Abstract

By incorporating saturation-induced gain modulation of an erbium-doped fiber amplifier (EDFA), we have demonstrated a high-speed photo-assisted electrical gating with considerably enhanced switching characteristics in a two-terminal device fabricated by using vanadium dioxide thin film. The gating operation was performed by illuminating the output light of the EDFA, whose transient gain was modulated by adjusting the chopping frequency of the input light down to 1 kHz, onto the device. In the proposed gating scheme, gated signals with a temporal duration of ~40 μs were successively generated at a repetition rate of 1 kHz.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Richardson and J. A. Coath, “Infrared optical modulators for missile testing,” Opt. Laser Technol. 30(2), 137–140 (1998).
    [CrossRef]
  2. S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, “Optical switch based on vanadium dioxide thin films,” Infrared Phys. Technol. 45(4), 239–242 (2004).
    [CrossRef]
  3. F. J. Morin, “Oxides which show a metal-to-insulator transition at the neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
    [CrossRef]
  4. E. Arcangeletti, L. Baldassarre, D. Di Castro, S. Lupi, L. Malavasi, C. Marini, A. Perucchi, and P. Postorino, “Evidence of a pressure-induced metallization process in monoclinic VO2,” Phys. Rev. Lett. 98, 196406(1–4) (2007).
  5. Y. W. Lee, B.-J. Kim, S. Choi, H.-T. Kim, and G. Kim, “Photo-assisted electrical gating in a two-terminal device based on vanadium dioxide thin film,” Opt. Express 15(19), 12108–12113 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-19-12108 .
    [CrossRef] [PubMed]
  6. A. Cavalleri, Cs. Tóth, C.W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401(1–4) (2001).
  7. H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices,” N. J. Phys. 6, 52–70 (2004).
    [CrossRef]
  8. W.-S. Choi, N.-J. Park, D.-Y. Lee, and D.-S. Hyun, “A new control scheme for a class-d inverter with induction heating jar application by constant switching frequency,” J. Power Electron. 5, 272–281 (2005).
  9. B. K. Ridley and T. B. Watkins, “The possibility of negative resistance effects in semiconductors,” Proc. Phys. Soc. Lond. 78(2), 293–304 (1961).
    [CrossRef]
  10. N.-S. Lee, J.-S. Chang, and Y.-S. Kwon, “Determination of the NDR and electron transport properties of self-assembled nitro-benzene monolayers using UHV-STM,” KIEE J. Electr. Eng. Technol. 1, 366–370 (2006).
    [CrossRef]
  11. D. Silber, W. Winter, and M. Fullmann, “Progress in light activated power thyristors,” IEEE Trans. Electron. Dev. 23(8), 899–904 (1976).
    [CrossRef]
  12. R. F. Carson, R. C. Hughes, T. E. Zipperian, H. T. Weaver, T. M. Brennan, B. E. Hammons, and J. F. Klem, “High-voltage, wavelength-discriminating, light-activated GaAs thyristor,” Electron. Lett. 25(23), 1592–1593 (1989).
    [CrossRef]
  13. C.-K. Kim, B.-M. Yang, and H.-S. Lee, “A dynamic performance study of an HVDC system using a hybrid simulator,” J. Power Electron. 5, 319–328 (2005).
  14. Y.-W. Choi and J. Kim, “Sputtering technique of magnetism oxide thin film for plasma display panel applications,” KIEE J. Electr. Eng. Technol. 1, 110–113 (2006).
    [CrossRef]
  15. D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99, 226401(1–4) (2007).
  16. C. R. Giles, E. Desurvire, and J. R. Simpson, “Transient gain and cross talk in erbium-doped fiber amplifiers,” Opt. Lett. 14(16), 880–882 (1989).
    [CrossRef] [PubMed]
  17. E. Desurvire, “Analysis of transient gain saturation and recovery in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 1(8), 196–199 (1989).
    [CrossRef]

2007 (1)

2006 (2)

N.-S. Lee, J.-S. Chang, and Y.-S. Kwon, “Determination of the NDR and electron transport properties of self-assembled nitro-benzene monolayers using UHV-STM,” KIEE J. Electr. Eng. Technol. 1, 366–370 (2006).
[CrossRef]

Y.-W. Choi and J. Kim, “Sputtering technique of magnetism oxide thin film for plasma display panel applications,” KIEE J. Electr. Eng. Technol. 1, 110–113 (2006).
[CrossRef]

2005 (2)

W.-S. Choi, N.-J. Park, D.-Y. Lee, and D.-S. Hyun, “A new control scheme for a class-d inverter with induction heating jar application by constant switching frequency,” J. Power Electron. 5, 272–281 (2005).

