Abstract

We described the principle and the fabrication of a Nd:YVO4/KTP microchip for the linearly-polarized green laser and verified its availability by manufacturing and characterizing the green laser using the microchip. Under the driving condition having the modulation frequency of 60 Hz and the duty ratio of 25%, the laser showed the stable linear polarization, the maximum average power of 37 mW, yielding the high electrical-to-optical efficiency of 10.9%.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single-longitudinal mode Nd:YVO4 microchip laser with orthogonal-polarization bidirectional traveling-waves mode

Yingjun Ma, Li Wu, Hehui Wu, Weimin Chen, Yanli Wang, and Shijie Gu
Opt. Express 16(23) 18702-18713 (2008)

1.1 MW peak power in doubly QML composite Nd:YVO4/Nd:YVO4/Nd:YVO4/KTP sub-nanosecond green laser with EO and Bi-GaAs

Shixia Li, Dechun Li, Shengzhi Zhao, Guiqiu Li, Xiangyang Li, and Hui Qiao
Opt. Express 24(4) 4022-4028 (2016)

Compact and efficient 3.2-W diode-pumped Nd:YVO4/KTP green laser

Yung-Fu Chen, Ting-Ming Huang, Chi-Luen Wang, and Long-Jeng Lee
Appl. Opt. 37(24) 5727-5730 (1998)

References

  • View by:
  • |
  • |
  • |

  1. J. J. Zayhowski and A. Mooradian, “Single-frequency microchip Nd lasers,” Opt. Lett. 14(1), 24–26 (1989), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-14-1-24 .
    [Crossref] [PubMed]
  2. N. MacKinnon and B. D. Sinclair, “A laser diode array pumped, NdYVO4/KTP, composite material microchip laser,” Opt. Commun. 105(3-4), 183–187 (1994).
    [Crossref]
  3. J. Watanabe and T. Harimoto, “Oscillating longitudinal-mode control of a microchip green laser by injection current,” Opt. Express 15(3), 965–970 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-3-965 .
    [Crossref] [PubMed]
  4. C. Jung, B.-A. Yu, K. Lee, Y. L. Lee, N. E. Yu, D.-K. Ko, and J. Lee, “A compact diode-pumped microchip green light source with a built-in thermoelectric element,” Appl. Phys. Express, 2008, 1, 062005 (2008), http://apex.ipap.jp/link?APEX/1/062005/ .
  5. B.-A. Yu, C. Jung, I.-S. Kim, Y. L. Lee, N. E. Yu, and D.-K. Ko, “Temperature-controlled efficient microchip green laser for mobile projection displays,” Electron. Lett. 45(18), 943–945 (2009).
    [Crossref]
  6. E. Tamaki, Y. Hashimoto, and O. Leung, “Computer-to-plate printing using the Grating Light Valve device,” Proc. SPIE 5348, 89–97 (2004).
    [Crossref]
  7. CASIX, Inc., http://www.casix.com/product/prod_cry_ndyvo4.html .
  8. Y. Mao, M. Huang, and C. Wang, “Temperature effect on emission lines and fluorescence lifetime of the 4F3/2 state of Nd:YVO4,” Chin. Opt. Lett. 2, 102–105 (2004), http://www.opticsinfobase.org/col/abstract.cfm?URI=col-2-2-102 .
  9. T. Sasaki, T. Kojima, A. Yokotani, O. Oguri, and S. Nakai, “Single-longitudinal-mode operation and second-harmonic generation of Nd:YVO(4) microchip lasers,” Opt. Lett. 16(21), 1665–1668 (1991), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-16-21-1665 .
    [Crossref] [PubMed]

2009 (1)

B.-A. Yu, C. Jung, I.-S. Kim, Y. L. Lee, N. E. Yu, and D.-K. Ko, “Temperature-controlled efficient microchip green laser for mobile projection displays,” Electron. Lett. 45(18), 943–945 (2009).
[Crossref]

2007 (1)

2004 (2)

1994 (1)

N. MacKinnon and B. D. Sinclair, “A laser diode array pumped, NdYVO4/KTP, composite material microchip laser,” Opt. Commun. 105(3-4), 183–187 (1994).
[Crossref]

1991 (1)

1989 (1)

Harimoto, T.

Hashimoto, Y.

E. Tamaki, Y. Hashimoto, and O. Leung, “Computer-to-plate printing using the Grating Light Valve device,” Proc. SPIE 5348, 89–97 (2004).
[Crossref]

Huang, M.

Jung, C.

