Abstract

Increased scattering by seawater relative to that by pure water is primarily due to additional fluctuation of the refractive index contributed by sea salts. Salts with different ionic weight and sizes, while barely affecting the scattering that is due to density fluctuations, have a significant effect on the scattering that is due to concentration fluctuations. And this explains the major differences of their total scattering that would be observed. Scattering by solutions of NaCl, the major sea salt, is consistently about 6.7% and 4% lower than seawater of the same mass concentration and of the same refractive index, respectively. Because of ionic interactions, the molecular scattering does not follow the simple addition rule that applies to bulk inherent optical properties, with the total less than the summation of the parts. The possible values of scattering by waters of, such as, Dead Sea or Orca Basin, which have different salt composition from seawater, are discussed.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Morel, “Etude Experimentale de la diffusion de la lumiere par l'eau, les solutions de chlorure de sodium et l'eau de mer optiquement pures,” J. Chim. Phys. 10, 1359–1366 (1966).
  2. A. Morel, “Note au sujet des constantes de diffusion de la lumiere pour l'eau et l'eau de mer optiquement pures,” Cah. Oceanogr. 20, 157–162 (1968).
  3. W. S. Pegau, D. Gray, and J. R. V. Zaneveld, “Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt. 36(24), 6035–6046 (1997).
    [CrossRef] [PubMed]
  4. J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. M. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, “Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range,” Appl. Opt. 45(21), 5294–5309 (2006).
    [CrossRef] [PubMed]
  5. M. Ravisankar, A. T. Reghunath, K. Sathianandan, and V. P. N. Nampoori, “Effect of dissolved NaCl, MgCl2, and Na2SO4 in seawater on the optical attenuation in the region from 430 to 630 nm,” Appl. Opt. 27(18), 3887–3894 (1988).
    [CrossRef] [PubMed]
  6. I. Steinhorn, “In situ salt precipitation at the Dead Sea,” Limnol. Oceanogr. 28, 580–583 (1983).
    [CrossRef]
  7. F. J. Millero, Chemical Oceanography (Taylor & Francis, Boca Raton, 2005).
  8. P. Debye, “Light Scattering in Solutions,” J. Appl. Phys. 15(4), 338–342 (1944).
    [CrossRef]
  9. G. Oster, “The scattering of light and its applications to chemistry,” Chem. Rev. 43(2), 319–365 (1948).
    [CrossRef] [PubMed]
  10. X. Zhang and L. Hu, “Estimating scattering of pure water from density fluctuation of the refractive index,” Opt. Express 17(3), 1671–1678 (2009).
    [CrossRef] [PubMed]
  11. X. Zhang, L. Hu, and M.-X. He, “Scattering by pure seawater: effect of salinity,” Opt. Express 17(7), 5698–5710 (2009).
    [CrossRef] [PubMed]
  12. X. Zhang and L. Hu, “Scattering by pure seawater at high salinity,” Opt. Express 17(15), 12685–12691 (2009).
    [CrossRef] [PubMed]
  13. A. Einstein, “Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes,” Ann. Phys. 338(16), 1275–1298 (1910).
    [CrossRef]
  14. D. R. Lide, Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2003).
  15. F. J. Millero, G. K. Ward, F. K. Lepple, and E. V. Hoff, “Isothermal Compressibility of Aqueous Sodium Chloride, Magnesium Chloride, Sodium Sulfate, and Magnesium Sulfate Solutions from 0 to 45° at 1Atm,” J. Phys. Chem. •••, 78 (1974).
  16. K. S. Pitzer and G. Mayorga, “Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent,” J. Phys. Chem. 77(19), 2300–2308 (1973).
    [CrossRef]
  17. R. S. Farinato and R. L. Rowell, “New values of the light scattering depolarization and anisotropy of water,” J. Chem. Phys. 65(2), 593–595 (1976).
    [CrossRef]
  18. P. Debye, “Molecular-weight Determination by Light Scattering,” J. Phys. Chem. 51(1), 18–32 (1947).
    [CrossRef]
  19. Y. Marcus, “Ionic radii in aqueous solutions,” Chem. Rev. 88(8), 1475–1498 (1988).
    [CrossRef]
  20. K. S. Shifrin, Physical Optics of Ocean Water (American Institute of Physics, New York, 1988).
  21. E. Boss and W. S. Pegau, “Relationship of light scattering at an angle in the backward direction to the backscattering coefficient,” Appl. Opt. 40(30), 5503–5507 (2001).
    [CrossRef]
  22. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36(33), 8710–8723 (1997).
    [CrossRef]
  23. F. J. Millero, “The Physical Chemistry of Seawater,” Annu. Rev. Earth Planet. Sci. 2(1), 101–150 (1974).
    [CrossRef]
  24. M. R. Wright, An Introduction to Aqueous Electrolyte Solutions (John Wiley & Sons Ltd., West Sussex, 2007).

