M. Cuevas, B. Eichhorn, U. Ravens, H. Morawietz, and E. Koch, “Investigation of murine Vasodynamics by Fourier Domain Optical Coherence Tomography,” Proc. SPIE 6627, 66270D (2007).
[CrossRef]

J. Walther and E. Koch, “Flow measurement by using the signal decrease of moving scatterers in spatially encoded Fourier domain optical coherence tomography,” Proc. SPIE 7168, 71681S (2009).
[CrossRef]

Science (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy with optical coherence tomography,” Science 276(5321), 2037–2039 (1997).
[CrossRef] [PubMed]

Sens. Actuators A (1)

J. Walther, G. Muller, H. Morawietz, and E. Koch, “Analysis of in vitro and in vivo bidirectional flow velocities by phase-resolved Doppler Fourier-domain OCT,” Sens. Actuators A doi:10.1016/j.sna.2009.02.025. .

Sensors and Actuators A (1)

E. Koch, J. Walther, and M. Cuevas, “Limits of Fourier domain Doppler-OCT at high velocities,” Sensors and Actuators A , doi:10/1016j.sna.2009.01.022.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Contour plot of the numerically calculated average phase shift Δφ between consecutive A-Scans as a function of the transverse δx (horizontal) and the axial δz (vertical) displacement of the oblique sample motion. The contour lines are drawn in steps of π/6 for Δφ between 0 and 2π. The black solid line with ϑ’ of 54° against the horizontal exemplarily shows the phase shifts Δφ as function of δx and δz of an obliquely moving sample with a constant Doppler angle ϑ of 3.75°. (b) Relative deviations of the Doppler phase shift calculated only from the axial velocity (classic Doppler model) and the prediction of the new model. The black lines mark an area with relative errors of at least 2 to 10%.

Fig. 2
Fig. 2

(a) Contour plot showing the damping of the mean correlated signal Icor,mean due to transverse (δx) and axial (δz) displacement. Contour lines are drawn in steps of 1 dB and color values alter in steps of 5 dB. The damping in the white area exceeds 30 dB. (b) Correlation quotient (CQ) due to oblique motion shown by a contour plot as before. The black line with ϑ' = 54° corresponds to the values of CQ compared with experimental data shown in Fig. 4.

Fig. 3
Fig. 3

Experimental spectral domain (SD) OCT. (Ci: circulator; NIR SMF: near-infrared single mode fibre; SH: 3D-scanner head; C: collimator; xy GU: galvanometer scanners; DM: dichroic mirror; L1, L2, L3: lenses; M: mirror; VC: video camera; IS: illumination ring)

Fig. 4
Fig. 4

The experimental data (points) and predicted values (solid lines) of the degradation (in dB) of the mean signal Imean (magenta data set), the mean correlated signal Icor,mean (blue data set) and the correlation quotient (brown data set) are plotted as a function of the absolute sample velocity v of the 1% Intralipid flow at the capillary center assuming a parabolic flow profile. The angle between flow and transverse direction is ϑ = 3.75° and corresponds to ϑ' = 54° in the contour plot in Fig. 2b.

Fig. 5
Fig. 5

Scattergram of the complex values of Γres (each with 135 values) for five different velocities. The points were selected by the average phase shift of approximately π/20 (a), π/4 (b), π/2 (c), π (d) and the last point was chosen for the smallest correlation (e). All samples were normalized to a mean of the absolute values of 1. The correlation quotients for these measurements are 0.99 (a), 0.95 (b), 0.88 (c), 0.81 (d) and 0.02 (e). While the individual phase shifts are similar in the first case (a), the scattering increases with smaller correlation. Small values of Γres exhibit a much larger scattering in the phase shift than large values.

Fig. 6
Fig. 6

Mean error (standard deviation) σ of the phase shift (in rad) after averaging as a function of the number of samples (K) used. Starting from K = 6, a power law (g⋅Kh) was fitted to the data resulting in an exponent of h = −0.62 ± 0.02 in all cases with the exception of the red data set. The red data belong to the point of smallest correlation in this measurement (CQ = 0.02). The red curve is fitted with a linear function having a maximum of 1.79 which is only a little smaller than the maximum value for a uniform distribution of π/√3 ≅ 1.81. The chosen colors correspond to the one used in Fig. 5 and their related correlation quotients CQ.

Fig. 7
Fig. 7

Blue and red data points: Standard deviation σ of the phase shift calculated from 135 samples of Γres for ten different flow velocities (total 1350 values) and different angles (blue ϑ = 3.75°, red ϑ = 12.1°) as a function of the correlation quotient CQ (Eq. (16)). An empirical function (black line) was fitted to the data (K = 1) having the correct maximum of π/√3 for a correlation of CQ = 0 and a behavior proportional to arccos near a correlation of CQ = 1. For some data points, the mean error of the phase shift after averaging of K = 5 (orange), 10 (green) and 50 (magenta) samples is added to the plot. This data is interpolated by a 2nd order polynomial. The scale at the top gives CQ in dB calculated by (−10 log(Icor,mean/Imean)).

Fig. 8
Fig. 8

Contour plot of the standard deviation σ of the average phase shift Δφ with K = 1 samples as a function of δx and δz of the oblique sample motion. The value σ is presented in the range from 0 to 2 rad in intervals of 0.2 rad. For the area with σ ≤ 1 rad, the value of σ can be reduced by averaging K samples resulting in σ = Kh with h = −0.62. The regions marked by the orange color have a maximum σ of up to π/√3.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

vz=Δφλ0fAScan4πn
δx=Δxw0,     δz=Δzλ02n,     t'=tTInt
N(T1,T2,δx,δz)=mamT1T2   ei2π   δz   t'   e4ln(2)(xmδx   t')2   dt'
Δφ=arg(Ccor(δx,δz))
Ccor(δx,δz)=N(1,0,δx,δz)N*(0,1,δx,δz)
Ccor(δx,δz)=mN(1,0,δx,δz,m)N*(0,1,δx,δz,m)+m,kmkN(1,0,δx,δz,m)N*(0,1,δx,δz,k)   .
Ccor(δx,δz)¯=mN(1,0,δx,δz,m)N*(0,1,δx,δz,m)¯
Ccor(δx,δz)¯Ccor(0,0)¯=   N(1,0,δx,δz,xm)N*(0,1,δx,δz,xm)dxmN(1,0,0,0,xm)N*(0,1,0,0,xm)dxm
Ccor(δx,δz)¯=Ccor(0,0)¯     2ln(4)πN(1,0,δx,δz,xm)N*(0,1,δx,δz,xm)dxm
N(T1,T2,δx,δz,xm)=T1T2ei2π   δz   t'   e4ln(2)(xmδx   t')2   dt'
tanϑ'=w0λ02ntanϑ
Icor,mean=abs(Ccor(δx,δz)¯)=abs(N(1,0,δx,δz)N*(0,1,δx,δz)¯)
Imean=|N(1,0,δx,δz)|2
CQ=Icor,meanImean=abs(N(1,0,δx,δz)N(0,1,δx,δz)*¯)|N(1,0,δx,δz)|2
Γres(z)=ΓJ+1(z)ΓJ(z)
Δφ(z)¯=arg{1Kj=1K[Γres,j(z)]}
σ=aarccos(CQ)
σ=3.35arccos(CQ).
σ=[f(CQ,a)b+cbf(0,a)b]1b
with                                                                f(CQ,a)=aarccos(CQ)                                       a=3.348±0.159,       b=0.565±0.032,       c=π/3

Metrics