Abstract

A novel fiber optic hydrophone based on the integration of a dual polarization fiber grating laser and an elastic diaphragm is proposed and experimentally demonstrated. The diaphragm transforms the acoustic pressure into transversal force acting on the laser cavity which changes the fiber birefringence and therefore the beat frequency between the two polarization lines. The proposed hydrophone has advantages of ease of interrogation, absolute frequency encoding, and capability to multiplex a number of sensors on a single fiber by use of frequency division multiplexing technique.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Nash, “Review of interferometric optical fibre hydrophone technology,” IEE Proc., Radar Sonar Navig. 143(3), 204–209 (1996).
    [CrossRef]
  2. C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
    [CrossRef]
  3. G. A. Cranch and P. Nash, “Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM,” J. Lightwave Technol. 19(5), 687–699 (2001).
    [CrossRef]
  4. N. Lagakos, W. J. Trott, T. R. Hichkman, J. H. Cole, and J. A. Bucaro, “Microbend fiber-optic sensor as extended hydrophone,” IEEE J. Quantum Electron. 18(10), 1633–1638 (1982).
    [CrossRef]
  5. W. B. Spillman and R. L. Gravel, “Moving fiber-optic hydrophone,” Opt. Lett. 5(1), 30–31 (1980).
    [CrossRef] [PubMed]
  6. W. B. Spillman and D. H. McMahon, “Frustrated-total-internal-reflection multimode fiber-optic hydrophone,” Appl. Opt. 19(1), 113–117 (1980).
    [CrossRef] [PubMed]
  7. R. Chen, G. F. Fernando, T. Butler, and R. A. Badcock, “A novel ultrasound fiber optic sensor based on a fused-tapered optical fiber coupler,” Meas. Sci. Technol. 15(8), 1490–1495 (2004).
    [CrossRef]
  8. N. Takahashi, S., Takahashi, and K. Tetsumura, “Fiber-Bragg-grating underwater acoustic sensor,” in Proc. 13th Int. Conf. Optical Fiber Sensors, Kyongju, Korea, 565–568 (1999).
  9. N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, ““Characteristics of fiber Bragg grating hydrophone,” IEICE Trans. Electron,” E 83-C, 275–281 (2000).
  10. J. H. Cole, C. Sunderman, A. B. Tveten, C. Kirkendall, and A. Dandridge, “Preliminary investigation of air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors,” In Proc. 15th Int. Conf. Optical Fiber Sensors, Portland, Oregon, 317–320 (2002).
  11. D. J. Hill, and P. J. And, Nash, “In-water acoustic response of a coated DFB fibre laser sensor,” In Proc. 14th Int. Conf. Optical Fiber Sensors, Venice, 33–36 (2000).
  12. S. Foster, A. Tikhomirov, M. Milnes, J. van Velzen, and G. Hardy, “A fiber laser hydrophone,” in Proc. 17th Int. Conf. Optical Fiber Sensors, Bruges, Belgium, 627–610 (2005).
  13. P. E. Bagnoli, N. Beverini, R. Falciai, E. Maccioni, M. Morganti, F. Sorrentino, F. Stefani, and C. Trono, “Development of an erbium-doped fibre laser as a deep-sea hydrophone,” J. Opt. A, Pure Appl. Opt. 8(7), S535–S539 (2006).
    [CrossRef]
  14. M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29(4), 398–399 (1993).
    [CrossRef]
  15. B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
    [CrossRef]
  16. L. Flax, J. H. Cole, R. P. De Paula, and J. A. Bucaro, “Acoustically induced birefringence in optical fibers,” J. Opt. Soc. Am. 72(9), 1159–1162 (1982).
    [CrossRef]
  17. Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
    [CrossRef]

2008

Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[CrossRef]

2006

P. E. Bagnoli, N. Beverini, R. Falciai, E. Maccioni, M. Morganti, F. Sorrentino, F. Stefani, and C. Trono, “Development of an erbium-doped fibre laser as a deep-sea hydrophone,” J. Opt. A, Pure Appl. Opt. 8(7), S535–S539 (2006).
[CrossRef]

2005

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

2004

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[CrossRef]

R. Chen, G. F. Fernando, T. Butler, and R. A. Badcock, “A novel ultrasound fiber optic sensor based on a fused-tapered optical fiber coupler,” Meas. Sci. Technol. 15(8), 1490–1495 (2004).
[CrossRef]

2001

2000

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, ““Characteristics of fiber Bragg grating hydrophone,” IEICE Trans. Electron,” E 83-C, 275–281 (2000).