C.-K. Kim, B.-M. Yang, and H.-S. Lee, “A dynamic performance study of an HVDC system using a hybrid simulator,” J. Power Electron. 5, 319–328 (2005).

2004 (2)

S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, “Optical switch based on vanadium dioxide thin films,” Infrared Phys. Technol. 45(4), 239–242 (2004).
[CrossRef]

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices,” N. J. Phys. 6, 52–70 (2004).
[CrossRef]

1998 (1)

M. A. Richardson and J. A. Coath, “Infrared optical modulators for missile testing,” Opt. Laser Technol. 30(2), 137–140 (1998).
[CrossRef]

1989 (3)

R. F. Carson, R. C. Hughes, T. E. Zipperian, H. T. Weaver, T. M. Brennan, B. E. Hammons, and J. F. Klem, “High-voltage, wavelength-discriminating, light-activated GaAs thyristor,” Electron. Lett. 25(23), 1592–1593 (1989).
[CrossRef]

E. Desurvire, “Analysis of transient gain saturation and recovery in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 1(8), 196–199 (1989).
[CrossRef]

C. R. Giles, E. Desurvire, and J. R. Simpson, “Transient gain and cross talk in erbium-doped fiber amplifiers,” Opt. Lett. 14(16), 880–882 (1989).
[CrossRef] [PubMed]

1976 (1)

D. Silber, W. Winter, and M. Fullmann, “Progress in light activated power thyristors,” IEEE Trans. Electron. Dev. 23(8), 899–904 (1976).
[CrossRef]

1961 (1)

B. K. Ridley and T. B. Watkins, “The possibility of negative resistance effects in semiconductors,” Proc. Phys. Soc. Lond. 78(2), 293–304 (1961).
[CrossRef]

1959 (1)

F. J. Morin, “Oxides which show a metal-to-insulator transition at the neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[CrossRef]

Brennan, T. M.

R. F. Carson, R. C. Hughes, T. E. Zipperian, H. T. Weaver, T. M. Brennan, B. E. Hammons, and J. F. Klem, “High-voltage, wavelength-discriminating, light-activated GaAs thyristor,” Electron. Lett. 25(23), 1592–1593 (1989).
[CrossRef]

Carson, R. F.

R. F. Carson, R. C. Hughes, T. E. Zipperian, H. T. Weaver, T. M. Brennan, B. E. Hammons, and J. F. Klem, “High-voltage, wavelength-discriminating, light-activated GaAs thyristor,” Electron. Lett. 25(23), 1592–1593 (1989).
[CrossRef]

Chae, B.-G.

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices,” N. J. Phys. 6, 52–70 (2004).
[CrossRef]

Chang, J.-S.

N.-S. Lee, J.-S. Chang, and Y.-S. Kwon, “Determination of the NDR and electron transport properties of self-assembled nitro-benzene monolayers using UHV-STM,” KIEE J. Electr. Eng. Technol. 1, 366–370 (2006).
[CrossRef]

Chen, M.

S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, “Optical switch based on vanadium dioxide thin films,” Infrared Phys. Technol. 45(4), 239–242 (2004).
[CrossRef]

Chen, S.

S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, “Optical switch based on vanadium dioxide thin films,” Infrared Phys. Technol. 45(4), 239–242 (2004).
[CrossRef]

Choi, S.

Choi, W.-S.

W.-S. Choi, N.-J. Park, D.-Y. Lee, and D.-S. Hyun, “A new control scheme for a class-d inverter with induction heating jar application by constant switching frequency,” J. Power Electron. 5, 272–281 (2005).

Choi, Y.-W.

Y.-W. Choi and J. Kim, “Sputtering technique of magnetism oxide thin film for plasma display panel applications,” KIEE J. Electr. Eng. Technol. 1, 110–113 (2006).
[CrossRef]

Coath, J. A.