2009 (3)

2006 (1)

2001 (1)

1997 (2)

1988 (2)

1983 (1)

I. Steinhorn, “In situ salt precipitation at the Dead Sea,” Limnol. Oceanogr. 28, 580–583 (1983).
[CrossRef]

1976 (1)

R. S. Farinato and R. L. Rowell, “New values of the light scattering depolarization and anisotropy of water,” J. Chem. Phys. 65(2), 593–595 (1976).
[CrossRef]

1974 (2)

F. J. Millero, “The Physical Chemistry of Seawater,” Annu. Rev. Earth Planet. Sci. 2(1), 101–150 (1974).
[CrossRef]

F. J. Millero, G. K. Ward, F. K. Lepple, and E. V. Hoff, “Isothermal Compressibility of Aqueous Sodium Chloride, Magnesium Chloride, Sodium Sulfate, and Magnesium Sulfate Solutions from 0 to 45° at 1Atm,” J. Phys. Chem. •••, 78 (1974).

1973 (1)

K. S. Pitzer and G. Mayorga, “Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent,” J. Phys. Chem. 77(19), 2300–2308 (1973).
[CrossRef]

1968 (1)

A. Morel, “Note au sujet des constantes de diffusion de la lumiere pour l'eau et l'eau de mer optiquement pures,” Cah. Oceanogr. 20, 157–162 (1968).

1966 (1)

A. Morel, “Etude Experimentale de la diffusion de la lumiere par l'eau, les solutions de chlorure de sodium et l'eau de mer optiquement pures,” J. Chim. Phys. 10, 1359–1366 (1966).

1948 (1)

G. Oster, “The scattering of light and its applications to chemistry,” Chem. Rev. 43(2), 319–365 (1948).
[CrossRef] [PubMed]

1947 (1)

P. Debye, “Molecular-weight Determination by Light Scattering,” J. Phys. Chem. 51(1), 18–32 (1947).
[CrossRef]

1944 (1)

P. Debye, “Light Scattering in Solutions,” J. Appl. Phys. 15(4), 338–342 (1944).
[CrossRef]

1910 (1)

A. Einstein, “Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes,” Ann. Phys. 338(16), 1275–1298 (1910).
[CrossRef]

Barnard, A. H.

Boss, E.

Debye, P.

P. Debye, “Molecular-weight Determination by Light Scattering,” J. Phys. Chem. 51(1), 18–32 (1947).
[CrossRef]

P. Debye, “Light Scattering in Solutions,” J. Appl. Phys. 15(4), 338–342 (1944).
[CrossRef]

Donaghay, P. L.

Einstein, A.

A. Einstein, “Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes,” Ann. Phys. 338(16), 1275–1298 (1910).
[CrossRef]

Farinato, R. S.

R. S. Farinato and R. L. Rowell, “New values of the light scattering depolarization and anisotropy of water,” J. Chem. Phys. 65(2), 593–595 (1976).
[CrossRef]

Fry, E. S.

Gray, D.

He, M.-X.

Hoff, E. V.

F. J. Millero, G. K. Ward, F. K. Lepple, and E. V. Hoff, “Isothermal Compressibility of Aqueous Sodium Chloride, Magnesium Chloride, Sodium Sulfate, and Magnesium Sulfate Solutions from 0 to 45° at 1Atm,” J. Phys. Chem. •••, 78 (1974).

Hu, L.

Lepple, F. K.

F. J. Millero, G. K. Ward, F. K. Lepple, and E. V. Hoff, “Isothermal Compressibility of Aqueous Sodium Chloride, Magnesium Chloride, Sodium Sulfate, and Magnesium Sulfate Solutions from 0 to 45° at 1Atm,” J. Phys. Chem. •••, 78 (1974).

Marcus, Y.

Y. Marcus, “Ionic radii in aqueous solutions,” Chem. Rev. 88(8), 1475–1498 (1988).
[CrossRef]

Mayorga, G.

K. S. Pitzer and G. Mayorga, “Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent,” J. Phys. Chem. 77(19), 2300–2308 (1973).
[CrossRef]

Millero, F. J.

F. J. Millero, G. K. Ward, F. K. Lepple, and E. V. Hoff, “Isothermal Compressibility of Aqueous Sodium Chloride, Magnesium Chloride, Sodium Sulfate, and Magnesium Sulfate Solutions from 0 to 45° at 1Atm,” J. Phys. Chem. •••, 78 (1974).

F. J. Millero, “The Physical Chemistry of Seawater,” Annu. Rev. Earth Planet. Sci. 2(1), 101–150 (1974).
[CrossRef]

Moore, C. M.

Morel, A.

A. Morel, “Note au sujet des constantes de diffusion de la lumiere pour l'eau et l'eau de mer optiquement pures,” Cah. Oceanogr. 20, 157–162 (1968).

A. Morel, “Etude Experimentale de la diffusion de la lumiere par l'eau, les solutions de chlorure de sodium et l'eau de mer optiquement pures,” J. Chim. Phys. 10, 1359–1366 (1966).

Nampoori, V. P. N.

Oster, G.

G. Oster, “The scattering of light and its applications to chemistry,” Chem. Rev. 43(2), 319–365 (1948).
[CrossRef] [PubMed]

Pegau, W. S.

Pitzer, K. S.