1996

P. Nash, “Review of interferometric optical fibre hydrophone technology,” IEE Proc., Radar Sonar Navig. 143(3), 204–209 (1996).
[CrossRef]

1993

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29(4), 398–399 (1993).
[CrossRef]

1982

N. Lagakos, W. J. Trott, T. R. Hichkman, J. H. Cole, and J. A. Bucaro, “Microbend fiber-optic sensor as extended hydrophone,” IEEE J. Quantum Electron. 18(10), 1633–1638 (1982).
[CrossRef]

L. Flax, J. H. Cole, R. P. De Paula, and J. A. Bucaro, “Acoustically induced birefringence in optical fibers,” J. Opt. Soc. Am. 72(9), 1159–1162 (1982).
[CrossRef]

1980

Badcock, R. A.

R. Chen, G. F. Fernando, T. Butler, and R. A. Badcock, “A novel ultrasound fiber optic sensor based on a fused-tapered optical fiber coupler,” Meas. Sci. Technol. 15(8), 1490–1495 (2004).
[CrossRef]

Bagnoli, P. E.

P. E. Bagnoli, N. Beverini, R. Falciai, E. Maccioni, M. Morganti, F. Sorrentino, F. Stefani, and C. Trono, “Development of an erbium-doped fibre laser as a deep-sea hydrophone,” J. Opt. A, Pure Appl. Opt. 8(7), S535–S539 (2006).
[CrossRef]

Beverini, N.

P. E. Bagnoli, N. Beverini, R. Falciai, E. Maccioni, M. Morganti, F. Sorrentino, F. Stefani, and C. Trono, “Development of an erbium-doped fibre laser as a deep-sea hydrophone,” J. Opt. A, Pure Appl. Opt. 8(7), S535–S539 (2006).
[CrossRef]

Bucaro, J. A.

L. Flax, J. H. Cole, R. P. De Paula, and J. A. Bucaro, “Acoustically induced birefringence in optical fibers,” J. Opt. Soc. Am. 72(9), 1159–1162 (1982).
[CrossRef]

N. Lagakos, W. J. Trott, T. R. Hichkman, J. H. Cole, and J. A. Bucaro, “Microbend fiber-optic sensor as extended hydrophone,” IEEE J. Quantum Electron. 18(10), 1633–1638 (1982).
[CrossRef]

Butler, T.

R. Chen, G. F. Fernando, T. Butler, and R. A. Badcock, “A novel ultrasound fiber optic sensor based on a fused-tapered optical fiber coupler,” Meas. Sci. Technol. 15(8), 1490–1495 (2004).
[CrossRef]

Chan, H. L. W.

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

Chen, R.

R. Chen, G. F. Fernando, T. Butler, and R. A. Badcock, “A novel ultrasound fiber optic sensor based on a fused-tapered optical fiber coupler,” Meas. Sci. Technol. 15(8), 1490–1495 (2004).
[CrossRef]

Chow, Y. T.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29(4), 398–399 (1993).
[CrossRef]

Cole, J. H.

L. Flax, J. H. Cole, R. P. De Paula, and J. A. Bucaro, “Acoustically induced birefringence in optical fibers,” J. Opt. Soc. Am. 72(9), 1159–1162 (1982).
[CrossRef]

N. Lagakos, W. J. Trott, T. R. Hichkman, J. H. Cole, and J. A. Bucaro, “Microbend fiber-optic sensor as extended hydrophone,” IEEE J. Quantum Electron. 18(10), 1633–1638 (1982).
[CrossRef]

Cranch, G. A.

Dakin, J. P.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29(4), 398–399 (1993).
[CrossRef]

Dandridge, A.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[CrossRef]

De Paula, R. P.

Falciai, R.

P. E. Bagnoli, N. Beverini, R. Falciai, E. Maccioni, M. Morganti, F. Sorrentino, F. Stefani, and C. Trono, “Development of an erbium-doped fibre laser as a deep-sea hydrophone,” J. Opt. A, Pure Appl. Opt. 8(7), S535–S539 (2006).
[CrossRef]

Fernando, G. F.