M. A. Richardson and J. A. Coath, “Infrared optical modulators for missile testing,” Opt. Laser Technol. 30(2), 137–140 (1998).
[CrossRef]

Desurvire, E.

E. Desurvire, “Analysis of transient gain saturation and recovery in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 1(8), 196–199 (1989).
[CrossRef]

C. R. Giles, E. Desurvire, and J. R. Simpson, “Transient gain and cross talk in erbium-doped fiber amplifiers,” Opt. Lett. 14(16), 880–882 (1989).
[CrossRef] [PubMed]

Fullmann, M.

D. Silber, W. Winter, and M. Fullmann, “Progress in light activated power thyristors,” IEEE Trans. Electron. Dev. 23(8), 899–904 (1976).
[CrossRef]

Giles, C. R.

Hammons, B. E.

R. F. Carson, R. C. Hughes, T. E. Zipperian, H. T. Weaver, T. M. Brennan, B. E. Hammons, and J. F. Klem, “High-voltage, wavelength-discriminating, light-activated GaAs thyristor,” Electron. Lett. 25(23), 1592–1593 (1989).
[CrossRef]

Hughes, R. C.

R. F. Carson, R. C. Hughes, T. E. Zipperian, H. T. Weaver, T. M. Brennan, B. E. Hammons, and J. F. Klem, “High-voltage, wavelength-discriminating, light-activated GaAs thyristor,” Electron. Lett. 25(23), 1592–1593 (1989).
[CrossRef]

Hyun, D.-S.

W.-S. Choi, N.-J. Park, D.-Y. Lee, and D.-S. Hyun, “A new control scheme for a class-d inverter with induction heating jar application by constant switching frequency,” J. Power Electron. 5, 272–281 (2005).

Kang, K.-Y.

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices,” N. J. Phys. 6, 52–70 (2004).
[CrossRef]

Ke, C.

S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, “Optical switch based on vanadium dioxide thin films,” Infrared Phys. Technol. 45(4), 239–242 (2004).
[CrossRef]

Kim, B.-J.

Kim, C.-K.

C.-K. Kim, B.-M. Yang, and H.-S. Lee, “A dynamic performance study of an HVDC system using a hybrid simulator,” J. Power Electron. 5, 319–328 (2005).

Kim, G.

Y. W. Lee, B.-J. Kim, S. Choi, H.-T. Kim, and G. Kim, “Photo-assisted electrical gating in a two-terminal device based on vanadium dioxide thin film,” Opt. Express 15(19), 12108–12113 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-19-12108 .
[CrossRef] [PubMed]

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices,” N. J. Phys. 6, 52–70 (2004).
[CrossRef]

Kim, H.-T.

Y. W. Lee, B.-J. Kim, S. Choi, H.-T. Kim, and G. Kim, “Photo-assisted electrical gating in a two-terminal device based on vanadium dioxide thin film,” Opt. Express 15(19), 12108–12113 (2007), http://www.opticsexpress.org/abstract.cfm?URI=oe-15-19-12108 .
[CrossRef] [PubMed]

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices,” N. J. Phys. 6, 52–70 (2004).
[CrossRef]

Kim, J.

Y.-W. Choi and J. Kim, “Sputtering technique of magnetism oxide thin film for plasma display panel applications,” KIEE J. Electr. Eng. Technol. 1, 110–113 (2006).
[CrossRef]

Klem, J. F.

R. F. Carson, R. C. Hughes, T. E. Zipperian, H. T. Weaver, T. M. Brennan, B. E. Hammons, and J. F. Klem, “High-voltage, wavelength-discriminating, light-activated GaAs thyristor,” Electron. Lett. 25(23), 1592–1593 (1989).
[CrossRef]

Kwon, Y.-S.

N.-S. Lee, J.-S. Chang, and Y.-S. Kwon, “Determination of the NDR and electron transport properties of self-assembled nitro-benzene monolayers using UHV-STM,” KIEE J. Electr. Eng. Technol. 1, 366–370 (2006).
[CrossRef]

Lee, D.-Y.

W.-S. Choi, N.-J. Park, D.-Y. Lee, and D.-S. Hyun, “A new control scheme for a class-d inverter with induction heating jar application by constant switching frequency,” J. Power Electron. 5, 272–281 (2005).