K. S. Pitzer and G. Mayorga, “Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent,” J. Phys. Chem. 77(19), 2300–2308 (1973).
[CrossRef]

Pope, R. M.

Ravisankar, M.

Reghunath, A. T.

Rhoades, B.

Rowell, R. L.

R. S. Farinato and R. L. Rowell, “New values of the light scattering depolarization and anisotropy of water,” J. Chem. Phys. 65(2), 593–595 (1976).
[CrossRef]

Sathianandan, K.

Steinhorn, I.

I. Steinhorn, “In situ salt precipitation at the Dead Sea,” Limnol. Oceanogr. 28, 580–583 (1983).
[CrossRef]

Sullivan, J. M.

Twardowski, M. S.

Ward, G. K.

F. J. Millero, G. K. Ward, F. K. Lepple, and E. V. Hoff, “Isothermal Compressibility of Aqueous Sodium Chloride, Magnesium Chloride, Sodium Sulfate, and Magnesium Sulfate Solutions from 0 to 45° at 1Atm,” J. Phys. Chem. •••, 78 (1974).

Zaneveld, J. R. V.

Zhang, X.

Ann. Phys. (1)

A. Einstein, “Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes,” Ann. Phys. 338(16), 1275–1298 (1910).
[CrossRef]

Annu. Rev. Earth Planet. Sci. (1)

F. J. Millero, “The Physical Chemistry of Seawater,” Annu. Rev. Earth Planet. Sci. 2(1), 101–150 (1974).
[CrossRef]

Appl. Opt. (5)

Cah. Oceanogr. (1)

A. Morel, “Note au sujet des constantes de diffusion de la lumiere pour l'eau et l'eau de mer optiquement pures,” Cah. Oceanogr. 20, 157–162 (1968).

Chem. Rev. (2)

G. Oster, “The scattering of light and its applications to chemistry,” Chem. Rev. 43(2), 319–365 (1948).
[CrossRef] [PubMed]

Y. Marcus, “Ionic radii in aqueous solutions,” Chem. Rev. 88(8), 1475–1498 (1988).
[CrossRef]

J. Appl. Phys. (1)

P. Debye, “Light Scattering in Solutions,” J. Appl. Phys. 15(4), 338–342 (1944).
[CrossRef]

J. Chem. Phys. (1)

R. S. Farinato and R. L. Rowell, “New values of the light scattering depolarization and anisotropy of water,” J. Chem. Phys. 65(2), 593–595 (1976).
[CrossRef]

J. Chim. Phys. (1)

A. Morel, “Etude Experimentale de la diffusion de la lumiere par l'eau, les solutions de chlorure de sodium et l'eau de mer optiquement pures,” J. Chim. Phys. 10, 1359–1366 (1966).

J. Phys. Chem. (3)

P. Debye, “Molecular-weight Determination by Light Scattering,” J. Phys. Chem. 51(1), 18–32 (1947).
[CrossRef]

F. J. Millero, G. K. Ward, F. K. Lepple, and E. V. Hoff, “Isothermal Compressibility of Aqueous Sodium Chloride, Magnesium Chloride, Sodium Sulfate, and Magnesium Sulfate Solutions from 0 to 45° at 1Atm,” J. Phys. Chem. •••, 78 (1974).

K. S. Pitzer and G. Mayorga, “Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent,” J. Phys. Chem. 77(19), 2300–2308 (1973).
[CrossRef]

Limnol. Oceanogr. (1)

I. Steinhorn, “In situ salt precipitation at the Dead Sea,” Limnol. Oceanogr. 28, 580–583 (1983).
[CrossRef]

Opt. Express (3)

Other (4)

F. J. Millero, Chemical Oceanography (Taylor & Francis, Boca Raton, 2005).

D. R. Lide, Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2003).

M. R. Wright, An Introduction to Aqueous Electrolyte Solutions (John Wiley & Sons Ltd., West Sussex, 2007).

K. S. Shifrin, Physical Optics of Ocean Water (American Institute of Physics, New York, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Scattering by NaCl solution at 366 and 546 nm and 20°C calculated using Eq. (1) is compared with the measurements by Morel [1,2].The theoretical values at 589 nm, where the physical constants of the model were empirically determined, were scaled to 366 and 546 nm, respectively, following the power-law of a slope of 4.23, a value that was determined from Morel’s measurements.

Fig. 2
Fig. 2

(a) Scattering due to density (Eq. (2), dashed lines) and concentration (Eq. (3), solid lines) fluctuations and (b) total scattering (Eq. (1)) by solutions of NaCl, MgCl2, Na2SO4, and MgSO4, and by pure seawater are estimated for λ = 589 nm and Tc = 20°C as a function of salt concentration.

Fig. 3
Fig. 3

Scattering at 589 nm and 20°C by four major sea salt solutions are calculated as a function of their respective fractional concentrations at a given salinity. The sum of the individual scattering estimates is compared with the theoretical estimate of scattering by seawater.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

b=bd+bc,
bd=8π3λ4(ρn2ρ)T2kTβTh(δ)
bc=8π3λ4NA(n2S)2MwρSlnaw/Sh(δ).
X=a0+a1M+a2M1.5+a3M2.

Metrics