R. Chen, G. F. Fernando, T. Butler, and R. A. Badcock, “A novel ultrasound fiber optic sensor based on a fused-tapered optical fiber coupler,” Meas. Sci. Technol. 15(8), 1490–1495 (2004).
[CrossRef]

Flax, L.

Gravel, R. L.

Guan, B. O.

Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[CrossRef]

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

Hichkman, T. R.

N. Lagakos, W. J. Trott, T. R. Hichkman, J. H. Cole, and J. A. Bucaro, “Microbend fiber-optic sensor as extended hydrophone,” IEEE J. Quantum Electron. 18(10), 1633–1638 (1982).
[CrossRef]

Imamura, K.

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, ““Characteristics of fiber Bragg grating hydrophone,” IEICE Trans. Electron,” E 83-C, 275–281 (2000).

Kirkendall, C. K.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[CrossRef]

Lagakos, N.

N. Lagakos, W. J. Trott, T. R. Hichkman, J. H. Cole, and J. A. Bucaro, “Microbend fiber-optic sensor as extended hydrophone,” IEEE J. Quantum Electron. 18(10), 1633–1638 (1982).
[CrossRef]

Lau, S. T.

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

Maccioni, E.

P. E. Bagnoli, N. Beverini, R. Falciai, E. Maccioni, M. Morganti, F. Sorrentino, F. Stefani, and C. Trono, “Development of an erbium-doped fibre laser as a deep-sea hydrophone,” J. Opt. A, Pure Appl. Opt. 8(7), S535–S539 (2006).
[CrossRef]

McMahon, D. H.

Morganti, M.

P. E. Bagnoli, N. Beverini, R. Falciai, E. Maccioni, M. Morganti, F. Sorrentino, F. Stefani, and C. Trono, “Development of an erbium-doped fibre laser as a deep-sea hydrophone,” J. Opt. A, Pure Appl. Opt. 8(7), S535–S539 (2006).
[CrossRef]

Nash, P.

G. A. Cranch and P. Nash, “Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM,” J. Lightwave Technol. 19(5), 687–699 (2001).
[CrossRef]

P. Nash, “Review of interferometric optical fibre hydrophone technology,” IEE Proc., Radar Sonar Navig. 143(3), 204–209 (1996).
[CrossRef]

Reekie, L.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29(4), 398–399 (1993).
[CrossRef]

Sorrentino, F.

P. E. Bagnoli, N. Beverini, R. Falciai, E. Maccioni, M. Morganti, F. Sorrentino, F. Stefani, and C. Trono, “Development of an erbium-doped fibre laser as a deep-sea hydrophone,” J. Opt. A, Pure Appl. Opt. 8(7), S535–S539 (2006).
[CrossRef]

Spillman, W. B.

Stefani, F.

P. E. Bagnoli, N. Beverini, R. Falciai, E. Maccioni, M. Morganti, F. Sorrentino, F. Stefani, and C. Trono, “Development of an erbium-doped fibre laser as a deep-sea hydrophone,” J. Opt. A, Pure Appl. Opt. 8(7), S535–S539 (2006).
[CrossRef]

Takahashi, N.

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, ““Characteristics of fiber Bragg grating hydrophone,” IEICE Trans. Electron,” E 83-C, 275–281 (2000).

Takahashi, S.

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, ““Characteristics of fiber Bragg grating hydrophone,” IEICE Trans. Electron,” E 83-C, 275–281 (2000).

Tam, H. Y.

Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[CrossRef]

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

Trono, C.

P. E. Bagnoli, N. Beverini, R. Falciai, E. Maccioni, M. Morganti, F. Sorrentino, F. Stefani, and C. Trono, “Development of an erbium-doped fibre laser as a deep-sea hydrophone,” J. Opt. A, Pure Appl. Opt. 8(7), S535–S539 (2006).
[CrossRef]

Trott, W. J.

N. Lagakos, W. J. Trott, T. R. Hichkman, J. H. Cole, and J. A. Bucaro, “Microbend fiber-optic sensor as extended hydrophone,” IEEE J. Quantum Electron. 18(10), 1633–1638 (1982).
[CrossRef]

Xu, M. G.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29(4), 398–399 (1993).
[CrossRef]

Yoshimura, K.