Lee, H.-S.

C.-K. Kim, B.-M. Yang, and H.-S. Lee, “A dynamic performance study of an HVDC system using a hybrid simulator,” J. Power Electron. 5, 319–328 (2005).

Lee, N.-S.

N.-S. Lee, J.-S. Chang, and Y.-S. Kwon, “Determination of the NDR and electron transport properties of self-assembled nitro-benzene monolayers using UHV-STM,” KIEE J. Electr. Eng. Technol. 1, 366–370 (2006).
[CrossRef]

Lee, Y. W.

Li, X.

S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, “Optical switch based on vanadium dioxide thin films,” Infrared Phys. Technol. 45(4), 239–242 (2004).
[CrossRef]

Lim, Y.-S.

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices,” N. J. Phys. 6, 52–70 (2004).
[CrossRef]

Ma, H.

S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, “Optical switch based on vanadium dioxide thin films,” Infrared Phys. Technol. 45(4), 239–242 (2004).
[CrossRef]

Maeng, S.-L.

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices,” N. J. Phys. 6, 52–70 (2004).
[CrossRef]

Morin, F. J.

F. J. Morin, “Oxides which show a metal-to-insulator transition at the neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[CrossRef]

Park, N.-J.

W.-S. Choi, N.-J. Park, D.-Y. Lee, and D.-S. Hyun, “A new control scheme for a class-d inverter with induction heating jar application by constant switching frequency,” J. Power Electron. 5, 272–281 (2005).

Richardson, M. A.

M. A. Richardson and J. A. Coath, “Infrared optical modulators for missile testing,” Opt. Laser Technol. 30(2), 137–140 (1998).
[CrossRef]

Ridley, B. K.

B. K. Ridley and T. B. Watkins, “The possibility of negative resistance effects in semiconductors,” Proc. Phys. Soc. Lond. 78(2), 293–304 (1961).
[CrossRef]

Silber, D.

D. Silber, W. Winter, and M. Fullmann, “Progress in light activated power thyristors,” IEEE Trans. Electron. Dev. 23(8), 899–904 (1976).
[CrossRef]

Simpson, J. R.

Tao, X.

S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, “Optical switch based on vanadium dioxide thin films,” Infrared Phys. Technol. 45(4), 239–242 (2004).
[CrossRef]

Wang, H.

S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, “Optical switch based on vanadium dioxide thin films,” Infrared Phys. Technol. 45(4), 239–242 (2004).
[CrossRef]

Watkins, T. B.

B. K. Ridley and T. B. Watkins, “The possibility of negative resistance effects in semiconductors,” Proc. Phys. Soc. Lond. 78(2), 293–304 (1961).
[CrossRef]

Weaver, H. T.

R. F. Carson, R. C. Hughes, T. E. Zipperian, H. T. Weaver, T. M. Brennan, B. E. Hammons, and J. F. Klem, “High-voltage, wavelength-discriminating, light-activated GaAs thyristor,” Electron. Lett. 25(23), 1592–1593 (1989).
[CrossRef]

Winter, W.

D. Silber, W. Winter, and M. Fullmann, “Progress in light activated power thyristors,” IEEE Trans. Electron. Dev. 23(8), 899–904 (1976).
[CrossRef]

Yang, B.-M.

C.-K. Kim, B.-M. Yang, and H.-S. Lee, “A dynamic performance study of an HVDC system using a hybrid simulator,” J. Power Electron. 5, 319–328 (2005).

Yi, X.

S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, “Optical switch based on vanadium dioxide thin films,” Infrared Phys. Technol. 45(4), 239–242 (2004).
[CrossRef]

Youn, D.-H.

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices,” N. J. Phys. 6, 52–70 (2004).
[CrossRef]

Zipperian, T. E.