B.-A. Yu, C. Jung, I.-S. Kim, Y. L. Lee, N. E. Yu, and D.-K. Ko, “Temperature-controlled efficient microchip green laser for mobile projection displays,” Electron. Lett. 45(18), 943–945 (2009).
[Crossref]

Kim, I.-S.

B.-A. Yu, C. Jung, I.-S. Kim, Y. L. Lee, N. E. Yu, and D.-K. Ko, “Temperature-controlled efficient microchip green laser for mobile projection displays,” Electron. Lett. 45(18), 943–945 (2009).
[Crossref]

Ko, D.-K.

B.-A. Yu, C. Jung, I.-S. Kim, Y. L. Lee, N. E. Yu, and D.-K. Ko, “Temperature-controlled efficient microchip green laser for mobile projection displays,” Electron. Lett. 45(18), 943–945 (2009).
[Crossref]

Kojima, T.

Lee, Y. L.

B.-A. Yu, C. Jung, I.-S. Kim, Y. L. Lee, N. E. Yu, and D.-K. Ko, “Temperature-controlled efficient microchip green laser for mobile projection displays,” Electron. Lett. 45(18), 943–945 (2009).
[Crossref]

Leung, O.

E. Tamaki, Y. Hashimoto, and O. Leung, “Computer-to-plate printing using the Grating Light Valve device,” Proc. SPIE 5348, 89–97 (2004).
[Crossref]

MacKinnon, N.

N. MacKinnon and B. D. Sinclair, “A laser diode array pumped, NdYVO4/KTP, composite material microchip laser,” Opt. Commun. 105(3-4), 183–187 (1994).
[Crossref]

Mao, Y.

Mooradian, A.

Nakai, S.

Oguri, O.

Sasaki, T.

Sinclair, B. D.

N. MacKinnon and B. D. Sinclair, “A laser diode array pumped, NdYVO4/KTP, composite material microchip laser,” Opt. Commun. 105(3-4), 183–187 (1994).
[Crossref]

Tamaki, E.

E. Tamaki, Y. Hashimoto, and O. Leung, “Computer-to-plate printing using the Grating Light Valve device,” Proc. SPIE 5348, 89–97 (2004).
[Crossref]

Wang, C.

Watanabe, J.

Yokotani, A.

Yu, B.-A.

B.-A. Yu, C. Jung, I.-S. Kim, Y. L. Lee, N. E. Yu, and D.-K. Ko, “Temperature-controlled efficient microchip green laser for mobile projection displays,” Electron. Lett. 45(18), 943–945 (2009).
[Crossref]

Yu, N. E.

B.-A. Yu, C. Jung, I.-S. Kim, Y. L. Lee, N. E. Yu, and D.-K. Ko, “Temperature-controlled efficient microchip green laser for mobile projection displays,” Electron. Lett. 45(18), 943–945 (2009).
[Crossref]

Zayhowski, J. J.

Chin. Opt. Lett. (1)

Electron. Lett. (1)

B.-A. Yu, C. Jung, I.-S. Kim, Y. L. Lee, N. E. Yu, and D.-K. Ko, “Temperature-controlled efficient microchip green laser for mobile projection displays,” Electron. Lett. 45(18), 943–945 (2009).
[Crossref]

Opt. Commun. (1)

N. MacKinnon and B. D. Sinclair, “A laser diode array pumped, NdYVO4/KTP, composite material microchip laser,” Opt. Commun. 105(3-4), 183–187 (1994).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (1)

E. Tamaki, Y. Hashimoto, and O. Leung, “Computer-to-plate printing using the Grating Light Valve device,” Proc. SPIE 5348, 89–97 (2004).
[Crossref]

Other (2)

CASIX, Inc., http://www.casix.com/product/prod_cry_ndyvo4.html .

C. Jung, B.-A. Yu, K. Lee, Y. L. Lee, N. E. Yu, D.-K. Ko, and J. Lee, “A compact diode-pumped microchip green light source with a built-in thermoelectric element,” Appl. Phys. Express, 2008, 1, 062005 (2008), http://apex.ipap.jp/link?APEX/1/062005/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Polarization of the green beam generated in the common optically-contacted Nd:YVO4/KTP microchip.
Fig. 2
Fig. 2 Nd:YVO4/KTP microchip for the polarized green light, (a) concept, (b) fabricated one.
Fig. 3
Fig. 3 Manufactured microchip green laser.
Fig. 4
Fig. 4 Output-power characteristics of the microchip green laser.
Fig. 5
Fig. 5 Polarization characteristics of the microchip green laser.
Fig. 6
Fig. 6 Output power stability of the microchip green laser.

Metrics