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, ““Characteristics of fiber Bragg grating hydrophone,” IEICE Trans. Electron,” E 83-C, 275–281 (2000).

Zhang, Y.

Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[CrossRef]

Appl. Opt.

E

N. Takahashi, K. Yoshimura, S. Takahashi, and K. Imamura, ““Characteristics of fiber Bragg grating hydrophone,” IEICE Trans. Electron,” E 83-C, 275–281 (2000).

Electron. Lett.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29(4), 398–399 (1993).
[CrossRef]

IEE Proc., Radar Sonar Navig.

P. Nash, “Review of interferometric optical fibre hydrophone technology,” IEE Proc., Radar Sonar Navig. 143(3), 204–209 (1996).
[CrossRef]

IEEE J. Quantum Electron.

N. Lagakos, W. J. Trott, T. R. Hichkman, J. H. Cole, and J. A. Bucaro, “Microbend fiber-optic sensor as extended hydrophone,” IEEE J. Quantum Electron. 18(10), 1633–1638 (1982).
[CrossRef]

IEEE Photon. Technol. Lett.

B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, “Ultrasonic hydrophone based on distributed Bragg reflector fiber laser,” IEEE Photon. Technol. Lett. 17(1), 169–171 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. A, Pure Appl. Opt.

P. E. Bagnoli, N. Beverini, R. Falciai, E. Maccioni, M. Morganti, F. Sorrentino, F. Stefani, and C. Trono, “Development of an erbium-doped fibre laser as a deep-sea hydrophone,” J. Opt. A, Pure Appl. Opt. 8(7), S535–S539 (2006).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. D Appl. Phys.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[CrossRef]

Meas. Sci. Technol.

R. Chen, G. F. Fernando, T. Butler, and R. A. Badcock, “A novel ultrasound fiber optic sensor based on a fused-tapered optical fiber coupler,” Meas. Sci. Technol. 15(8), 1490–1495 (2004).
[CrossRef]

Opt. Commun.

Y. Zhang, B. O. Guan, and H. Y. Tam, “Characteristics of the distributed Bragg reflector fiber laser sensor for lateral force measurement,” Opt. Commun. 281(18), 4619–4622 (2008).
[CrossRef]

Opt. Lett.

Other

N. Takahashi, S., Takahashi, and K. Tetsumura, “Fiber-Bragg-grating underwater acoustic sensor,” in Proc. 13th Int. Conf. Optical Fiber Sensors, Kyongju, Korea, 565–568 (1999).

J. H. Cole, C. Sunderman, A. B. Tveten, C. Kirkendall, and A. Dandridge, “Preliminary investigation of air-included polymer coatings for enhanced sensitivity of fiber-optic acoustic sensors,” In Proc. 15th Int. Conf. Optical Fiber Sensors, Portland, Oregon, 317–320 (2002).

D. J. Hill, and P. J. And, Nash, “In-water acoustic response of a coated DFB fibre laser sensor,” In Proc. 14th Int. Conf. Optical Fiber Sensors, Venice, 33–36 (2000).

S. Foster, A. Tikhomirov, M. Milnes, J. van Velzen, and G. Hardy, “A fiber laser hydrophone,” in Proc. 17th Int. Conf. Optical Fiber Sensors, Bruges, Belgium, 627–610 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the proposed fiber grating laser hydrophone.

Fig. 2
Fig. 2

Output spectrum of the DBR fiber laser.

Fig. 3
Fig. 3

Beat signal spectrum of the DBR fiber laser.

Fig. 4
Fig. 4

Static pressure response of the fiber grating hydrophone.

Fig. 5
Fig. 5

Output waveform of (a) the fiber laser hydrophone and (b) PZT hydrophone at 400 Hz, 2.7 Pa.

Fig. 6
Fig. 6

Output waveform of (a) the fiber laser hydrophone and (b) PZT hydrophone at 400Hz, ~0.2 Pa.

Fig. 7
Fig. 7

Frequency response of the fiber laser hydrophone

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δν=cB/n0λ0
F=KFAFKpApπR2p
δ ( Δ ν ) = K F
K=1Leff2cn0(p11p12)2(1+νp)cos(2θ)λ0πrEf
δ(Δν)=KKFAFKpApπR2p

Metrics