R. F. Carson, R. C. Hughes, T. E. Zipperian, H. T. Weaver, T. M. Brennan, B. E. Hammons, and J. F. Klem, “High-voltage, wavelength-discriminating, light-activated GaAs thyristor,” Electron. Lett. 25(23), 1592–1593 (1989).
[CrossRef]

Electron. Lett. (1)

R. F. Carson, R. C. Hughes, T. E. Zipperian, H. T. Weaver, T. M. Brennan, B. E. Hammons, and J. F. Klem, “High-voltage, wavelength-discriminating, light-activated GaAs thyristor,” Electron. Lett. 25(23), 1592–1593 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

E. Desurvire, “Analysis of transient gain saturation and recovery in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 1(8), 196–199 (1989).
[CrossRef]

IEEE Trans. Electron. Dev. (1)

D. Silber, W. Winter, and M. Fullmann, “Progress in light activated power thyristors,” IEEE Trans. Electron. Dev. 23(8), 899–904 (1976).
[CrossRef]

Infrared Phys. Technol. (1)

S. Chen, H. Ma, X. Yi, H. Wang, X. Tao, M. Chen, X. Li, and C. Ke, “Optical switch based on vanadium dioxide thin films,” Infrared Phys. Technol. 45(4), 239–242 (2004).
[CrossRef]

J. Power Electron. (2)

C.-K. Kim, B.-M. Yang, and H.-S. Lee, “A dynamic performance study of an HVDC system using a hybrid simulator,” J. Power Electron. 5, 319–328 (2005).

W.-S. Choi, N.-J. Park, D.-Y. Lee, and D.-S. Hyun, “A new control scheme for a class-d inverter with induction heating jar application by constant switching frequency,” J. Power Electron. 5, 272–281 (2005).

KIEE J. Electr. Eng. Technol. (2)

Y.-W. Choi and J. Kim, “Sputtering technique of magnetism oxide thin film for plasma display panel applications,” KIEE J. Electr. Eng. Technol. 1, 110–113 (2006).
[CrossRef]

N.-S. Lee, J.-S. Chang, and Y.-S. Kwon, “Determination of the NDR and electron transport properties of self-assembled nitro-benzene monolayers using UHV-STM,” KIEE J. Electr. Eng. Technol. 1, 366–370 (2006).
[CrossRef]

N. J. Phys. (1)

H.-T. Kim, B.-G. Chae, D.-H. Youn, S.-L. Maeng, G. Kim, K.-Y. Kang, and Y.-S. Lim, “Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices,” N. J. Phys. 6, 52–70 (2004).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

M. A. Richardson and J. A. Coath, “Infrared optical modulators for missile testing,” Opt. Laser Technol. 30(2), 137–140 (1998).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

F. J. Morin, “Oxides which show a metal-to-insulator transition at the neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[CrossRef]

Proc. Phys. Soc. Lond. (1)

B. K. Ridley and T. B. Watkins, “The possibility of negative resistance effects in semiconductors,” Proc. Phys. Soc. Lond. 78(2), 293–304 (1961).
[CrossRef]

Other (3)

A. Cavalleri, Cs. Tóth, C.W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87, 237401(1–4) (2001).

D. J. Hilton, R. P. Prasankumar, S. Fourmaux, A. Cavalleri, D. Brassard, M. A. El Khakani, J. C. Kieffer, A. J. Taylor, and R. D. Averitt, “Enhanced photosusceptibility near Tc for the light-induced insulator-to-metal phase transition in vanadium dioxide,” Phys. Rev. Lett. 99, 226401(1–4) (2007).

E. Arcangeletti, L. Baldassarre, D. Di Castro, S. Lupi, L. Malavasi, C. Marini, A. Perucchi, and P. Postorino, “Evidence of a pressure-induced metallization process in monoclinic VO2,” Phys. Rev. Lett. 98, 196406(1–4) (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for high-speed photo-assisted electrical gating.

Fig. 2
Fig. 2

(a) I-V properties of the VO2 device when the infrared light with various intensities is illuminated and (b) optical spectra of the illumination light at various intensities.

Fig. 3
Fig. 3

(a) Photodetector output of the infrared light whose intensity is modulated at 1 kHz using an external OC and (b) transient variation of the light intensity of the EDFA output when the light signal whose intensity is modulated at 1 kHz is amplified by the EDFA.

Fig. 4
Fig. 4

(a) Electrical circuit for generating gated signals with short temporal duration based on the SIGM of the EDFA. (b) High-speed optical gating operation in the VO2 device when the amplified output of the infrared light modulated at 1 kHz by the OC is shed on the VO2 film with various attenuation values of the OA. Inset shows the I-V property of the VO2 device (dimension: 10 × 50 μm2) measured with the compliance current of 100 mA.

Metrics